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On Optimal Cooperator Selection Policies for
Multi-Hop Ad Hoc Networks
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Abstract—In this paper we consider wireless cooperative multi-
hop networks, where nodes that have decoded the message at the
previous hop cooperate in the transmission toward the next hop,
realizing a distributed space-time coding scheme. Our objective
is finding optimal cooperator selection policies for arbitrary
topologies with links affected by path loss and multipath fading.
To this end, we model the network behavior through a suitable
Markov chain and we formulate the cooperator selection process
as a stochastic shortest path problem (SSP). Further, we reduce
the complexity of the SSP through a novel pruning technique
that, starting from the original problem, obtains a reduced
Markov chain which is finally embedded into a solver based
on focused real time dynamic programming (FRTDP). Our
algorithm can find cooperator selection policies for large state
spaces and has a bounded (and small) additional cost with
respect to that of optimal solutions. Finally, for selected network
topologies, we show results which are relevant to the design of
practical network protocols and discuss the impact of the set of
nodes that are allowed to cooperate at each hop, the optimization
criterion and the maximum number of cooperating nodes.

Index Terms—Ad hoc wireless networks, automatic repeat
request, cooperative communication, MIMO systems, multi-hop
communication, optimal policies.

I. INTRODUCTION

COOPERATION among nodes of a wireless ad hoc net-
work has been shown to be effective in improving the

efficiency of resource usage [1], e.g., increasing the network
throughput or reducing the energy consumption. In recent
years, cooperation has been widely studied both from an
information theoretic point of view and from an implemen-
tation perspective. A significant amount of work has been
done either for the case of two nodes cooperating to transmit
two messages to a common destination [2], [3], or for the
case of a relay network where transmission from a single
source is assisted by one or more cooperative nodes [4],
[5]. When multiple nodes are available for cooperation, two
major policies can be adopted: a) a single cooperator is
selected to aid the transmission of a target node, or b) more
nodes cooperate simultaneously with some coordination. The
network performance is largely dictated by the cooperator
selection, both when only one node cooperates at any given
time (see [6] and references therein) and when multiple nodes
operate simultaneously [6], [7].

Most of the existing literature is focused on two hop
transmission topologies, where the source node transmits
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to the relays and then relays forward the message to the
final destination. As an example of this, [8] presents a dis-
tributed routing protocol that at each hop opportunistically
selects the best relay node based on instantaneous channel
measurements. However, cooperation can also be applied to
multihop transmissions with more than two hops, where at
each hop a set of nodes forwards data to another set of
nodes. A simple example of multihop transmission is provided
in [9], where data are conveyed from the source to the
destination of a network by couples of nodes transmitting
in cascade. For the case of two transmitting nodes at any
hop, in [10], [11], an Alamouti scheme is adopted for a
broadband multihop transmission. The outage probability for
a fixed rate transmission is analyzed in [12], for a multihop
relay network where nodes are organized in clusters and
perfectly know the channel within each cluster, while only
path-loss and shadowing are known among clusters. Power
allocation strategies for multihop multiple relay networks have
been investigated in [13]. Under the assumption that relay
candidates know the channel conditions, a power efficient
multiple relay selection is proposed in [14], while capacity
bounds are derived in [15], [16]. In the case of a single
node transmitting at any time, power allocation is optimized
in [17] and [18]. In [19] the minimum energy consumption
is targeted for fixed nodes with no fading, an investigation
which has also been conducted in [20], still with perfect
channel knowledge at the transmitter and with the constraint
that cooperating nodes are along the optimal non-cooperative
route. [21] proposes a minimum power cooperative routing
algorithm in which, at any time, either a direct transmission or
a single relay-aided transmission can occur. Clustered systems
are considered in [22] where both the number of nodes per
cluster and the clusters are determined to minimize energy
consumption in the absence of fading within the cluster, while
in [23] the clusters are optimized in order to minimize the
total outage probability. In [24] the choice of the number
of cooperating transmitters and the cooperation strategy are
investigated to exploit the diversity gain for an increase in
either the range or the rate of the links or both.

The analysis of this paper extends the work in the literature
as it applies to general multi-hop topologies where any number
of nodes can cooperate at each hop for the delivery of the
message. In detail, we consider a multihop wireless network
with arbitrary topology where nodes decode the message and
forward it to the next hop until it reaches the destination. In the
envisioned scenario nodes cooperate by simultaneously trans-
mitting the message (implementing a distributed space-time
coding scheme with decode and forward, DF). The objective
of our work is to analytically optimize multi-hop cooperative

1536-1276/11$25.00 c⃝ 2011 IEEE



ROSSI et al.: ON OPTIMAL COOPERATOR SELECTION POLICIES FOR MULTI-HOP AD HOC NETWORKS 507

transmission policies (along with their performance in terms
of energy expenditure and delay) in the presence of channel
impairments and for general network topologies.

