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Abstract—Energy harvesting wireless nodes provide much
longer lifetime and higher energy efficiency for wireless networks
compared to battery operated systems. In this paper, we study
a MIMO wireless communication link in which the nodes are
equipped with energy harvesters and rechargeable batteries that
are continuously charging from a renewable energy source. Since
the harvested energy arrival and thus the future remaining
energy of the nodes is not deterministic in practice, we propose a
learning approach in order to find the most efficient transmission
policy for data communication that maximizes throughput. The
problem is formulated as a Markov Decision Process (MDP)
with unknown transition probabilities. A Q-Learning approach
is proposed to solve the MDP model and find the optimal
transmission policy.

I. INTRODUCTION

Traditional wireless networks are equipped with battery-

operated nodes that have limited capacity and thus limited

lifetime. To solve this issue, employing energy harvesting in

these networks is essential. Wireless networking with energy

harvesting is an emerging area that has received much attention

during the past few years. The energy in such networks is

provided using ambient sources such as the sun, wind, or

vibration. Moreover, employing multi-antenna or Multiple-

Input Multiple-Output (MIMO) communication in the network

results in not only a longer lifetime but also a higher spectral

and energy efficiency in the network.

Energy harvesting networks can be divided into two cate-

gories based on knowledge of the energy arrival process [1]. In

the first category, the online energy management framework,

the nodes have the knowledge about the available energy and

can make an online decision about the best course of action to

take for reward maximization based on the current state and

prior states. This case can be modeled as a Markov Decision

Process (MDP), and an optimal solution can be found through

dynamic programming, or reinforcement learning methods.

For example, the MDP model proposed in [2] is based on

finding the optimal power allocation policy for throughput

maximization. Similarly, in [3], the authors model a wireless

sensor network equipped with energy harvesting as a MDP in

order to find an optimal transmission policy for communica-

tion.

In the second category, the offline energy management

framework, however, knowledge of the energy harvesting

process is assumed to be known ahead of time. Many offline

strategies are considered for throughput maximization, by

adapting the transmission rate based on the energy harvesting

distribution [4], the assumed battery imperfections [5], for

MIMO channels [6]. Moreover, in [7] and [8], both online and

offline approaches are explored. In this work, the authors for-

mulate both the data and energy arrivals as a Markov process

and solve this MDP using a proposed learning method based

on Q-learning. In [7], the authors studied the maximization

of total transmitted data during the transmitter activation time

and they showed that as the learning time goes to infinity,

the performance reaches the optimal value. In [8], an optimal

power allocation policy that maximizes the throughput is the

goal of the learning process. Moreover, the state space defined

in [8] for the Markov process depends on the nodes’ energy

and thus it is a continuous state space, which is relaxed through

a linear function approximation to handle the infinite number

of states. In [9], the authors studied the online and offline

problems with the goal of throughput maximization in a fading

channel assuming that the energy arrival follows a stochastic

process. In this case, they used dynamic programming to find

an optimal solution.

In practical situations, however, the exact information of the

harvested energy is not known. The harvested energy varies

depending on different factors, such as the weather conditions.

For instance, in a wireless network utilizing solar or wind

power, the amount of harvested energy will be different for

sunny, cloudy, or windy days. Thus, we do not have exact

information about the harvested energy in reality unless the

energy arrival is highly deterministic. In order to find the best

transmission policy in the situation with unknown harvesting

energy arrival, we propose an approach that is based on

reinforcement learning [10].

To the best of our knowledge, no prior work has considered

the use of learning approaches in MIMO communication in

order to find the best transmission policy in terms of maximum

throughput by changing the number of antennas of the nodes.

In this paper, we consider a point-to-point MIMO wireless

communication link in which we have two nodes equipped

with energy harvesters and rechargeable batteries. The goal

is to maximize the total throughput during a specific time

that the system is running. We model the system using a

finite MDP with unknown transmission probabilities and find

an optimal transmission policy using Q-learning. We consider

four transmitter-receiver antenna pairs in the MIMO system,

each of which may result in different energy consumption for

the nodes. Based on the energy consumption and the harvested

energy arrival, we employ Q-learning to find the most energy
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efficient transmission policy.

