
Extending Volunteer Computing through

Mobile Ad Hoc Networking

Colin Funai, Cristiano Tapparello, He Ba, Bora Karaoglu, Wendi Heinzelman

Department of Electrical and Computer Engineering, University of Rochester,

Rochester, NY, USA (firstname.lastname@rochester.edu)

Abstract—Volunteer computing provides a practical and low
cost solution to the increasing computational demands of many
applications. Recent advancements in mobile device processing
capabilities, combined with the energy efficiency of the mobile
devices, make their inclusion in a distributed computing architec-
ture particularly appealing. However, the intrinsic requirement of
Internet connectivity to participate in volunteer computing limits
the direct adoption of mobile devices due to service availability
or related costs to connect to the Internet. In this paper, we
propose and implement a novel computational architecture that
extends the ability of mobile devices to participate in volunteer
computing through ad hoc networking. By introducing decentral-
ized task distribution points, mobile devices are invited to join
the computation via device to device communication, removing
the requirement for an Internet connection. Using a prototype
implementation running on Android devices, we investigate the
impact of a promising ad hoc communication technology, namely
WiFi Direct, and two task distribution algorithms with different
computation and communication overheads, under various sce-
narios. Experimental results show that our proposed approach
is feasible with only minor additional energy consumption at the
decentralized task distribution points.

I. INTRODUCTION

In recent years, the computational requirements of various

applications in domains ranging from healthcare to finance

have increased dramatically. Parallel computing provides a vi-

able solution to meeting this increasing computational demand.

Various architectures, from hardware dependent solutions such

as GPU programming to grid computing, have been proposed

to provide a suitable parallel computing environment.

Cloud computing is an important class of grid computing,

providing on demand access to high-performance comput-

ing data centers over the Internet. Such systems are es-

sentially a cooperative group of powerful computers that

require both an initial investment in hardware and software

as well as significant operational costs (e.g., maintenance,

direct power consumption and cooling infrastructure) that

are mostly energy-related. Increasing operational costs [1],

combined with the need to reduce the related carbon footprint,

have led researchers to explore energy-efficient alternatives for

high performance computing that decrease the overall energy

consumption of computation, storage, and communication.

Several ideas have been explored, including PowerNap [2],

which relies on the hardware ability to switch to a low power

This work was supported in part by Harris Corporation, RF Communica-
tions Division and in part by CEIS, an Empire State Development designated
Center for Advanced Technology.

state, and GreenCloud [3], that considers migrating virtual

machines between physical machines in order to reduce the

total power load of the data center. However, improving energy

efficiency in large scale workstations is still considered a major

challenge in cloud computing [4].

Instead of using dedicated hardware for parallel computing,

volunteer computing aims to use underutilized computational

resources. Many computing devices (e.g., personal computers,

tablets and mobile devices) under utilize their processing

capabilities for the majority of their operational time, during

which they could be used for other tasks. Recent studies show

that the potential of these resources exceed any centralized

computing system [5]. Many systems have been proposed

with the objective to allow volunteers to dedicate the unused

computing cycles on their personal computers, such as the

Seti project [6], JXTA [7], Xtremeweb [8], and the Berkeley

Open Infrastructure for Network Computing (BOINC) [5].

BOINC has been one of the most popular volunteer computing

platforms, with over 900,000 active participants for a large

range of application areas throughout the world [9].

These solutions attempt to provide a large scale, platform-

independent computing infrastructure, but most of them are

limited to personal computers. With the advancements in

the area of low powered processors, mobile devices such as

smartphones and tablets have become alternative computing

platforms. For instance, it is not uncommon for a typical tablet

such as the Asus Nexus 7 [10] to have a 1.5 GHz quad-core

CPU and more than 1 GB RAM. Although the computing

capabilities of mobile processors are not as powerful as the

ones of a standard computer, they have been shown to be more

energy efficient [11]. As a result, many traditional volunteer

computing platforms have attempted to extend their opera-

tion over mobile devices. For example, Hyrax ports Hadoop

Apache, an open-source implementation of MapReduce, to

execute jobs on Android smartphones and, following the same

approach, the BOINC project released an Android client [12]

to include mobile devices in the distributed computations.