Transmission errors depend on path loss and multi-path
fading phenomena which dictate the packet error probability
for the transmission links. Note that, one may decide upon the
correct reception of messages over a given link considering the
instantaneous value of its fading process. This would however
entail a large complexity for the communicating nodes as
they should continuously exchange channel status information.
In addition, since our objective in this paper is obtaining
globally optimal transmission policies, this knowledge should
be acquired for all links and for all time instants, which would
be impractical. Due to this, we adopt a different model, which
takes into account the average channel status for each link, i.e.,
path loss and fading are translated into outage probabilities.
Note that this corresponds to a model with partial channel
state information where large scale channel effects (i.e., path
loss) are known, whereas small scale fading is modeled for
each link through its statistical description.

For the cost model, each transmission has an entangled
cost, which is the weighted sum of normalized consumed
energy and delay. The goal of our optimization technique
is determining which nodes should cooperate at each hop
in order to minimize the expected cost over all possible
realizations of the cooperative transmission process.

The main contributions of this paper are:
∙ we model the network behavior through a Markov chain

and formulate the multihop cooperator selection process
as a stochastic shortest path (SSP) problem. While this
SSP can be solved by an iterative procedure according
to the framework of real time dynamic programming
(RTDP) [25], [26], the complexity of this method grows
exponentially with the number of nodes in the network.

∙ Hence, we derive an iterative solver that operates on a
reduced (pruned) Markov chain exploiting an original
state pruning technique. This technique is thus inte-
grated with a focused real time dynamic programming
(FRTDP) solver [27]. We prove that, by tuning suitable
parameters, the algorithm converges with a bounded (and
small) additional cost with respect to that of the optimal
solution, while considerably reducing the computational
complexity.

∙ The performance bounds obtained in this paper can be
useful for the design of practical protocols. In fact, we
show results for selected network topologies, discussing
the impact of the set of nodes that are allowed to
cooperate at each hop, the optimization criterion, i.e.,
energy vs delay minimization and the maximum number
of cooperating nodes.

We stress that our analytical tool is meant for centralized
and off-line use and we can therefore afford higher com-
plexities than techniques operating in real time. Nevertheless,
thanks to our state pruning technique we obtain a problem
solver with moderate complexity, which can find optimal
policies for large networks in a reasonable time. Note that our
objective is obtaining optimal policies along with their perfor-
mance and not deriving fully implementable solutions. Finally,
we observe that our analytical tool works with any scenario

where outage probabilities can be obtained analytically and
is thus applicable as well to different network optimization
problems.

The paper is organized as follows. In Section II we present
the system model. In Section III we formulate the cooperator
selection problem using stochastic dynamic programming and
prove the technical results related to state pruning. In Sec-
tion III-E we integrate our pruning technique with FRTDP.
In Section IV we prove the effectiveness of our optimization
approach and discuss relevant trade-offs in terms of energy,
delay and complexity. Section V concludes the paper.

II. SYSTEM MODEL

Consider a wireless network consisting of a set 𝒯 of static
nodes spread out according to any distribution. Among the ∣𝒯 ∣
nodes, a source node 𝑠 has a message to send to a termination
node 𝑡.

A. Network Model

We deal with the transmission of a message from a source
node 𝑠 to a termination node 𝑡. Transmissions are performed
as follows. At the beginning, the source node 𝑠 broadcasts
the message, according to the DF scheme; all the nodes that
now decode the message (set ℛ0, including 𝑠) are eligible
for transmitting it in the next hop. However, only nodes in
a subset 𝑎1 ⊆ ℛ0 actually cooperate in the second hop,
and they do so simultaneously transmitting the message with
a distributed space-time code. The source node 𝑠 may be
included in 𝑎1 or not, according to the cooperation policy.
Decoding and cooperative retransmissions are iterated until the
termination node is reached. At the generic hop 𝑖, 𝑖 = 2, 3, . . .,
nodes in the set 𝑎𝑖 cooperate (simultaneously transmitting the
message), and they are chosen from the set ℛ𝑖−1 of nodes
that know the message at the end of the previous hop. For a
failed transmission the packet is discarded. In other words, we
consider a distributed automatic repeat request (ARQ), while
we leave use of hybrid ARQ (H-ARQ) for future study.

B. Link Model

Each node is equipped with 𝑁A antennas, and when nodes
in a set 𝑎 cooperatively transmit, the total number of transmit
antennas is 𝑁T = ∣𝑎∣𝑁A. As nodes decode the incoming
signals separately, the number of receive antennas for each
node is in any case 𝑁R = 𝑁A. We assume that nodes operate
in half-duplex mode and that the same power is used at
all transmit antennas. Furthermore, we assume no channel
knowledge at the transmitter, i.e., transmit nodes are not aware
of position and channel conditions of surrounding nodes.

