Optimal Resource Allocation for Wireless Video Sensors

Mališa Marijan
Department of Electrical and
Computer Engineering
University of Rochester

Outline

I

• Introduction

II

Optimal Power Allocation

III

• P-R-D Analysis for $\Sigma\Delta$ Imager

IV

Power Control

V

Conclusion

Optimal Allocation in Classical Video Communication Systems

- System optimization problem: how to control system performance under bandwidth constraints.
- Rate-distortion (R-D) characteristics provide the minimum number of bits that has to be transmitted to achieve a given level of distortion.
- Examples: digital TV broadcast, video on demand [1],[2].

Wireless Video Sensor Networks

- •A wireless video sensor network is a system that contains spatially distributed *wireless video sensors* (WVSs).
- •Three major modules of the WVS are image sensing, video compression, and wireless transmission.

Optimal Allocation in Wireless Video Sensor Network

- Wireless video sensor networks operate under limited energy supply. The available energy influence the resulting video quality and the life time of the system.
- For optimal resource allocation, classical R-D analysis has to be extended to include additional resource constraints.
- A new, power-rate-distortion (P-R-D) analysis has to be applied for power and bit allocation [1],[2].

Outline

• Introduction

Optimal Power Allocation

• P-R-D Analysis for $\Sigma\Delta$ Imager

Power Control

Conclusion

Optimization Problem

- How to allocate power P among sensor (Ps), compression (Pc), and transmission (Pt) modules to minimize the overall distortion for a given rate R?
- In addition, output bit rate of the sensor should be higher than target bit rate but should not excide maximum achievable rate.

Optimization Problem (Cont.)

- •Distortion in the module: the mean square error difference between the output and input pictures of the module.
- •Distortions introduced by the three modules can be assumed to be independent so that overall distortion is simply the sum of all three.

$$\min_{P_{s}, P_{c}, P_{t}} D(P_{s}, P_{c}, P_{t}; R) = D_{s}(P_{s}) + D_{c}(P_{c}; R) + D_{t}(P_{t})$$

$$s.t.P_{s} + P_{c} + P_{t} = P$$

$$R \le R_{s}(P_{s}) \le R_{smax}$$

Optimal Solution I

•Assume that solution lies in the region

$$R \le R_s(P_s) \le R_{s \max}$$

•We can use Lagrange multiplier technique:

$$\Lambda(P_{s}, P_{c}, P_{t}, \lambda; R) = D_{s}(P_{s}) + D_{c}(P_{c}; R) + D_{t}(P_{t}) + \lambda(P_{s} + P_{c} + P_{t} - P)$$

Optimal Solution I

$$\frac{\partial D_{s}}{\partial P_{s}} + \lambda = 0$$

$$\frac{\partial D_{c}}{\partial P_{c}} + \lambda = 0$$

$$\Rightarrow \frac{\partial D_{s}}{\partial P_{s}} = \frac{\partial D_{c}}{\partial P_{c}} = \frac{\partial D_{t}}{\partial P_{t}}$$

$$\frac{\partial D_{t}}{\partial P_{t}} + \lambda = 0$$

$$P_{s} + P_{c} + P_{t} = P$$

•All functions Di (Pi) are convex function —> the solution is the global minimum.

Graphical interpretation

•For an optimal solution P_s^* , P_c^* , P_t^* , the tangents on the corresponding distortion functions must have the same slope.

Optimal Solution II

•If Rs>Rsmax then Rs=Rsmax should be set.

$$\frac{\partial D_c}{\partial P_c} = \frac{\partial D_t}{\partial P_t}$$

$$P_c + P_t = P - P_s (R_{s \max})$$

Optimal Solution III

•If Rs<R then Rs=R should be set.

$$P_{s} = P_{s}(R)$$

$$P_{c} = 0$$

$$P_{t} = P - P_{s}$$

New optimization problem

$$\frac{\partial D_s}{\partial P_s} = \frac{\partial D_t}{\partial P_t}$$
$$P_s + P_t = P$$

Outline

• Introduction Optimal Power Allocation • P-R-D Analysis for $\Sigma\Delta$ Imager • Power Control Conclusion

Architecture of ∑∆ Imager

Digital Pixel Sensor Architecture

vertical scan circuit horizontal scan circuit

Pixel Design

^{*}A. Theuwissen, "CMOS Image sensors: Recent Developments"

^{*}Z.Ignjatovic and M.Bocko, "A 0.88nW/pixel, 99.6dB linear-dynamic-range fully-digital image sensor employing a pixel-level sigma-delta ADC," VLSI Simposium, 2006.

Distortion model for ΣΔ Imager

$$D_s' = D_s + D_{s0}$$

$$\frac{\partial D_{s}^{'}}{\partial P_{s}} = \frac{\partial D_{s}}{\partial P_{s}}$$

- •Distortions: quantization noise and thermal reset noise
- •Optimal solutions depend on the rate of change of the distortion function with respect to power (OSR).
- •Any model that include nonidealities like photodiode shot noise, 1/f noise, FPN, DC offset etc. (which do not depend on the OSR) will lead to the same power allocation as the proposed model in the region $R \le Rs \le Rsmax$.