More recently, GEMCloud (Green Energy Mobile Cloud) [11]

has been proposed as a distributed system that exploits the

energy efficiency of mobile devices to cooperatively solve

computationally intensive and parallelizable tasks.

While these solutions provide a viable and energy effi-

cient mobile computing architecture, they are based on the

assumption that the mobile devices are able to communicate

through the Internet with a remote cloud server, both for

receiving the tasks and for sending back the computation

results. In a rural setting where the coverage limits a mobile

device’s connectivity to the Internet, devices cannot participate

in volunteer computing. Even in an urban area, connection to

the Internet may be a limiting factor, since a wireless Access

Point (AP) might not be available all the time. Although the

majority of mobile devices are nowadays equipped with 3G/4G

connectivity, the costs of the cellular data plan may be a

deterring factor to the users participating in the computation.

Hence, this dependency restricts the applicability of volunteer

computing for mobile devices.

Given the above, in this paper we propose and implement a

novel computer architecture that extends the existing mobile

cloud computing systems by reaching mobile devices not

directly connected to the Internet through ad hoc networking.

In particular, we present a volunteer computing system in

which a device with Internet capabilities, either WiFi or

3G/4G, can elect itself as a local task distribution point,

inviting other users to join the computation via existing Device

to Device (D2D) communication methods. As shown in [13]

and references therein, protocols based on D2D methods

have the potential to improve the spectral efficiency as well

as the resource utilization for infrastructure-communication

schemes, like cellular and WiFi. Starting from the existing

implementation of GEMCloud [11], we design and develop an

experimental system where local task distribution is performed

using different D2D technologies. Besides the implementation,

our focus is on the evaluation of the computing capabilities

and energy efficiency of the system, as well as to prove the

feasibility of the system for an existing D2D technology. In

this regard, WiFi Direct [14] is considered. For the local

task distribution points, two methods for distributing the

computation tasks to the devices connected through D2D

communication, Batch and Proxy, are also proposed. Using

Batch mode, a set of N tasks are cached at the task distribution

point and are then distributed to the ad-hoc network as they are

requested. In Proxy mode, instead, the task distribution point

acts as a gateway to the Internet-based source of the data.

The rest of the paper is organized as follows. In Section II,

we present some motivating real life scenarios that would

benefit from an ad-hoc cloud computing system. In Sec-

tion III, we describe some background on the considered D2D

communication protocol. Section IV describes our system

architecture, while in Section V we discuss our experimental

results, highlighting the energy consumption and evaluating

the performance of the task distribution methods considered.

Section VI concludes the paper.

II. APPLICATION SCENARIOS

Traditional mobile computing systems use the Internet as

the communication architecture, as shown in Figure 1. This

limits the effective use of mobile computing due to (i) the

fact that some devices may not have access to the Internet for

some time periods, and (ii) the cost of accessing the Internet

might deter some participants from fully sharing the idle cycles

of their devices. In this section, we present some reference

scenarios in which having an ad hoc task distribution method

SERVER

WiFi AP
3G/4G BS

INTERNET

Figure 1. A traditional mobile computing topology. Users are connected to
a remote cloud server through a 3G/4G Base Station (BS) or a WiFi Access
Point (AP).

will extend the total resource utilization, enabling more users

to contribute their spare cycles.

A. Server Driven Mobile Volunteer Computing

Most mobile devices use WiFi as the primary method of

accessing the Internet due to the fact that it provides an

affordable and fast connection. However, considering a user’s

typical mobility pattern, mobile devices do not have access

to a WiFi AP during a significant portion of the day, such as

time spent on transportation (e.g., buses, subways), shopping

centers and remote areas not covered by WiFi hot spots.

Although having a cellular data connection does allow a

mobile device to participate in a mobile computing platform

such as GEMCloud, the cost associated with this connection

type often deters the end-users from participating.

On the other hand, during periods of non-regular mobil-

ity patterns such as vacation times, the connectivity of the

devices becomes the bottleneck factor limiting the effective

use of mobile computing. Although WiFi is quite widespread,

Internet connectivity through WiFi hot spots generally requires

a subscription fee, it is not seamless and often requires the user

intervention. All these facts further limits the connectivity of

mobile devices, thus decreasing their utilization in the mobile

computing architecture.