The transmission channel from nodes in 𝑎 to a generic node
𝑛, is described by the 𝑁R × 𝑁T matrix 𝑯𝑛(𝑎), having as
entry [𝐻𝑛(𝑎)]𝑖,𝑗 , 𝑖 = 1, 2, . . . , 𝑁R, 𝑗 = 1, 2, . . . , 𝑁T, the
channel between the 𝑗th transmit antenna and the 𝑖th receive
antenna. For the statistics of 𝑯𝑛(𝑎) we consider two wireless
propagation phenomena: path-loss and fading. According to
this scenario, 𝑯𝑛(𝑎) is circular symmetric complex Gaussian
with independent entries having zero mean. About the vari-
ance, considering a distance 𝑑(𝑛)𝑖,𝑗 between transmit and receive
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antennas 𝑗 and 𝑖, respectively, the power gain due to path loss
is E[∣[𝐻𝑛(𝑎)]𝑖,𝑗 ∣2] = (𝑑

(𝑛)
𝑖,𝑗 /𝑑0)

−𝜈 , where 𝑑0 is the distance
at which the average gain is unitary and 𝜈 is the path-loss
exponent. For the sake of a simpler notation, we set 𝑑0 = 1
in the following. Let 𝜌 be the average signal to noise ratio
(SNR), defined as the ratio between the transmit power of a
single antenna and the noise power at each receive antenna.

C. Outage Probability

Cooperative transmission is performed by nodes through
a distributed space-time code using ∣𝑎∣𝑁A transmit antennas
in a synchronous manner. Moreover, in order to improve the
transmission reliability, forward error correction (FEC) codes
are employed. In order to allow an analysis of the proposed
architecture we consider that both the space-time codes and
the FEC codes are capacity-achieving, which is a reasonable
assumption when advanced space-time coding techniques [28],
[29] and low-density parity check codes [30] are employed.
In any case, the following analysis provides a bound on
the performance that can be obtained with practical systems.
We assume that nodes are not aware of the instantaneous
channel conditions, but only of their average gain, i.e., the
path-loss component. This is realistic when we observe that
channel conditions may change, e.g., due to the mobility
of surrounding objects. Moreover, referring to our multi-hop
route optimization, channel conditions may change as the
packets go through the various hops.

As transmit nodes are not aware of instantaneous channel
conditions, messages are encoded with a capacity-achieving
code having a data rate per unit frequency 𝑅. When the
channel capacity, normalized with respect to the bandwidth, is
below rate 𝑅, outage occurs. In this case the message is not
decoded at the receiving node and is discarded. Let 𝐶(𝑛, 𝑎) be
the capacity of channel 𝑯𝑛(𝑎) with SNR 𝜌, normalized with
respect to the bandwidth. Then, the outage probability can
be computed from the characteristic function (cf) of capacity
𝜙𝐶(𝑛,𝑎)(𝑧) as

𝑝out(𝑛, 𝑎) = P[𝐶(𝑛, 𝑎) < 𝑅] (1)

=

∫ ∞

−∞
𝜙𝐶(𝑛,𝑎)(𝑧)

[
1− 𝑒−𝑗2𝜋𝑧𝑅

𝑗2𝜋𝑧

]
𝑑𝑧 .

In the following we derive the statistics of outage, that will
be used to determine the cooperator selection policy in the next
section. First, the normalized capacity can be written as a func-
tion of the ordered positive eigenvalues of 𝑯𝑛(𝑎)𝑯𝑛(𝑎)

𝐻 ,
𝝀 = [𝜆1, 𝜆2, . . . , 𝜆𝑁min ], with 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑁min as

𝐶(𝑛, 𝑎) =

𝑁min∑
𝑖=1

log2 (1 + 𝜌𝜆𝑖) , (2)

where 𝑁min = min{𝑁T, 𝑁R}. The cf of the capacity can be
then obtained from the statistics of the ordered eigenvalues.
In particular, the joint probability density function (pdf) of
𝝀, 𝑓(𝝀) has been studied in [31] for the case 𝑁T > 𝑁R

when the columns are independent and identically distributed
while the elements within the same column are correlated. The
outage capacity of the corresponding multiple input-multiple
output (MIMO) system with correlation at the receive antennas

has been derived in [32]. However, in our scenario, even if
we neglect the correlation due to under-spaced antennas, we
still have different path-loss coefficients for each link between
two nodes. Indeed, this phenomenon can be modeled as a
simple correlation among transmit antennas. By indicating
with [𝑯𝑛(𝑎)]⋅,𝑚 the 𝑚th column of 𝑯𝑛(𝑎), the correlation
matrix among transmit antennas is the diagonal 𝑁max×𝑁max

matrix Σ with entries Σ𝑚 = E[[𝑯𝑛(𝑎)]
𝐻⋅,𝑚[𝑯𝑛(𝑎)]⋅,𝑚],

𝑚 = 1, 2, . . . , 𝑁max. In the general case where the nodes have
multiple antennas, the characteristic function of the capacity
can be derived following the analyses in [32] and [33]. For
the sake of completeness, in Appendix A we derive the
simplified expression of the outage probability 𝑝out(𝑛, 𝑎) for
the particular case of single antenna nodes, for which we
obtain the results in this paper.

