Sigma Delta Camera Testing

Danijel Maricic

October 16, 2007

Motivation

- •Exploring CMOS camera-on-chip architectures based on SD imager
- •Unconventional low power image processor that exploits 1-bit pixel readout
- •Existing SD Imager Testing

Camera Architecture

Sigma Delta Image Sensor

Original image 8x8

Oversampling OSR=4

Sigma delta output -4 frames 1 bit per pixel

Reconstructed image

Log2(OSR) bits per pixel

Image accumulator architecture

Image accumulator layout

Alternative Architectures

[1] Kodak, KAC-9618 image sensor: VGA, 30fps, 3.3V, 62dB, 2007

[2] A 0.88nW/pixel, 99.6 dB Linear-Dynamic-Range Fully-Digital Image Sensor Employing a Pixel-Level Sigma-Delta ADC, Z. Ignjatovic, M.F. Bocko, University of Rochester

Sigma Delta image compression

- •Wavelet transform is linear transform apply wavelet to every 1-bit picture frame and then accumulate with the image buffer
- •Wavelet filtering needs additions and subtractions of wavelet coefficients only no multiplications
- •Haar wavelet even more simple coefficients are -1 and 1

SD Imager Testing

•Lab setup

•FPGA components

•Results

Lab Setup

Lab Setup

FPGA components

- •Accumulator:
- 12 bit adders
- image buffer memory
- windowing coefficients in ROM
- •Control state machine with ROM that contains the control sequence (1-60MHz)
- •VGA component to read the image buffer
- •PC interface to download the image from the FPGA

Image out of focus

Uniform image at OSR=256

Post processing

Uniform image subtracted

Histogram of the uniform image

Image in focus

Original

Post processed

Lighter uniform image

Noise between 2 snapshots

PSNR=46dB between two consecutive images captured

Future testing

- •Estimate the pixel light response characteristics using different light intensities
- •Estimate the variation of the response characteristics between the pixels when uniform light is applied, at different light intensities

Conclusions

- •DAC voltage level can be reduced
- •Imager control sequence adjusted
- •Layout redesign: smaller pixels less capacitance