A standard mobile computing system, like GEMCloud and

BOINC, would not be able to utilize users who do not have an

active data connection or who are not willing to use their data

connection. These users would then be forced to wait until

they are back “on the grid” to resume their participation.

In order to address these shortcomings, we propose the

introduction of two functional roles for each client of the

system: (i) task execution points (TEPs), and (ii) task distri-

bution points (TDPs). TEPs are devices that have compatible

computational platforms and are willing to participate in the

volunteer computing system. TEPs compute the tasks assigned

to them and send the results back to the device that requested

the computation. TDPs, instead, are responsible for receiving

sets of tasks from the cloud and then distributing them to the

TEPs through ad hoc connections, e.g., Bluetooth or WiFi-

Direct. In our proposal, a TDP could be a dedicated device that

only distributes the tasks, or it could be a generous user that is

willing to share its Internet connection, established either via

a cellular network or through a WiFi hot spot. It is important

to note that these roles can both be taken simultaneously, and

in such case, we refer to this client as a task distribution and

execution point (TDEP). Therefore, rather than being fixed, the

TDP and the TEP are roles that can change over time. After

the computation, the task results are returned either directly

to the server that requested the computation if a preferred

connection becomes available, or to a TDP that will be in

charge of sending them back to the requesting server. We

note that the results do not have to be returned to the same

distribution point that assigned the tasks.

We want to further emphasize that the proposed system

could be enhanced with further economical incentives. For

example, some reward could be offered to the clients acting

as TDP in exchange for distributing the tasks to the TEPs that

cannot receive the tasks directly. These economical incentives

could form the foundation of a new business model and en-

hance the efficient use of computational devices. A particular

scenario is the utilization of ad hoc mobile computing in public

transportation. The introduction of a TDP in a bus would

allow the passengers with mobile devices to participate in

volunteer computing. While dedicated TDPs could be installed

on public transportation, users who are willing to use their

data connection can also take the role of TDP and connect

the mobile devices on the bus to the cloud. In both cases,

participation could be encouraged with economic incentives

such as discounted bus tickets.

B. User Driven Mobile Volunteer Computing

Sometimes, the devices running distributed computing al-

gorithms reside outside of traditional networks and away

from nodes that are capable of intensive computing. For

example, many applications in the area of tactical military

communications, first responder networks, search and rescue

operations, and sensor network operations, require computing

intensive algorithms ranging from image processing to target

detection that can be parallelized. However, sparsely populated

remote locations frequently neither have direct access to the

Internet nor are in the vicinity of other devices with access. In

these situations, ad-hoc networking can be beneficial. Using

a cooperative distributed computational architecture, these

algorithms can be computed in a shorter amount of time using

a higher accuracy and with less impact on the energy resources

of critical nodes, thereby increasing the network lifetime.

One possible solution includes deploying a Cloudlet [15] to

help accelerate battlefield applications; however, this approach

creates a single point of failure where the system could col-

lapse if the Cloudlet were to go down. Distributed computing

addresses these problems by dividing the jobs and distributing

them to the nodes in the network. The results are then collected

and fused for making the final decision, thus eliminating the

dependency on a specific node in the network.

Our proposed system, can be easily extended to this sce-

nario. To this end, we introduce the additional role of Task

Generation Point (TGP) to be assigned to the node that creates

the jobs to be then distributed and computed by the TDPs

and TEPs, respectively, present in the ad hoc network. This

system can be optimized to maximize the computational power

available to the nodes in need, and to maximize the lifetime

of the network by letting the jobs be executed where energy

resources are abundant and limiting the energy consumption

on bottleneck devices.

As a final consideration, the functionality of the system

presented in this section can be extended to multi-hop ad

hoc networks by letting the recipients of the tasks take the

role of TDPs to further distribute the tasks to the nodes

around themselves. However, we limit the scope of this paper

to single-hop ad-hoc networks over which the TDPs are

responsible for distributing the jobs to the TEPs, and we leave

the extension with multi-hop routing for future work.

III. DEVICE TO DEVICE COMMUNICATION

The computing architecture proposed in this paper is based

on the availability of Device to Device (D2D) communication,

which is an emerging paradigm that allows end-to-end com-

munication between devices, without any human intervention.