III. OPTIMAL COOPERATOR SELECTION POLICIES

The evolution of our cooperative multihop network can
be described by a Markov chain, where the generic state
𝑥 is identified by all nodes that have correctly decoded the
message so far. The set of all states is instead denoted by 𝒮.
In particular, we are interested in the state in which only node
𝑠 knows the message and the termination states in which node
𝑡 knows the message. Since many states may lead to a correct
decoding at node 𝑡, there are in general many termination
states and we denote their set by 𝒟 = {𝑥 : node 𝑡 ∈ state 𝑥}.
In what follows, with a slight abuse of notation, we refer to
𝑠 and 𝑡 as the starting and termination states, respectively,
where 𝑡 denotes in this case any state in 𝒟. We can now
address the problem of finding the stochastic shortest path
(SSP) from state 𝑠 to state 𝑡. At each transmission hop the
system is in a generic state 𝑥, representing the nodes that have
decoded the message so far. If 𝑥 ∕= 𝑡 we must select nodes
in 𝑥 that will cooperate in the next hop. We denote the set
of cooperating nodes as the action 𝑎, while set 𝒜(𝑥) collects
all states 𝑎 being a subset of nodes of state 𝑥. The dynamics
of the network is captured by transition probabilities 𝑝𝑥𝑦(𝑎),
𝑥, 𝑦 ∈ 𝒮 and 𝑎 ∈ 𝒜(𝑥), describing the probability that nodes
in state 𝑦 know the message after it has been transmitted by
the nodes in set 𝑎 when the network was in state 𝑥. From the
definition of outage probability (2), we have

𝑝𝑥𝑦(𝑎) =
∏

𝑛∈𝒯 s.t.
𝑛∈𝑦,𝑛/∈𝑥

(1− 𝑝out(𝑛, 𝑎))
∏

𝑘∈𝒯 s.t.
𝑘/∈𝑦

𝑝out(𝑘, 𝑎) . (3)

The termination state 𝑡 is absorbing, i.e., 𝑝𝑡𝑡(𝑎) = 1, ∀ 𝑎 ∈
𝒜(𝑡). Note that (3) holds in general for any outage probability,
i.e. any channel/transmission model. As an important remark,
note that according to our framework the transition probability
𝑝𝑥𝑦(𝑎) depends on starting and ending states 𝑥 and 𝑦, i.e.,
on the nodes having the message prior to and after the
transmission as well as on the nodes that transmit (i.e., action
𝑎). Thus, the transition probabilities for the Markov chain
depend on the relative positions of the transmitting nodes and
on the statistical description of channel effects. This model
can be extended to accommodate the cases where multiple
rates and/or powers are exploited at the physical layer. This
will only entail the definition of a wider action space (actions
will additionally include power and/or rate values), without
affecting the state space 𝒮.
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Each transition has also an associated cost. In formulas, a
positive cost 𝑐(𝑥, 𝑎, 𝑦) is incurred when the current state is
𝑥 ∈ 𝒮, action 𝑎 ∈ 𝒜(𝑥) is selected and the system moves to
state 𝑦 ∈ 𝒮. In detail,

𝑐(𝑥, 𝑎, 𝑦) = 𝛼𝑐E(𝑥, 𝑎, 𝑦) + (1− 𝛼)𝑐D(𝑥, 𝑎, 𝑦) , (4)

where 𝑐E = ∣𝑎∣ + 𝜔(∣𝑦∣ − ∣𝑥∣) (energy cost) accounts for
the energy spent in transmitting and receiving the message,
i.e., ∣𝑎∣ is the number of cooperating nodes, ∣𝑦∣ − ∣𝑥∣ is the
additional number of nodes that correctly receive the message
and 𝜔 ≥ 0 is a parameter taking into account the energy
consumed for reception at these nodes. 𝑐D(𝑥, 𝑎, 𝑦) = 1,
∀𝑥, 𝑦 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑥) (delay cost) accounts for the delay (in
number of hops) associated with a path from 𝑠 to 𝑡. 𝛼 ∈ [0, 1]
is a parameter that we tune to drive the optimization. Note that,
since our costs are additive, computing optimal cooperation
policies with the cost model of (4) by varying 𝛼 in [0, 1]
returns the Pareto efficient frontier in terms of consumed
energy vs delay, see [34, Section 3.2.4, p. 74]. In addition,
observe that 𝑐𝐸 and 𝑐𝐷 are also related to other network
parameters. For example, as the delay increases the effective
network throughput decreases, since more transmissions are
needed to convey the packet to the destination, thus reducing
the efficiency of frequency reuse.