The rest of the paper is organized as follows. Section II

presents the MIMO energy harvesting system model. In Sec-

tion III, we derive an upper bound on the performance attain-

able by the system following an offline energy management

formulation with complete information about the harvesting

process. In Section IV, we present a theoretic model for the

energy harvesting online optimization problem. In Section V,

we propose a reinforcement learning approach as the solution

of an MDP model in order to find the optimal transmission

policy. Section VI evaluates the performance of our proposed

reinforcement learning method. Finally, conclusions are drawn

in Section VII.

II. SYSTEM MODEL

We consider a wireless link between two nodes that utilize

energy harvesting to recharge their batteries. The energy har-

vester collects the energy from an ambient source such as solar,

wind, or vibration, and stores the energy in the battery. Each

node is equipped with two antennas and may either use one or

both of them for communication. Thus, the system may work

as a Multiple-Input Multiple-Output (MIMO), Multiple-Input

Single-Output (MISO), Single-Input Multiple Output (SIMO),

or Single-Input Single Output (SISO) communication system.

The energy consumption model for the system is adopted from

the one presented in [11]. The circuit power consumptions for

the transmitter (P tx
C ) and the receiver (P rx

C ) are as follows

P rx
C (Mrx) =Mrx(PADC + PMix + P rx

Fil + PDem+

+ PIFA + PLNA) + PSyn,

P tx
C (Mtx) =Mtx(PDAC + PMix + P tx

Fil + PMod) + PSyn,

(1)

where Mtx and Mrx are the number of antennas used at

transmitter and the receiver, respectively, PADC represents

the power consumption of the Analog-to-Digital converter

(ADC), PMix is the power consumption of the mixer, P rx
Fil

is the power consumption of the receiver filter circuit, PDem

is the power consumption of the demodulator, PIFA is the

power consumption of the Intermediate Frequency Amplifier

(IFA), PLNA is the power consumption of the Low Noise

Amplifier (LNA) and PSyn is the power consumption of the

frequency synthesizer. The circuitry power consumptions are

independent of the distance, bit-error-rate, and depends only

on the number of antennas. Moreover, the transmit power PPA

can be calculated using the following formula [12]:

PPA(Mtx,Mrx) =

(

1 +
ξ

η

)

EbRb

(

4πd

λ

)n
MlNf

GtxGrx
, (2)

where η is the drain efficiency of the power amplifier, while

ξ = 3W−2
√
W+1

W−1 represents the Peak-to-Average Ratio (PAR)

that depends on the constellation size W . For the results

presented in this paper, ξ is a constant value since we only

consider a BPSK modulation scheme (i.e., K = 2). Moreover,

Eb is the energy per bit, Rb is the bitrate, d is the distance, n

is the path loss exponent, λ is the carrier wavelength, Ml is

the link margin, Nf is the receiver noise figure, and Gtx and

Grx are the transmitter and the receiver antenna gains.

Furthermore, the BER of the channel can be found as

follows [13]:

pb =

(

1

2
(1 − ζ)

)L

·

L−1
∑

l=0

(

L− 1 + l

l

)(

1

2
(1 + ζ)

)l

, (3)

where L = MtxMrx, ζ =
√

ρ/Mtx

1+ρ/Mtx
, and ρ is the average

SNR.

Given the above, the energy consumption of the transmitter

and the receiver for a packet with a size of m bits are:

EMtx×Mrx

tx (t) =
Ptx m

Rb
, EMtx×Mrx

rx (t) =
Prx m

Rb
, (4)

where Ptx = P tx
C (Mtx) + PPA(Mtx,Mrx) and Prx =

P rx
C (Mrx) are the total energy consumption for the transmitter

and the receiver, respectively.

We consider an energy harvesting system in which the nodes

know the distribution of the harvested energy. However, they

don?t know the exact value of the incoming harvested energy

in the future time slots. If we assume that the remaining energy

of the transmitter node and the receiver node at time t are

Btx(t) and Brx(t), and the amount of harvested energy for

the nodes are Htx(t) and Hrx(t), which follow a uniform

distribution, the remaining energy at slot t is BX(t) = BX(t−
1) + HX(t) − EMtx×Mrx

X (t) for the transmitter (X = tx)

and the receiver (X = rx). Thus, at time t we can define

the number of packet that can be sent (Ntx(t)) and received

(Nrx(t)) at the transmitter and the receiver, respectively, as

Ntx(t) =
Btx(t)

EMtx×Mrx

tx (t)× 1
1−ppkt

Nrx(t) =
Brx(t)

EMtx×Mrx
rx (t) × 1

1−ppkt

,

(5)

where 0 ≤ t ≤ Ts, Ts is the total run time of the network,

Mtx and Mrx are the number of antennas at the transmitter

and the receiver nodes, respectively, and ppkt is the packet’s

probability of error. Therefore, the maximum number of

packets that can be successfully received by the receiver is

given by N(t) = min{Ntx(t), Nrx(t)}.