Many D2D communication protocols have been proposed in

the literature. These include IEEE 802.11 DCF, IEEE 802.11s,

IEEE 802.11z, Zigbee, SMAC, WiFi Direct, and Bluetooth.

These protocols each have their application areas.

IEEE 802.11 DCF has a basic method that provides ad hoc

D2D communication and is widely available. However, it has

been shown that this protocol suffers from low performance in

real life implementations [16] and has a high energy consump-

tion due to the requirement of maintaining the listening state

on the radios. WiFi Direct, on the other hand, has recently been

proposed to address the shortcomings of IEEE 802.11 DCF

and has been designed with energy saving mechanisms leading

to higher energy efficiency. IEEE 802.11s and IEEE 802.11z

add mesh networking and direct communication on top of the

IEEE 802.11 family. These additions are only relevant in a

multi-hop network. SMAC and ZigBee are energy efficient

protocols that are designed for sensor networks. The data rates

supported by these protocols are very low and thus not suitable

for large tasks. Moreover, their availability is limited to low

power sensor nodes that have very low computational capacity.

Given the above, in this paper we focus our attention on

WiFi Direct. This is because we believe that WiFi Direct is

the most promising technology, and it is commonly available

off the shelf in several mobile devices1. In the remainder of

this section, we present a brief overview of this protocol.

A. WiFi Direct

WiFi Direct [14] is a standard released by the WiFi alliance

that enables D2D communication without requiring a wireless

AP. During D2D communication, devices form a group were

one of them is the Group Owner (GO) and all the others are

considered Group Members (GMs). It is important to note

that these roles are not fixed and can change dynamically.

Additionally, WiFi Direct groups can also consist of nodes that

do not support WiFi Direct, but do support the IEEE 802.11

standard that the group is operating. WiFi Direct utilizes IEEE

802.11 a/b/g/n infrastructure mode, and can transmit either at

1Since Bluetooth is an incumbent technology widely deployed, we consider
its integration in our system as a future work.

SERVER

Wifi AP

3G/4G BS

TDP

TDEP

INTERNET

TEP TEP
TEP

TDEP

TEP

Figure 2. Example of ad hoc mobile computing topology with corresponding
functional role assigned to each of the clients. Task distribution point (TDP),
task execution point (TEP), and task distribution and execution point (TDEP).

2.4GHz or 5GHz. Since WiFi Direct utilizes the IEEE 802.11’s

infrastructure mode, all of the QoS, power saving, and security

protocols of IEEE 802.11 are also inherited. Similar to a

typical IEEE 802.11 network, where nodes find and connect to

APs, the GO also acts as a soft AP, advertising and allowing

nodes to join the group. Group advertisement is performed

using beacon packets, just like a typical IEEE 802.11 AP, and

the GO is responsible for giving control of the channel to

nodes in its network as well as routing data through its group.

Nodes that support WiFi but do not support WiFi Direct can

still connect to a WiFi Direct group [14] [17] and are referred

to as legacy clients. GMs are the nodes that support WiFi

Direct and hence can capitalize on the WiFi Direct power

saving options. The nodes that support WiFi Direct go through

a group formation process in order to determine the roles of

the GO and the GMs.

IV. SYSTEM ARCHITECTURE

The traditional mobile computing platform, as considered

in [11], [18] and [19], is presented in Figure 1.

Our goal is to extend the range of computation devices

of a traditional mobile computing system via ad hoc com-

munications. In Figure 2, we show an example of this type

of system, where certain users are allowed to become local

Task Distribution Points (TDPs and TDEPs in Figure 2) and

provide access to the distributed computing system to other

clients, using an ad hoc communication method. Thus, each

TDP is in charge of requesting tasks from the server, and then

it distributes these tasks to its clients. Moreover, the TDPs are

responsible for organizing the results, resolving any failures,

and returning the results back to the remote server.

The general idea behind our approach is similar to the one

proposed in [20], that considers a manager/worker model, in

which the manager receives requests from the workers and

responds to these requests by assigning tasks.

A. Task Distribution Point

In our system, a central role is played by the devices that

act as TDPs and, for this reason, the way in which the TDP

operates will affect the performance of the complete system.

In particular, the TDP is required to receive tasks from a

remote server, distribute the tasks to the TEPs through D2D

Forward Task

to TEP

Receive Task

from Server

Wait for Task

Request from

TEP

Request Task

from Server

(a)

Send Task

to TEP

Tasks

Queue

empty?