The optimization problem P = (𝒮,𝒜, 𝑝, 𝑐, 𝑠, 𝑡) can then be
seen as a stochastic shortest path search from state 𝑠 to state
𝑡 on the modified chain with states 𝒮, probabilities {𝑝𝑥𝑦(𝑎)},
𝑎 ∈ 𝒜(𝑥), and costs 𝑐(𝑥, 𝑎, 𝑦). Our objective is to find, for
each possible state 𝑥 ∈ 𝒮, an optimal action 𝑎∗(𝑥) so that the
system will reach the termination state 𝑡 following the path
with minimum average cost. A generic decision policy can be
written as 𝜋 = {𝑎(𝑥) : 𝑥 ∈ 𝒮}. In general, optimal policies
are guaranteed to exist under the following assumptions [35]:

A1. for any starting state 𝑥 ∈ 𝒮, there exist at least one
policy 𝜋 that eventually reaches the termination state 𝑡,
i.e., lim𝑘→+∞

∑𝑘
𝑟=1 𝑝

𝜋
𝑥𝑡(𝑟) = 1, where 𝑝𝜋𝑥𝑡(𝑟) is the

probability, averaged over all possible paths followed by
𝜋, that the message will reach state 𝑡 using this policy in
exactly 𝑟 transmission hops;

A2. all costs are positive.
In our scenario both assumptions hold true as costs are

positive by definition and we consider strongly connected
topologies, i.e., there is a positive probability that any message
reaches its destination possibly through multi-hop transmis-
sions.

A. Optimal Solution

Let 𝐽(𝑥) be the average cost incurred if the current state is
𝑥 due to all possible paths, weighted by their probabilities, to
reach the final state 𝑡. Note that ∀𝑥 ∈ 𝒟 we have 𝐽(𝑥) = 0.
Let us define (𝑇𝐽)(𝑥), 𝑥 ∈ 𝒮, as

(𝑇𝐽)(𝑥) = min
𝑎∈𝒜(𝑥)

[ ∑
𝑦∈𝒩 (𝑥)

𝑝𝑥𝑦(𝑎)

(
𝑐(𝑥, 𝑎, 𝑦) + 𝛾𝐽(𝑦)

)]
,

(5)
where 𝛾 ∈ [0, 1) and 𝒩 (𝑥) is the neighborhood set of 𝑥,
containing states 𝑦 ∈ 𝒮 such that 𝑝𝑥𝑦(𝑎) > 0 for at least
one action 𝑎. Let 𝐽∗(𝑥) be the optimal cost-to-go, i.e., the

minimum average cost incurred if the current state is 𝑥, and
the optimal policy is followed until we get to the termination
state 𝑡. It is known [26] that the optimal policy 𝜋∗ obeys the
following Bellman’s optimality equation

𝐽∗(𝑥) = (𝑇𝐽∗)(𝑥) , 𝑥 ∈ 𝒮 . (6)

In (5) and (6) we consider a discounted version of the SSP
problem P , since costs incurred in future hops are multiplied
by 𝛾 ∈ [0, 1). Note that 𝛾 = 0 captures the behavior of
a myopic decision maker which takes actions based on the
cost incurred in the next hop only (immediate costs), whereas
further future costs are ignored. Setting 𝛾 < 1 is suited
to a time varying network, where over a hop the status of
closely located terminals remains relatively constant, whereas
the status of nodes placed a few hops away will be changed
by the time the message will get in their proximity.

From [26, Proposition 2.1.2, p. 91], we know that map-
ping 𝑇 (⋅) can be iteratively applied, i.e., (𝑇 (𝑇 𝑘−1𝐽𝑜))(𝑥) =
(𝑇 𝑘𝐽𝑜)(𝑥), and the following properties hold: 1) uniqueness:
𝐽∗(𝑥) is the unique solution of 𝐽∗(𝑥) = (𝑇𝐽∗)(𝑥), ∀𝑥 ∈ 𝒮
and 2) value iteration: lim𝑘→+∞(𝑇 𝑘𝐽𝑜)(𝑥) = 𝐽∗(𝑥), ∀𝑥 ∈ 𝒮
and for any initial guess of the cost-to-go from 𝑥, 𝐽𝑜(𝑥). We
stress that these results also hold for 𝛾 = 1. From the above
properties, iterating the optimality equation over all states in
𝒮 is a practical method to obtain the optimal policies. This
technique, however, in our case is impractical due to the large
cardinality of 𝒮. Thus, we advocate the use of advanced RTDP
techniques [25], [36], where we decrease the number of states
to be visited through a suitable pruning strategy.

B. Reduced Complexity Techniques

Let 𝑥 ∈ 𝒮 be the system state in a generic transmission
hop. Our aim is to prune the action set 𝒜(𝑥) as well as
the neighborhood set 𝒩 (𝑥) to the most relevant actions and
system transitions in order to reduce the number of states to
be visited.

