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Optimal Allocation in Classical Video
Communication Systems

System optimization problem: how to control
system  performance under bandwidth
constraints.

Rate-distortion (R-D) characteristics provide
the minimum number of bits that has to be
transmitted to achieve a given level of
distortion.

Examples: digital TV broadcast, video on
demand [1],[2].



Wireless Video Sensor Networks

*A wireless video sensor network is a system that
contains spatially distributed wireless video sensors
(WVSs).

*Three major modules of the WVS are image sensing,
video compression, and wireless transmission.
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Optimal Allocation in Wireless Video
Sensor Network

Wireless video sensor networks operate under
limited energy supply. The available energy
influence the resulting video quality and the life
time of the system.

For optimal resource allocation, classical R-D
analysis has to be extended to include additional
resource constraints.

A new, power-rate-distortion (P-R-D) analysis
has to be applied for power and bit allocation

[1],[2].
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Optimization Problem
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How to allocate power P among sensor (Ps), compression (Pc), and
transmission (Pt) modules to minimize the overall distortion for a
given rate R?

In addition, output bit rate of the sensor should be higher than
target bit rate but should not excide maximum achievable rate.




Optimization Problem (Cont.)

*Distortion in the module: the mean square error difference
between the output and input pictures of the module.

*Distortions introduced by the three modules can be assumed to
be independent so that overall distortion is simply the sum of all
three.

min D(R,, R, R;R) =D,(R) +D.(F;R) + D, (R)

PS’PC’Pt

stP.+P +P =P
R<R(P)< R



Optimal Solution |

*Assume that solution lies in the region

R<R(P)<R

SMax

*We can use Lagrange multiplier technique:

A(R R R.A;R) = D,(R) + D.(R;R)+ D (R) + A(R, +R. + R ~P)



Optimal Solution |
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*All functions Di (Pi) are convex function —> the solution is
the global minimum.



Graphical interpretation

For an optimal solution P_’, P_, P,’, the tangents on the corresponding

distortion functions must have the same slope.

Ds A Dc Dt A

Ty
oV
o ¥



Optimal Solution I

oIf Rs>Rsmax then Rs=Rsmax should be set.
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Optimal Solution Il

If Rs<R then Rs=R should be set.
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New optimization problem
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Architecture of XA Imager

Digital Pixel Sensor Architecture
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vertical scan circuit

horizontal scan circuit

*A. Theuwissen, “CMOS Image sensors: Recent Developments”

photodiodes + amplifiers + A-to-D

Pixel Design
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*Z.Ignjatovic and M.Bocko, “A 0.88nW/pixel, 99.6dB linear-dynamic-
range fully-digital image sensor employing a pixel-level sigma-delta
ADC,” VLSI Simposium, 2006.



Distortion model for 2A Imager

Ds A «Distortions: quantization
noise and thermal reset noise
*Optimal solutions depend on
the rate of change of the

| distortion function with respect

to power (OSR).

| *Any model that include non-

| idealities like photodiode shot

- - noise, 1/f noise, FPN, DC offset
, etc. (which do not depend on
D,=D,+D,, the OSR) will lead to the same
- power allocation as the
oD, = oD, proposed model in the region
oP. oP R<Rs < Rsmax.



Quantization noise

Assumptions about quantization noise e[n]:
-stationary random process

-random variables of the error process are
uncorrelated — e[n] is white noise

-e[n]~U(-A /2 ,A /2), A-quantization step
-e[n] is uncorrelated with input signal x[n]

-quantization noise power is 0> =e[n]*= A? /12

*P.M. Aziz, H.V. Sorensen, and J. vn der Spiegel, “An overview of sigma-delta converters,”
IEEE Signal Processing Magazine, vol. 13, No. 1, pp. 61-84, Januar 1996.



Quantization noise (Cont.)

*Distortion measure is in-band noise power.
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Thermal (reset) noise

*Thermal noise is assumed to be a
stationary white random process
with Gaussian distribution with
zero mean and variance o,2.

*As opposed to the quantization
noise, the thermal noise does not
see the integration function and it
is reduced only by oversampling.
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Total Distortion in 2A Imager

*Noise sources are assumed to be independent;
therefore, total distortion is sum of individual

distortions:
Ds = an T Dtn
200 1 . T o’
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Power Consumption

P.=Njye [T
P.=03RI[p

[OSRIP,

frame

*Npixel -number of pixel in the image sensor array

offrame -number of frames per second in video frame sequence
*Ppf -power consumption per pixel per frame

D -dynamic power consumption per oversampling



Power-Distortion Curve
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Power-Distortion Curve -Example

P-D Characteristic of sigma-Delta Image Sensor
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Image Sensor Bit Rate

v2/2

Dynamic range: DR=",

Nyquist rate ADC: DR = 322~
3

Sigma-delta ADC: DR = 9232?

ENOB is calculated as a number of bits N that sigma-delta converter
gives to achieve the same dynamic range as Nyquist rate converter
with N quantization levels:

9.031llog,(OSR)-5.172
6.021

R, = ENOB =
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Power Control |
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Power Control Il
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Power Control Il
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Conclusion

Optimal power allocation for WVS is
derived.

P-R-D model of the > A imager is
proposed.

Power control stages for optimal
power allocation are illustrated.
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