YES NO

Wait for Task

Request

Get Task from

Tasks Queue

Receive N

Tasks from

Server

Request N

Tasks from

Server

(b)

Figure 3. Task distribution flowcharts for the TDP operating according to
the Proxy (a) and Batch (b) methods.

communication, receive the results of the computations from

the TEPs and then send the results back to the remote server.

The TDPs can receive the tasks from the server following

different approaches. In general, the different methods can be

classified based on the time at which the actual request hap-

pens: 1) following a proactive approach, meaning that the task

requests to the server are made before the actual requests from

the TEPs, or 2) following a reactive approach, thus requesting

the task from the server at the time of the actual TEPs requests.

Following a similar idea, the TDP can send the results back to

remote server either immediately, at the time of the reception

from the TEP, or delayed, after collecting multiple results. To

this end, we propose two different TDP modes of operation: a

simple Proxy method, that considers a reactive task distribution

technique and an immediate forwarding of the results, and

a more involved Batch approach that, instead, implements a

combination of proactive task requests with a delayed results

transmission.

Proxy: This method represents a basic mode of operation

and requires little intelligence to be added to the device

that will act as TDP. In particular, a Proxy TDP acts as

a gateway and forwards all requests and responses directly

between the remote server and its clients. Figure 3(a) shows

the flow diagram of the Proxy task distribution procedures,

while Figure 4(a) presents the flow diagram relative to the

collection of the results.

Batch: In this method, the TDP proactively requests a set

of N tasks from the server and caches them so that, when

it receives a request from the TEPs, the TDP will promptly

respond with one of the cached tasks. After completing the

task, the TEP returns the result to the TDP, and the TDP

stores these results before sending them back to the server.

Figure 3(b) shows the flow diagram of the Batch task distri-

bution procedures, while Figure 4(b) presents the flow diagram

relative to the collection of the results.

B. Task Execution Point

In the proposed system, we assign the role of task execution

point (TEP) to all the devices that participate in the distributed

Forward Result

to Server

Wait for

Result from

TEP

Receive Result

from TEP

(a)

Send all

results to

Server

Results

Queue

Full?

YES

Wait for

Result from

TEP

Put Result

in Results

Queue

NO

Receive Result

from TEP

(b)

Figure 4. Result collection flowcharts for the TDP operating according to
the Proxy (a) and Batch (b) methods.

computation, disregarding the connection used for receiving

the task and sending the results of the computation. Thus, a

traditional client of the volunteer mobile computing system

that receives the tasks directly from the server and a client

connected through D2D communications are both considered

TEPs. Moreover, the way in which the TEPs receive tasks and

send results back to the server are completely transparent, and

the protocol used for the communication is exactly the same

in both cases.

C. Complexity Considerations

The objective of our work is to extend the volunteer mobile

computing architecture by introducing local TDPs, whose

operation is completely transparent to both a standard client

(i.e., TEP) and the remote server. Thus, the additional com-

plexity of our system when compared to an existing mobile

computing architecture, resides on the requirements of the

D2D communication technology, on the ability to advertise

and discover local TDPs, and on the intelligence necessary

for the local task distribution procedure.

In particular, the Proxy implementation simply forwards all

the requests to and from the server to the ad hoc network

clients. Thus, a Proxy TDP acts as a local gateway, and it

performs a translation between the Internet interface and the

D2D domain. We consider the Proxy method to be the simplest

mode of operation that can be implemented in a TDP. It simply

forwards every communication to and from the GEMCloud

server, thus introducing additional delay due to the additional

communication hop. However, it is considered as a reference

implementation for evaluating the performance of other task

distribution techniques. The Batch task distribution approach,

instead, overcomes the inefficiency in the network utilization

of the Proxy method by caching a set of N tasks at the TDPs

for faster distribution to the local TEPs. Moreover, a Batch

TDP stores a set of M results before sending them to the

server. Thus, some additional computation and data storage is

required in order to handle the task requests and the caching

operations.

In section V we provide some experimental results that show

the impact in terms of time delays and energy consumption of

the proposed task distribution methods.

