Power-Rate-Distortion Analysis for Wireless Multimedia Networks

Chao Yu and Ilker Demirkol ECE Dept, University of Rochester Rochester NY, USA

Rate-Distortion (Source Coding)

Lower the bit-rate R by allowing some acceptable distortion D
of the signal.

Wireless Multimedia Networks

 Rate and Distortion is also affected by Communication

"Power-Rate-Distortion" Problem

- Sensors are power-limited
 - Consider power-efficiency in dominant operations
- Dominant operations:
 - Sensing, Computation, Communication
- Computation: Source coding

How does P relates to R-D?

- Source coding
 - $R_s \uparrow$, Compression distortion \downarrow , Compression power \downarrow
 - $R_s \downarrow$, Compression distortion \uparrow , Compression power \uparrow
- Channel coding
 - $R_c \uparrow$, Transmission error \downarrow , Transmission power \uparrow
 - $R_c \downarrow$, Transmission error \uparrow , Transmission power \downarrow
- Modulation
 - E_b or E_s is related to bit error rate (BER)
 - $E_b \uparrow$, Transmission error \downarrow , Transmission power \uparrow
 - $E_b \downarrow$, Transmission error \uparrow , Transmission power \downarrow

Literature Survey

- Possible Categorization:
 - R-D analysis (Video Coding)
 - R-D analysis (Communication)
 - P-R-D analysis (Video Coding)
 - P-R-D analysis (Video Coding and Communication)
 - P-D analysis (Communication)

He et al., "Power-Rate-Distortion Analysis for Wireless Video Communication Under Energy Constraints", IEEE Transactions on Circuits and Systems for Video Technology, 2005.

- P-R-D model for a system that
 - automatically adjust its complexity control parameters
 - the available energy supply
 - while maximizing the picture quality.
- Using dynamic voltage scaling (DVS), the complexity scalability can be translated into energy consumption scalability
- $P \propto f_{CLK}^3$
 - $f \propto C$ (number of processor cycles/sec)

He et al., "Power-Rate-Distortion Analysis for Wireless Video Communication Under Energy Constraints", IEEE Transactions on Circuits and Systems for Video Technology, 2005.

P-D and R-D results:

He et al., "Power-Rate-Distortion Analysis for Wireless Video Communication Under Energy Constraints", IEEE Transactions on Circuits and Systems for Video Technology, 2005.

P-R-D Results:

He et al., "Energy Minimization of Portable Video Communication Devices Based on Power-Rate-Distortion Optimization", IEEE Transactions on Circuits and Systems for Video Technology, 2008.

P- R (~ Encoding Complexity):

He et al., "Energy Minimization of Portable Video Communication Devices Based on Power-Rate-Distortion Optimization", IEEE Transactions on Circuits and Systems for Video Technology, 2008.

P-R-D for Encoding+Transmission:

He et al., "Energy Minimization of Portable Video Communication Devices Based on Power-Rate-Distortion Optimization", IEEE Transactions on Circuits and Systems for Video Technology, 2008.

- Results (compared to fixed power):
 - γ : microprocessor power consumption parameter

Stuhlmüller et al., "Analysis of Video Transmission over Lossy Channels", IEEE Journal on Selected Areas in Communications, 2000.

- Channel: 2-state Markov model describing burst errors on the symbol level.
- Reed—Solomon codes for forward error correction.
- Simulation using an H.263 video codec

Stuhlmüller et al., "Analysis of Video Transmission over Lossy Channels", IEEE Journal on Selected Areas in Communications, 2000.

- FEC rate: r = k/n
- To maintain a constant channel data rate:
 - $R_e = r.R_c$

Mother&Daughter

Foreman

 Results of numerical minimization of D_d for Mother&Daughter

X. Tian, "Efficient transmission power allocation for wireless video communications", IEEE Wireless Communications and Networking Conference, 2004.

- Objective:
 - To minimize distortion, transmission power allocated across packets
- Proposes:
 - Two power allocation algorithms transmission power to packets according to their relative importance
 - Fixed frame power vs variable frame power
 - Morepower to the packets whose lose would result higher distortion
 - More power to frames with high motion

$$\begin{split} & \underset{\mathbf{P_i}}{\text{minimize}} & & \frac{1}{N_{MB}} \sum_{k=1}^{N_i} P_r(i,k) d^c(i,k) & & \underset{\mathbf{P_i}}{\text{minimize}} & & \frac{1}{N_i} \sum_{k=1}^{N_i} P(i,k) \\ & \text{subject to} & & \frac{1}{N_i} \sum_{k=1}^{N_i} P(i,k) \leq P & & \text{subject to} & & \frac{1}{N_{MB}} \sum_{k=1}^{N_i} P_r(i,k) d^c(i,k) \leq D_{TH} \end{split}$$

X. Tian, "Efficient transmission power allocation for wireless video communications", IEEE Wireless Communications and Networking Conference, 2004.

- Error detection: CRC, Error correction: Convolutional coding
- BPSK modulation
- Results for two QCIF video sequences:

Li et al., "Joint power allocation and rate control for real-time video transmission over wireless systems," *IEEE Global Telecommunications Conference*, GLOBECOM '05, 2005.

Objective:

 Improve the visual quality of the regions of interest while saving bits, and also adapting to time-varying wireless channels.

Method:

- Segment a frame into ROI and non-ROI.
- Then allocate more power as well as more bits to ROI to reduce the packet retransmission rate.

Li et al., "Joint power allocation and rate control for real-time video transmission over wireless systems," *IEEE Global Telecommunications Conference*, GLOBECOM '05, 2005.

- "The human visual system (HVS) is more sensitive to the moving regions"
 - Moving regions are classified as the foreground (ROI) while still regions are regarded as the background (non-ROI).

Results:

(a) Foreground PSNR

(b) Background PSNR