While the network is running, the nodes receive harvested

energy at every time slot t. When a node runs out of energy, it

stops sending/receiving packets and start recharging its battery

using the harvested energy until the battery is charged enough

for the communication. Assuming that at most one packet is

sent at time slot t, our goal is to maximize the throughput

of the communication system R, which is defined as the total

number of packets that are successfully received in the network

runtime Ts:

R = max
π

min

{

Ntx(Ts)

Ts
,
Nrx(Ts)

Ts

}

, (6)

where π is a particular policy that contains the sequence of

(Mtx,Mrx) for all the time slots t = 0, . . . , Ts.



III. OFFLINE OPTIMAL POLICY

In the offline energy management framework, the nodes

have perfect knowledge of the energy harvesting process, and

hence can select the communication scheme (SISO, SIMO,

MIMO or MISO) for each transmission in an optimal way.

The total number of packets that can be received successfully

using an offline optimal policy can be found as

max
∑M

Mtx=1

∑M
Mrx=1 αMtx,Mrx

(7)

s.t.
∑M

Mtx=1

∑M
Mrx=1 αMtx,Mrx

Etx
PKT ≤ B0

tx +HTs

tx
∑M

Mtx=1

∑M
Mrx=1 αMtx,Mrx

Erx
PKT ≤ B0

rx +HTs

tx

where Ts is the total duration that the network is running. HTs

X

represents the total harvested energy by the transmitter (X=tx)

and the receiver (X=rx) until time Ts, and EX
PKT(Mtx,Mrx)

represents the transmitter (X=tx) and the receiver (X=rx)

energy consumptions of the MtxxMrx MIMO scheme when

the data packet is successfully transmitted. The value of

αMtx,Mrx
represents the number of packets that are exchanged

by the Mtx×Mrx MIMO scheme during the communication.

As a result, by maximizing
∑M

Mtx=1

∑M
Mrx=1 αMtx,Mrx

, the

number of received packets and thus the system throughput

will be maximized.

This optimal policy works offline and requires information

about the initial energy levels, the total harvested energy from

the initial time until Ts, and the energy consumption for each

communication scheme. Although the offline optimal policy

is not reachable in practice, it provides an upper bound on the

performance attainable by different communication policies.

Moreover, since the number of communication schemes is

small in our case, Mixed Integer Linear Programming (MILP)

algorithms can efficiently solve the problem in a small amount

of time.

IV. MARKOV PROCESS MODEL FOR MIMO

COMMUNICATION WITH ENERGY HARVESTING

We model the system with a finite-state

continuous-time MDP, represented by the quadruplet

〈S,A,P(s, a, s′),R(s, a, r)〉, where S is the set of states,

A is the set of actions, P(s, a, s′) defines the probability of

going from a state s to a state s′ when taking action a, and

R(s, a, r) represents the reward r of selecting action a at

state s. The set of states and the reward function are defined

below.

In order to find the throughput in Eq. (6), we need to know

the relationship between
Btx(t)
Etx(t)

and
Brx(t)
Erx(t)

for all four MIMO

schemes to figure out which one maximizes the throughput.

Thus, the set of states S contains the energy intervals that

the fraction Brx

Btx
falls into and the set of actions A =

{a1, a2, a3, a4} = {SISO, MISO, SIMO, MIMO}, which are

different numbers of antenna pairs for the transmitter and the

receiver.

As stated in [11], the power consumption of the receiver

node depends only on the number of antennas and thus

PMIMO
rx (t) = PSIMO

rx (t) and PSISO
rx (t) = PMISO

rx (t). Thus,

we have

Brx(t)

Erx(t)
≶

Btx(t)

Etx(t)
⇔

Brx(t)

Btx(t)
≶

Erx(t)

Etx(t)

where

Erx(t)

Etx(t)
=

{PSISO
rx (t), PMISO

rx (t), PSIMO
rx (t), PMIMO

rx (t)}

{PSISO
tx (t), PMISO

tx (t), PSIMO
tx (t), PMIMO

tx (t)}

(8)

Thus, in general we have 16 cases in terms of transmitter-

receiver power consumption ratios that equal
Erx(t)
Etx(t)

, which

can be reduced to 8 since PSISO
rx (t) = PMISO

rx (t) and

PMIMO
rx (t) = PSIMO

rx (t). Therefore,

Erx(t)

Etx(t)
=

Eai
rx(t)

E
a′

j

tx (t)
(9)

where ai, a
′
j ∈ A and i = {1, 3} and j = {1, 2, 3, 4}.