D. Implementation

Given that the idea behind our work is to enhance the

performance of a mobile computing system, we extend the

GEMCloud [11] architecture to support TDPs that can dis-

tribute tasks to TEPs connected through D2D communication.

GEMCloud provides us with a platform, and an Android

application, to evaluate the benefits of extending volunteer

computing through ad hoc networking.

An overview of GEMCloud’s architecture, is presented

in [11]. In GEMCloud, the server acts as a central point by

coordinating and distributing tasks to the connected clients.

The client connects to the server using either 3G/4G or

WiFi. After connecting, the server checks to see if the client

requires an updated version of GEMCloud [11]. The server

then authenticates the client using a set of parameters that are

exchanged and, after that, it assigns tasks to the client. The

tasks are stored in a list, and they are assigned in a first in

first out order. Each of these tasks are independent and do not

need to be returned, but the quality of the final results will

depend on the number of tasks that are actually returned after

the distributed computation.

In our implementation of the Proxy and Batch distribution

methods, the server is the same as in GEMCloud, and the client

takes the role of TEP. Using our system, we can extend the

devices that can participate in the GEMCloud computations

by connecting additional TEPs through the TDPs. The Proxy

task distribution method provides operation very close to

GEMCloud: the TDP behaves as a proxy, and it forwards

any requests between the TEP and the server. In the Batch

implementation, instead, the TDP requests and caches a set of

tasks from the server. The TDP still goes through the same

process as in GEMCloud, where the server checks for updates

and authenticates before sending a task; however, the TEPs

that connect to a TDP running our Batch implementation will

have their version checked against the local version that the

TDP is running. The TDP then will send tasks from its tasks

queue. It is important to note that in both task distribution

methods, in addition to the role of a TDP, the device may

also act as a TEP. In the Proxy method, devices that serve

as TDPs connect and request tasks from the server also for

themselves, similar to the original GemCloud operation. In

the Batch method, devices acting as TDPs take tasks from

their own queue rather than requesting them from the server.

In other words, these devices can be modeled by combining

the TDP and TEP roles.

V. PERFORMANCE EVALUATION

As presented in Section IV, our system is composed of

four elements, namely TEP, TDP, server and database. Since

we assume that the TDP-TEP interactions are transparent

to the remote server and database, and that their operations

are the same as traditional cloud computing systems, in our

performance evaluations we focus on the performance of the

TDPs and TEPs.

A. Experimental Setup

In order to evaluate the performance of our proposed system

we used five Asus Nexus 7 (N7), 2013 edition [10], which

are equipped with a Qualcomm R© SnapdragonTM S4 Pro 8064

Quad-Core, 1.5 GHz CPU, 2 GB of memory and 16 GB of

storage. All the N7 are running Android 4.4.

The tasks considered in this paper implement a distributed

algorithm for the prediction of the structure of proteins [21].

This algorithm consists of a combination of C++ code and a set

of supporting scripts that are handled through the GEMCloud

application. In particular, the task assigned to the TEP is

a 2 B random number that represents a sequence of amino

acids, while the result of the computation is a set of predicted

structures for the given sequence. The result data size is 9 KB.

We measure the devices’ power consumption using the

“Watts up? PRO” power meter [22]. According to its spec-

ifications, the meter has an accuracy of ±1.5% in terms of

wattage measurement. In order to achieve a good sampling

rate for our measurements, we set the recording interval of the

meter to its lowest value of 1s. We measure the device’s energy

consumption while the screen is off and using the Asus wall

charger provided with the devices. Moreover, all the results

presented in this section are obtained by averaging, for each

experiment, the results of 10 runs. We allowed for one N7

to be connected to the Internet through a legacy WiFi AP

and then to act as a TDP for the other N7, by using both

the Batch and Proxy task distribution methods described in

Section IV-A. The TDP ad hoc communications are handled

with WiFi Direct, as highlighted in Section III.

Moreover, we allowed the TDP to additionally act as a TEP,

thus taking part in the computation of the received tasks. Fi-

nally, for the Batch distribution method, we set N = M = 10.

One of the features of GEMCloud is to let the user de-

cide on the maximum amount of CPU resources assigned

to computation. Since our prototype application is derived

from GEMCloud, we inherited this functionality and set the

maximum CPU resources assigned to computation to 25%.