In particular, we consider a new action set 𝒜′(𝑥) ⊆ 𝒜(𝑥)
(𝒜′(𝑥) ∕= ∅) and a new neighborhood set 𝒩 ′(𝑥) ⊆ 𝒩 (𝑥)
(𝒩 ′(𝑥) ∕= ∅). States pruned from 𝒩 (𝑥) are those for which
𝑝𝑥𝑦(𝑎) is small, as detailed below. Similarly, we neglect
actions which are unlikely to belong to the optimal policy.
Then, indicating with J the vector of the current cost esti-
mates, according to (5) the optimal action set for state 𝑥 is
𝑎∗ = argmin𝑎∈𝒜′(𝑥)𝑄(𝑥, 𝑎,J) where

𝑄(𝑥, 𝑎,J)
𝑑𝑒𝑓
=

∑
𝑦∈𝒩 ′(𝑥)

𝑝′𝑥𝑦(𝑎)
(
𝑐(𝑥, 𝑎, 𝑦) + 𝛾𝐽(𝑦)

)
,

𝑥 ∈ 𝒮, 𝑎 ∈ 𝒜′(𝑥) , (7)

𝑝′𝑥𝑦(𝑎) =
𝑝𝑥𝑦(𝑎)∑

𝑦∈𝒩 ′(𝑥) 𝑝𝑥𝑦(𝑎)
. (8)

In this case (5) becomes

(𝑇𝑝𝐽)(𝑥) = min
𝑎∈𝒜′(𝑥)

𝑄(𝑥, 𝑎,J) , 𝑥 ∈ 𝒮 , (9)

and (6) becomes

𝐽∗
𝑝 (𝑥) = (𝑇𝑝𝐽

∗
𝑝 )(𝑥) , 𝑥 ∈ 𝒮 , (10)
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where 𝐽∗
𝑝 (𝑥) is the optimal cost function for the new Markov

chain. The transition probabilities of this new problem 𝑝′𝑥𝑦(𝑎)
are normalized so that they still provide a valid probabil-
ity distribution on 𝒜′(𝑥). Note that, since the network is
strongly connected, assumption A1) still holds for problem
P ′ = (𝒮,𝒜′, 𝑝′, 𝑐, 𝑠, 𝑡) as long as 𝒩 ′(𝑥) ∕= ∅; A2) still
holds since costs are unmodified. Consequently, properties of
uniqueness and value iteration still hold true for P ′ with the
new mapping 𝑇𝑝(⋅). For our optimizations, we assume that at
most 𝜒max nodes are allowed to transmit concurrently at each
hop, i.e., max𝑎∈𝒜′(𝑥) ∣𝑎∣ ≤ 𝜒max, ∀𝑥 ∈ 𝒮. The implications
of this choice are discussed at the end of Section III-D.

C. Performance Bounds for State Pruning

We relate 𝐽∗(𝑥) to 𝐽∗
𝑝 (𝑥) for arbitrary network topologies

through a number of technical results. We define as a proper
upper bound any function 𝐽(𝑥) such that 𝐽(𝑥) ≥ 𝐽∗(𝑥), ∀𝑥 ∈
𝒮. A valid lower bound is defined analogously, i.e., 𝐽(𝑥) ≤
𝐽∗(𝑥), ∀𝑥 ∈ 𝒮. Let us also define

𝑀(𝑥)
𝑑𝑒𝑓
= max

𝑎∈𝒜′(𝑥)

⎡⎣ ∑
𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)

⎤⎦ . (11)

Lemma 3.1: Assume that at the generic hop 𝑖 ≥ 1 the
system is in state 𝑥 ∈ 𝒮, while 𝑦 ∈ 𝒩 (𝑥) is the state at
hop 𝑖 + 1. Define 𝑐max = 𝛼(𝜒max + 𝜔(∣𝒯 ∣ − 1)) + 1− 𝛼
and Δ(𝑥) =𝑀(𝑥)[𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥)]. For any 𝐽(𝑥) ≤
𝐽(𝑥), where 𝐽(𝑥) is any proper upper bound for P , we have:
(𝑇𝐽)(𝑥) ≤ (𝑇𝑝𝐽)(𝑥) + Δ(𝑥) , ∀𝑥 ∈ 𝒮 .

Proof: See the Appendix.
Lemma 3.2: Let 𝑥 ∈ 𝒮 be the system state, 𝜂 ∈ [0, 1) be

a constant, 𝑀(𝑥) be as defined in (11) with 𝑀(𝑥) ≤ 𝜂 and
define:

𝑔(𝑥, 𝑎)
𝑑𝑒𝑓
=

∑
𝑦∈𝒩 (𝑥)

𝑝𝑥𝑦(𝑎)

(
𝑐(𝑥, 𝑎, 𝑦) + 𝛾𝐽(𝑦)

)
, (12)

for any 𝐽(𝑥). If the following equality holds

min
𝑎∈𝒜(𝑥)

𝑔(𝑥, 𝑎) = min
𝑎∈𝒜′(𝑥)

𝑔(𝑥, 𝑎) , ∀𝑥 ∈ 𝒮 (13)

we thus have that (𝑇𝐽)(𝑥) ≥ 𝛿(𝑇𝑝𝐽)(𝑥), where 𝛿 = 1−𝜂 for
all 𝑥 ∈ 𝒮.