As stated in [11], for a specific distance and bit-error-rate

(BER), the value of Erx(t) and Etx(t) are known. Thus,

Brx(t)
Btx(t)

∈

[

E
ai
rx(t)

E
a′

j
tx (t)

,
E

bi
rx(t)

E
b′
j

tx (t)

]

where ai, a
′
j, bi, b

′
j ∈ A and i = 1, 3

and j = 1, 2, 3, 4.

We define the state space as S as S = {sk, s10}, where

sk =

[

E
ai
rx(t)

E
a′

j
tx (t)

,
E

bi
rx(t)

E
b′
j

tx (t)

]

with k = {1, 2, ..., 9}, and s10 =

{Brx(t) = 0 and/or Btx(t) = 0}. Thus, the system state

space has ten states, nine states regarding the energy fraction

intervals according obtained from Eq. (8) and one state where

at least one of the nodes runs out of energy.

Moreover, the reward function R is a function of the remain-

ing energy, energy consumption, and the distance between the

nodes:

R(si, ai) =

{

1
E

ai
tx (t)

+ 1
E

ai
rx(t)

si 6= s10

0 si = s10
(10)

where R is the system throughput, and Eai
rx(t) and Eai

tx(t)
are the receiver and the transmitter power consumptions when

action ai ∈ A is taken at state si ∈ S.

V. REINFORCEMENT LEARNING FOR MIMO ENERGY

HARVESTING MDP MODEL

Since the transition probabilities are not known in the

MDP defined in the previous section, in order to find an

optimal action-selection policy, we may use the Q-learning

algorithm with three different action selection approaches.

The first approach is a greedy approach in which the action

with the maximum Q-value is considered at each state. The

second approach is to employ Softmax action selection, in

which an exploration versus exploitation tradeoff is explored

and the action is chosen based on a probability in order to

maximize the long-term reward. To take advantage of both

action selection policies, we additionally consider a third

adaptive approach that is a combination of the greedy and

Softmax policies.



The updating rule for the Q-values for an action selection

policy π is as follows:

Qπ(si, ai) =(1 − α)Qπ(si, ai)+

α[Ri(si, ai) + γmax
a

Qπ(si+1, a)]
(11)

where 0 ≤ α ≤ 1 is the learning rate, 0 ≤ γ ≤ 1 is the

discount factor, and Ri(si, ai) is the reward at state si when

taking the action ai.

The optimal policy π∗ can be found via Value Iteration. In

particular, in every learning iteration, the Q-learning algorithm

observes the current state si ∈ S and select the best action

ai ∈ A. After applying action ai, the algorithm observes the

next state si+1 ∈ S and the immediate reward value Ri(si, ai).
Finally, Qπ(si, ai) is updated according to Eq. (11). It can be

shown that iterating this process for a sufficiently large number

of learning iteration, the Q-Learning algorithm converges and

returns the optimal policy π∗.

A. Greedy Action Selection Policy

Acting greedily for Qπ(si, ai) when the number of states

is finite may result in reaching the optimal policy π∗. In a

given state si, the greedy action selection policy selects the

action that achieves the maximum Qπ(si, ai). In other words,

it selects the ai that leads to the highest immediate reward Ri.

The problem with the greedy policy is that it is greedy only

according to the states that it explored and the energy that it

is consumed, which leads to some certain remaining energy

intervals of
Brx(t)
Btx(t)

. Thus, it does not have the chance to explore

other remaining energy values, which leads to unexplored

remaining energy intervals. One solution is to use the ǫ-greedy

policy in which, with a probability 1− ǫ, it acts greedily and

chooses the action that maximizes the Q-value. Otherwise, a

random action is selected from A with a probability of ǫ.

However, in the ǫ-greedy policy, a drawback is that it selects

equally among the all actions at the time of exploration. Thus,

the probability of choosing the best action is the same as the

worst action.

