

Design of a test platform for two dimension arithmetic Fourier transform image sensing in CMOS, redux

Edwin J. Tan

Previously...

- Problem
 - DCT is power hungry because of the multiplications needed
- Solution
 - Use AFT to compute DCT coefficients by using additions (Tufts, 1988)
 - Gains in terms of speed and power consumption

- Integer scaling
- Non-uniform sampling for 2D AFT
 - Pixels placed at Farey sequence locations
- Compared to conventional DCT, more samples needed

Coroner's findings

- Missing layout layers for TSMC 0.35µm silicide process
- Insufficient, missing nMOS Vss connections in output buffer
- TSMC 0.35µm silicide process does not support double polysilicon
- Digital logic functioning properly

Missing fabrication layers

- Resist protection oxide (RPO)
- 3V N+ implant lightly doped drain (NLDD_3V)

2-stage op amp as output buffer

- nMOS transistor fingers not connected to Vss
- 1pF poly-poly capacitor cannot be fabricated with single poly process

1pF polypoly capacittor

Transistor fingers unconnected to Vss

Rebuilding

- Add layout layers for TSMC 0.35µm silicide process
- Redesign output buffer
- Redesign pixel source follower bias current
- Add test structures
- Add dummy pixels

Block diagram

L shaped 3T pixel

- Resist protection oxide (RPO)
- 3V N+ implant lightly doped drain (NLDD_3V)
- wellbody

nMOS source follower output buffer

- dc gain of -3.1dB with 100pF load
- 1V bias voltage

nMOS source follower output buffer

Source follower output buffer transient results

Pixel source follower bias current

Test structures

- Located on north orientation of chip
- Electrically isolated from the rest of the sensor
 - A mix of bonded and unbonded chips
- 5 circuits
 - L photodiode pixel
 - Circle photodiode pixel
 - nMOS source follower output buffer
 - 7-bit static row decoder
 - Row driver

2-dimension AFT APS imager rev5

Simulation

- Methodology
 - Simulate av_extracted view of entire imager in Cadence
 - Simulate photodiode voltage with "external" input pin
 - Simulate each pixel with a different voltage ranging from 3.3 to 1.0V

Simulation schematic

• 121 x 121 pixel array with pad frame

• 121 x 121 pixel array without pad frame

Pixel dynamic range

- Plot photodiode voltage versus imager output voltage
- Fit best straight line with each data point keeping within 3% deviation/error

Current and future work

- Redesign imager sensor evaluation board
 - New output buffer requires biasing voltage
 - 108pin pin grid array (PGA) package
 - Surface mount technology (SMT) devices to reduce board size and cost
- Simulate AFT imaging with standard CMOS camera-based APS sensor

Evaluation board block diagram