Proof: See the Appendix.
Remark 3.3: Lemma 3.2 proves that if, for all states 𝑥 ∈ 𝒮,

we obtain set 𝒜′(𝑥) for problem P ′ by exclusively removing
non-optimal actions for problem P from 𝒜(𝑥), then we can
lower bound (𝑇𝐽)(𝑥) by 𝛿(𝑇𝑝𝐽)(𝑥), where 𝛿 ∈ (0, 1] depends
on the transition probabilities of the pruned states in 𝒩 (𝑥) ∖
𝒩 ′(𝑥).

Theorem 3.4 (error bounds): Let 𝑥 ∈ 𝒮 be the system
state, let Δ ≥ 0 be a constant and assume

𝑀(𝑥) ≤ Δ

𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥)
, ∀𝑥 ∈ 𝒮 (14)

with 𝑐max = 𝛼(𝜒max + 𝜔(∣𝒯 ∣ − 1)) + 1− 𝛼. For any proper
upper bound 𝐽(𝑥) for problem P we have
(i) For all 𝑥 ∈ 𝒮, 𝐽∗(𝑥) can be upper bounded as

𝐽∗(𝑥) ≤ 𝐽∗
𝑝 (𝑥) +

Δ

1− 𝛾 , ∀𝑥 ∈ 𝒮 . (15)

(ii) In addition, if for any 𝑥 ∈ 𝒮 we never remove optimal
actions from 𝒜(𝑥), i.e., condition (13) of Lemma 3.2
holds and we have

𝛿𝐽∗
𝑝 (𝑥) ≤ 𝐽∗(𝑥) ≤ 𝐽∗

𝑝 (𝑥) +
Δ

1− 𝛾 , ∀𝑥 ∈ 𝒮 , (16)

where 𝐽∗
𝑝 (𝑥) is the optimal cost function for problem

P ′ (see (10)) with the modified discount factor 𝛾 = 𝛾𝛿
where 𝛿 is

𝛿 = 1− Δ

𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥)
. (17)

Proof: See the Appendix.

D. Pruning Criteria

Next, we present an efficient state pruning technique for
problem P where, for a given sub-optimality threshold
Δ/(1 − 𝛾) and for any state 𝑥 ∈ 𝒮, set 𝒩 ′(𝑥) is chosen
such that (14) holds, i.e., result (i) of Theorem 3.4 holds.

Lemma 3.5 (monotonicity): Let 𝑖 ≥ 1 be the current trans-
mission hop, 𝑥 ∈ 𝒮 the corresponding state and 𝒯 −(𝑥) =
𝒯 ∖ 𝑥 be the set of nodes that still have to decode the
message. Let 𝒜′(𝑥) be the action set for P ′ and state 𝑥.
Define 𝑝succ(𝑛, 𝑎) = 1 − 𝑝out(𝑛, 𝑎) as the probability that a
given node 𝑛 ∈ 𝒯 −(𝑥) correctly decodes the message in hop
𝑖, conditioned on the set of nodes in 𝑥 that transmit in hop
𝑖, which we refer to as 𝑎 ∈ 𝒜′(𝑥). This probability is also
conditioned on system topology, channel model and related

parameters, see (21). We define 𝑎max
𝑑𝑒𝑓
= argmax𝑎∈𝒜′(𝑥) ∣𝑎∣.

It holds

𝑝succ(𝑛, 𝑎) ≤ 𝑝succ(𝑛, 𝑎max) , ∀𝑥 ∈ 𝒮 ,
, ∀𝑛 ∈ 𝒯 −(𝑥) , ∀ 𝑎 ∈ 𝒜′(𝑥) . (18)

Proof: The result follows as, for any 𝑛 ∈ 𝒯 −(𝑥), for
any system topology and channel/transmission models, the
decoding probability in hop 𝑖, 𝑝succ(𝑛, 𝑎), is non-increasing
when the number of transmitting nodes goes from ∣𝑎max∣ to
∣𝑎∣ < ∣𝑎max∣.

Let us now introduce some notation. Given a discount
factor 𝛾, set the sub-optimality threshold Δ/(1 − 𝛾), for
given 𝑥 ∈ 𝒮 and 𝒜′(𝑥), for all nodes 𝑛 ∈ 𝒯 −(𝑥), store
𝑝succ(𝑛, 𝑎max) in non-decreasing order into a vector v, with
entries 𝑣(𝑗), 𝑗 = 1, 2, . . . , ∣𝒯 −(𝑥)∣. Let 𝑚(𝑗) ∈ 𝒯 −(𝑥)
be a mapping associating 𝑣(𝑗) to the corresponding node
𝑛 ∈ 𝒯 −(𝑥). For 𝜅 ≥ 1 define Ψ(𝑥) as the set of all sequences
(𝜉(1), 𝜉(2), . . . , 𝜉(𝜅)) such that 1 ≤ ∑𝜅

𝑗=1 𝜉(𝑗) ≤ 𝜅, with
𝜉(𝑗) ∈ {0, 1}.