B. Softmax Action Selection Policy

To overcome the problem in the ǫ-greedy policy, Softmax

action selection can be employed to find the optimal policy

π∗(τ, s, a) using an exploration versus exploitation tradeoff

[10] with different probabilities for the action selection. In

this case, the action ai at state si is chosen with probability

p(si, ai) based on the Boltzmann distribution:

p(si, ai) =
e

Q(si,ai)

τ

4
∑

j=1

e
Q(si,aj)

τ

(12)

where τ > 0 is a parameter called temperature. With high

temperatures, all actions are equiprobable while with low

temperatures, the Softmax action selection policy becomes the

same as the greedy policy.

Table I
SIMULATION PARAMETERS

General Parameters

n (Path loss exponent) 2
W (Constellation size) 2

m (Packet Size) 2064 bytes

N0 −174 dBm/Hz

GtGr 5 dBi

Ml 10dB

Nf 10 dB

η 0.35
Distance 250 m

Harvested Energy U [0,0.004]J

Maximum Harvested Energy(HMax) 0.004 J

Initial Energy of the [Transmitter, Receiver] Nodes [3,1] J

Minimum Required Energy at the [Transmitter, Receiver] Nodes [1,2] J

Q-Learning Parameters

δ 0.01
Discount Factor (γ) 0.7
Learning Rate (α) 0.7
Temperature (τ) 500

Learning Iterations (k) 1440 × 3000
Time Frame one day = 1440 time slots

Circuitry Power Consumption

PDAC 7 mW

PADC 7 mW

PMix 30.3 mW

PSyn 50 mW

P tx
Filt

2.5 mW

P rx
Filt

2.5 mW

PLNA 20 mW

PIFA 5 mW

C. Adaptive Action Selection Policy

The third action selection policy is an adaptive action

selection policy, which is given by a combination of both the

Softmax and the greedy action selection policies described

above. During the exploration phase, when the iteration is

below a certain value in the learning process, the action a

is chosen based on the Softmax policy from Eq. (12). After

exploring all of the environment, when the Q-table is set, we

switch to the exploitation phase in which the action is selected

according to the greedy policy. Therefore, the adaptive action

selection policy is as follows [14]:

π(δ, τ, s, a) =















Softmax policy π(τ, s, a) ∆ ≤ δ

according to Eq. (12)

argmax
a∈A

Q(s, a) Otherwise

(13)

where ∆ is a uniform random number drawn at each time

step, and 0 ≤ δ ≤ 1.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-

posed learning algorithm for MIMO energy harvesting systems

presented in Section V, and compare it with other available

methods. We assume a Rayleigh fading wireless channel with

a channel data rate of Rb = 1 Mbps, and an average path loss

that falls off with the square of distance (d2). The simulation

parameters are listed in Table I. We use the circuitry power

consumption employed in [11]. We use Matlab to simulate the

different options, and the results are averaged over 50 runs.

The nodes can operate in four different antenna modes:

2×2 MIMO, 2×1 MISO, 1×2 SIMO, or 1×1 SISO and they

start their communication as soon as their remaining energy

is greater than or equal to the minimum required energy

threshold (as listed in Table I). We assume that the harvesting

process follows a uniform distribution U [0, HMax] for both

nodes and their harvesting processes are either the same or



50 100 150 200 250 300 350 400 450 500

Distance (m)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

T
h

ro
u

g
h

p
u

t 
(K

b
p

s
)

Optimal Offline Policy (Correlated Harvester)

Q-Learning (Correlated Harvester)

Online Policy (Correlated Harvester)

Optimal Offline Policy (Same Harvester)

Q-Learning (Same Harvester)

Online Policy (Same Harvester)

Figure 1. System throughput versus the communication distance.

correlated (harvested energy of the receiver is a multiplication

of that of the transmitter). In the following figures, we consider

two cases: the first one is when both nodes’ harvesting

processes follow a uniform distribution and have the same

harvested energy at each time slot (Hrx = Htx). The second

one is when both nodes’ harvesting processes follow a uniform

distribution but the value of the harvested energy of the nodes

are different but correlated (e.g., Hrx = 0.8×Htx). In the most

of the results, we employed the first type of the harvester (in

which both nodes harvests the same amount of energy) unless

noted otherwise.