This means that for the TDP, both the calculation and the

distribution could only take up 25% of the CPU’s resources.

B. Numerical Results

We start our performance evaluation by comparing the

impact of the different functional roles on a single device. To

this end, in Figure 5, we provide the time and relative energy

consumptions, required for a single device to compute a set of

50 tasks when it is operating as a standard GEMCloud client,

as a Proxy and Batch TDEP or as a TEP connected using WiFi

Direct to a Proxy and Batch TDP. We note that for the TDEP,

we do not consider the presence of additional TEPs, in order

to only evaluate the impact of advertising the task distribution

service. As expected, the results in Figure 5(a) show that the

total time required for computing the tasks is similar for all

the devices directly connected to the remote server and for

the TEP connected to a Batch TDP. Conversely, the time is

slightly higher for the TEP connected to a Proxy TDP because

it requires an extra communication hop in order to receive

 1700

 1720

 1740

 1760

 1780

 1800

TDEP TEP TDEP TEP

T
im

e
[s

]

Batch MethodProxy MethodGEMCloud

(a)

 3000

 3100

 3200

 3300

 3400

 3500

 3600

TDEP TEP TDEP TEP

E
n
er

g
y
 [

J]
Batch MethodProxy MethodGEMCloud

(b)

Figure 5. Time (a) and energy consumption (b) for computing 50 tasks, for
a systems where only 1 node is allowed to execute the tasks. “TEP” refers to
the the performance of a TEP that receives the tasks from a local TDP.

the tasks and send the results to the server. Moreover, by

comparing the energy consumptions of the TDEP and TEP

with that of the GEMCloud client (see Figure 5(b)), we note

that the task distribution advertisement has only a small impact

on the devices (around 12%). At the same time, the TEP

connected to both a Proxy and Batch TDP requires an amount

of energy comparable to the one required by GEMCloud.

In Figure 6, we compare the performance of a system

where multiple devices participate in the computation of 50

tasks. In particular, we present the time (Figure 6(a)) and the

energy consumption (Figure 6(b)) required by GEMCloud and

by our proposed system, operating according to the Proxy

and Batch task distribution method, when the execution of

the tasks is divided between 1, 2 and 3 devices. We note

that the best performance, in terms of both time and energy

consumption, are achieved by GEMCloud. Nevertheless, our

proposed system introduces only a small time delay and energy

overhead due to the local task distribution method. The energy

consumption of the TDEP is slightly greater than those of

the TEPs. This is due to the overhead introduced by the task

distribution process but also related to the fact that, when

assigning the task, the TDEP prioritize itself over the TEP(s)

connected through it (the motivation behind this design choice

is that the TDEP provides an higher reliability in sending the

result of the task execution, since it is directly connected to the

remote server). Thus, the average number of tasks computed

 0

 500

 1000

 1500

 2000

T
im

e
[s

]

GEMCloud
Proxy Method
Batch Method

3 TEPs2 TEPs1 TEP

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

G
EM

C
loud

Proxy

B
atch

G
EM

C
loud

Proxy

B
atch

G
EM

C
loud

Proxy

B
atch

E
n
er

g
y
 [

J]

GEMCloud
TDEP

TEP(s)

3 TEPs2 TEPs1 TEP

(b)

Figure 6. Time (a) and energy consumption (b) for computing 50 tasks, when
1, 2 and 3 nodes are allowed to execute the tasks. For the proxy and batch
methods, the case “1 TEP” refers to a system with one TDEP. For multiple
TEPs, the contributions of the different devices is also presented.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50

T
im

e
[s

]

of tasks

GEMCloud
Batch TDEP

Batch TDEP + 1 TEP
Batch TDEP + 2 TEPs

Proxy TDEP
Proxy TDEP + 1 TEP

Proxy TDEP + 2 TEPs

Figure 7. Computational time vs. number of tasks to be computed, for a
system where only 1 node is able to connect to the Internet.

by the TDEP is higher (27.1 for 2 TEPs and 17.8 for 3 TEPs),

which in turns translates in a greater energy consumption.

Moreover, we note that the energy overhead at the TDEP is

constant for increasing number of TEPs.