Quantization noise

- Assumptions about quantization noise e[n]:
 - -stationary random process
 - -random variables of the error process are uncorrelated – e[n] is white noise
 - -e[n]~ $U(-\Delta/2,\Delta/2)$, Δ -quantization step
 - -e[n] is uncorrelated with input signal x[n]
 - -quantization noise power is $\sigma_q^2 = e[n]^2 = \Delta^2/12$

Quantization noise (Cont.)

•Distortion measure is in-band noise power.

$$D_{qn} = \int_{-\pi/OSR}^{\pi/OSR} \left| 1 - e^{-jw} \right|^2 \frac{\sigma_q^2}{2\pi} dw$$

$$D_{qn} = \frac{2\sigma_q^2}{\pi} \left(\frac{\pi}{OSR} - \sin \frac{\pi}{OSR} \right)$$

$$D_{qn} \approx \frac{\sigma^2 \sigma_q^2}{3OSR^3}$$

Thermal (reset) noise

- •Thermal noise is assumed to be a stationary white random process with Gaussian distribution with zero mean and variance σ_{t}^{2} .
- •As opposed to the quantization noise, the thermal noise does not see the integration function and it is reduced only by oversampling.

$$D_{tn} = \int_{-\pi/OSR}^{\pi/OSR} \frac{\sigma_t^2}{2\pi} dw = \frac{\sigma_t^2}{OSR}$$

Total Distortion in ∑∆ Imager

•Noise sources are assumed to be independent; therefore, total distortion is sum of individual distortions:

$$D_{s} = D_{qn} + D_{tn}$$

$$D_{s} = \frac{2\sigma_{q}^{2}}{\pi} \left(\frac{\pi}{OSR} - \sin\frac{\pi}{OSR}\right) + \frac{\sigma_{t}^{2}}{OSR}$$

Power Consumption

$$P_{s} = N_{pixel} \cdot f_{frame} \cdot OSR \cdot P_{pf}$$

$$P_{s} = OSR \cdot p$$

- •Npixel -number of pixel in the image sensor array
- •fframe -number of frames per second in video frame sequence
- •Ppf -power consumption per pixel per frame
- p -dynamic power consumption per oversampling

Power-Distortion Curve

$$D_{s}(OSR) = \frac{2\sigma_{q}^{2}}{\pi} (\frac{\pi}{OSR} - \sin\frac{\pi}{OSR}) + \frac{\sigma_{t}^{2}}{OSR}$$

$$P_{s} = OSR \cdot p$$

$$\Rightarrow D_{s}(P_{s}) = \frac{2\sigma_{q}^{2}}{\pi} (\frac{\pi p}{P_{s}} - \sin\frac{\pi p}{P_{s}}) + \frac{\sigma_{t}^{2} p}{P_{s}}$$

$$D_{s}(P_{s}) \approx \frac{p}{P_{s}} \left[\frac{1}{3} (\frac{\pi p}{P_{s}})^{2} \sigma_{q}^{2} + \sigma_{t}^{2} \right]$$

Power-Distortion Curve - Example

Image Sensor Bit Rate

• Dynamic range:

$$DR = \frac{V^2/2}{\sigma_q^2}$$

• Nyquist rate ADC:

$$DR = 3 \cdot 2^{(2R_s - 1)}$$

• Sigma-delta ADC:

$$DR = \frac{9OSR^3}{2\pi^2}$$

• ENOB is calculated as a number of bits N that sigma-delta converter gives to achieve the same dynamic range as Nyquist rate converter with N quantization levels:

$$R_s = ENOB = \frac{9.031 \cdot \log_2(OSR) - 5.172}{6.021}$$

Outline

Introduction

Optimal Power Allocation

• P-R-D Analysis for $\Sigma\Delta$ Imager

Power Control

Conclusion

Power Control I

Power Control II

Power Control III

Conclusion

- Optimal power allocation for WVS is derived.
- P-R-D model of the $\sum \Delta$ imager is proposed.
- Power control stages for optimal power allocation are illustrated.

References

- [1] Z.He and S.K. Mitra,"From rate-distortion analysis to resource-distortion analysis," Circuits and System Magazine IEEE, vol. 5, pp. 6-18, September 2005.
- [2] Z. He and D. Wu, "Resource Allocation and Performance Analysis of Wireless Video Sensors," IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, No. 5, pp. 590-599, May 2006.
- [3] Z.He, Y.Liang, L.Chen,I.Ahmad, and D.Wu,"Power-rate-distortion analysis for wireless video communication under energy constraints," IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, No.5, pp. 645-658, May 2005.
- [4] Z.He,W.Cheng, and X.Chen,"Energy minimization of portable video communication devices based on power-rate-distortion optimization," IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, No.5, pp. 596-608, May 2008.
- [5] Z.Ignjatovic and M.Bocko, "A 0.88nW/pixel, 99.6dB linear-dynamic-range fully-digital image sensor employing a pixel-level sigma-delta ADC," VLSI Simposium, 2006.
- [6] D. Maricic, Z.Ignjatovic, and M. Bocko, "Low power, high dynamic range CMOS image sensor employing pixel-level oversampling analog to digital conversion," unpublished.
- [7] P.M. Aziz, H.V. Sorensen, and J. vn der Spiegel, "An overview of sigma-delta converters," IEEE Signal Processing Magazine, vol. 13, No. 1, pp. 61-84, Januar 1996.