Moreover, we compare the performance of the proposed

protocol with the following policies;

• Online Policy: the nodes choose their number of antennas

on-the-fly and based on the incoming harvested energy

and their current remaining energy. At each time slot,

the nodes choose the number of antennas such that the

throughput is maximized by solving Eq. (6).

• Offline Optimal Policy: the nodes know the total har-

vested energy in the future and have perfect knowledge of

the remaining energy and energy arrivals. Having perfect

knowledge of the energy, according to Eq. (7), the nodes

select the optimal number of antennas for all the slots of

the entire network lifetime.

We analyze the proposed algorithm in terms of various

distances, initial energies of the nodes, and network running

time (i.e., time frame Ts in Eq. (6)), and energy consumption

for different harvesting processes. Moreover, each time frame

consists of a number of time slots in which the nodes can

transmit/receive at most one packet. Each time slot equals to

one minute.

In Figure 1, the throughput is measured and compared with

the online policy as a function of the distance between the

nodes. As distance grows, the transmit energy consumption

grows, which results in having fewer packets received and

thus having lower throughput. The Optimal Offline Policy

provides an upper bound for the maximum throughput, but

this is not necessarily achievable in practice. The throughput
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Figure 2. Total system energy consumption versus the communication
distance.
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Figure 3. System throughput versus the time frame (days).

of the proposed Q-learning approach is better than that of the

online policy especially for large distances due to the learning

process in which the Q-values are updated based not only

on the energy consumption of the different schemes, but also

based on the incoming harvested energy.

In Figure 2, the total energy consumption of the transmitter

and the receiver is shown as a function of the communication

distance. Since the number of packets and therefore the

throughput is higher for large distances for the Q-learning

compared to the online policy, the total energy consumption

for Q-learning is also higher. However, for small distances the

throughput of the online policy is slightly higher than the Q-

learning (see Figure 1) which results in having higher energy

consumption for the online policy.

In Figure 3, we change the network running time Ts and

measure the throughput for the proposed method. Since the

maximum time frame is 2 days (2 × 1440 time slots), we

assumed that the number of learning iterations is 2× 1440×
3000 ≈ 8×106. As expected, as the size of the time frame gets

larger, the number of received packets and thus the throughput

increases as well.
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Figure 4. System throughput versus the initial energy of the nodes.

In Figure 4, the system throughput is demonstrated versus

different values of initial energy of the nodes. With higher

initial energy of the nodes, the lifetime of the network and

thus the throughput gets larger. Figure 5 shows a comparison

of the network throughput of the Q-learning, online policy, and

offline optimal policy approaches. As we increase the number

of learning iterations, the Q-learning algorithm improves the

Q-table by the knowledge it learned from the environment.

Since we assumed that the distribution of the harvested energy

is known, we learn the optimal Q-table in an offline manner

for each time frame. Moreover, before the nodes start sending

packets in a time frame, the Q-learning algorithm learns the

optimal Q-table for the incoming time frame.

In Figure 5, it is assumed that the time frame is one day

and the trend of the Q-learning is shown as the number of

(offline) learning iterations grows. With a high learning rate

(α = 0.7) the Q-learning converges faster than with a low

learning rate (α = 0.01) since with higher learning rates, the

algorithm gives more credit to the newly acquired rewards than

the previous ones. After around 103 learning iterations, the Q-

learning and the online policy cross each other and when the

number of iterations is larger than this value, the Q-learning

converges to a value near the optimal policy.

VII. CONCLUSIONS

In this paper, we introduce a new framework for throughput

maximization for MIMO wireless links with energy har-

vesting. We model the problem as an MDP and find the

solution using Q-learning. Our proposed solution achieves

higher throughput for various distances, various initial energies

of the nodes, different harvesting processes, and in different

network operating times compared to an online policy. We also

compared the proposed learning algorithm with an Optimal

Offline policy, and we observe that our proposed algorithm

converges to the Optimal Policy, especially for large distances,

and various network time frames and the nodes’ initial energy.

For future work, we intend to extend this work to a network

with more than two nodes in which the problem becomes

more complicated since more parameters will be added to the
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Figure 5. System throughput for one day versus the number of learning
iterations.

framework, such as the most energy efficient routing path,

and the best scheduling data transmission algorithm between

a node and its neighbors. We also intend to model and explore

this problem in an infinite horizon in which the network may

continue running indefinitely. For this case, our goal is to find

the solution in terms of the optimum transmission policy and

throughput maximization.
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