Finally, in Figure 7 we evaluate the execution time as

a function of the number of tasks to be computed, when

we can exploit the presence of local TEPs without Internet

connectivity. In particular, we consider that only one device

is able to connect to the remote server, either as a standard

GEMCloud client, or as a TDEP that then is able to distribute

the tasks via WiFi Direct. As expected, allowing for additional

TEPs to participate in the computation reduces significantly

the overall time required for the computation of the tasks.

VI. CONCLUSIONS

In this paper, we proposed and implemented in Android

a novel computational architecture that extends the range of

devices participating in volunteer computing through ad hoc

networking. Experimental results prove the feasibility of the

technique when considering WiFi Direct as a D2D com-

munication technology, and show that the additional energy

consumption required at the task distribution point is small.

The promising results of this paper motivate future extensions

with multi-hop routing.

REFERENCES

[1] “U.S. Energy Information Administration, Short-term energy outlook.”
[Online]. Available: http://www.eia.gov/forecasts/steo/pdf/steo full.pdf

[2] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating
server idle power,” in Proc. of ACM ASPLOS, Washington DC, USA,
Mar. 2009.

[3] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, and Y. Chen,
“Greencloud: A new architecture for green data center,” in Proc. of
ICAC-INDST, Barcelona, Spain, June 2009.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, May 2010.

[5] D. P. Anderson, “BOINC: A system for public-resource computing and
storage,” in Proc. IEEE/ACM GRID, Pittsburgh, PA, Nov. 2004.

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@Home: An experiment in public-resource computing,” Commun.
ACM, vol. 45, no. 11, pp. 56–61, Nov. 2002.

[7] L. Gong, “JXTA: a network programming environment,” IEEE Internet
Comput., vol. 5, no. 3, pp. 88–95, May 2001.

[8] G. Fedak, C. Germain, V. Neri, and F. Cappello, “XtremWeb: a generic
global computing system,” in Proc. of IEEE/ACM CCGrid, Brisbane,
Qld, May 2001.

[9] D. P. Anderson, “Volunteer computing: The ultimate cloud,” Crossroads,
vol. 16, no. 3, pp. 7–10, Mar. 2010.

[10] “Asus Nexus 7 (2013),” Last time accessed: August 2014. [Online].
Available: http://www.asus.com/Tablets Mobile/Nexus 7 2013/

[11] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing
- A green computing resource,” in Proc. of IEEE WCNC, Shanghai,
China, Apr. 2013.

[12] “BOINC on Android,” BOINC’s Homepage, Last time accessed:
August 2014. [Online]. Available: http://boinc.berkeley.edu/

[13] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” ArXiv e-prints, Oct. 2013.

[14] Wi-Fi Alliance, P2P Task Group, “Wi-Fi Peer-to-Peer (P2P) Technical
Specification, Version 1.2,” Dec. 2011.

[15] T. Soyata, R. Muraleedharan, S. Ames, J. Langdon, C. Funai,
M. Kwon, and W. Heinzelman, “Combat: mobile-cloud-based com-
pute/communications infrastructure for battlefield applications,” in Proc.
of SPIE, Baltimore, USA, Apr. 2012.

[16] G. Hiertz, S. Max, Y. Zang, T. Junge, and D. Denteneer, “Ieee 802.11s
mac fundamentals,” in Proc. of IEEE MASS, Pisa, Italy, Oct. 2007.

[17] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi Direct: overview and experimentation,”
IEEE Wireless Commun., vol. 20, no. 3, pp. 96–104, June 2013.

[18] E. Chen, S. Ogata, and K. Horikawa, “Offloading Android applications
to the cloud without customizing Android,” in Proc. of IEEE PerCom,
Lugano, Switzerland, Mar. 2012.

[19] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using
mapreduce,” Sept. 2009.

[20] D. C. Chu and M. Humphrey, “Mobile OGSI.NET: Grid computing on
mobile devices,” in Proc. IEEE/ACM GRID, Pittsburgh, PA, Nov. 2004.

[21] J. J. Ellis, F. P. Huard, C. M. Deane, S. Srivastava, and G. R. Wood,
“Directionality in protein fold prediction,” BMC bioinformatics, vol. 11,
no. 1, p. 172, Apr. 2010.

[22] “Watts up? PRO Watt meter.” Last time accessed: August 2014. [Online].
Available: https://www.wattsupmeters.com/secure/products.php?pn=0