Proposition 3.6 (state pruning): Consider the following se-
quential node selection procedure. Initialize set 𝒱(𝑥) as empty.
Evaluate one entry of v at a time, let 𝜅 ≥ 1 be the current
evaluation step. If 𝜅 < ∣𝒯 −(𝑥)∣ − 1 and∑
Ψ(𝜅)

𝜅∏
𝑗=1

𝑣(𝑗)𝜉(𝑗)(1− 𝑣(𝑗))1−𝜉(𝑗) ≤ Δ

𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥)

then 1) 𝜅 ← 𝜅 + 1, 2) add 𝑚(𝜅) to 𝒱(𝑥), i.e., 𝒱(𝑥) ←
𝒱(𝑥) ∪ {𝑚(𝜅)}, stop otherwise. This procedure returns set
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𝒱(𝑥). If we prune from 𝒩 (𝑥) all states 𝑦 for which at least
one of the nodes in set 𝒱(𝑥) is successful, it holds

𝑀(𝑥) =
∑

Ψ(∣𝒱(𝑥)∣)

∣𝒱(𝑥)∣∏
𝑗=1

𝑣(𝑗)𝜉(𝑗)(1− 𝑣(𝑗))1−𝜉(𝑗)

≤ Δ

𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥)
, ∀𝑥 ∈ 𝒮 . (19)

Proof: See the Appendix.
Remark 3.7 (pruning in practice): The rationale behind

our pruning strategy is that, for any given 𝑥 ∈ 𝒮, there are
states 𝑦 ∈ 𝒩 (𝑥) having a very small transition probability
𝑝𝑥𝑦(𝑎) for all possible actions 𝑎, i.e., nodes in 𝒯 −(𝑥) having
a small probability of successful decoding in the next hop.
Theorem 3.4 can be used as a practical tool to obtain bounds
on the optimal policy when solving for P ′ and, at the same
time, to keep the error induced by state pruning negligible.
Note that the complexity of the procedure in Proposition 3.6
is linear in the size of 𝒯 −(𝑥), i.e., 𝑂(∣𝒯 −(𝑥)∣) as it suffices
to sequentially evaluate nodes in 𝒯 −(𝑥). The lower bound in
Theorem 3.4 is generally very close to 𝐽∗

𝑝 (𝑥). This is because
in general Δ ≪ 𝑐max + 𝛾max𝑥∈𝒮 𝐽(𝑥), thus, 𝛿 ≈ 1 and
𝛾 ≈ 𝛾. Lastly, we have the further approximation∑
Ψ(𝜅)

𝜅∏
𝑗=1

𝑣(𝑗)𝜉(𝑗)(1− 𝑣(𝑗))1−𝜉(𝑗) ≈
𝜅∑

𝑗=1

𝑣(𝑗)

𝜅∏
𝑧=1, ∕=𝑗

(1− 𝑣(𝑧))

(20)
where we neglected higher order terms, which are
𝑜
(∑𝜅

𝑗=1 𝑣(𝑗)
∏𝜅

𝑧=1, ∕=𝑗(1− 𝑣(𝑧))
)
. The above approximation

is very accurate and is preferred in practice as it can be
calculated in linear time.

Remark 3.8 (characterization of set 𝒜′(𝑥)): for each
transmission hop we assume that at most 𝜒max nodes are
allowed to transmit concurrently. For a given 𝜒max, 𝒜′(𝑥) is
obtained from 𝒜(𝑥) by picking the 𝜒max nodes in 𝑥 that are
closest to 𝑡.1 This, for non-pathological topologies minimizes
the cost (averaged over fading) to reach the destination
node 𝑡. Hence, in this way we never remove optimal actions
from 𝒜(𝑥) and, in turn, (16) of Theorem 3.4 holds for the
selected 𝒜′(𝑥). Of course, optimizing for a given 𝜒max

returns the optimal policy 𝜋∗(𝜒max) over all policies that
do not exceed 𝜒max transmitting nodes per hop. As a last
remark, observe that picking the nodes that are closest to
𝑡 implies perfect knowledge of their geographical position.
This is adequate for our analysis, as our objective is obtaining
globally optimal policies. Also, in certain networks exploiting
geographical routing, such as wireless sensor networks or
vehicular networks this assumption may be realistic.

E. Focused Real Time Dynamic Programming with State
Pruning

A well established method to solve a stochastic control
problem is the value iteration method of Section III-A. This is
however infeasible when the state space is very large, as in our
case. Focused real time dynamic programming (FRTDP) [27]
is a heuristic search algorithm to solve stochastic Markov

1𝒜′(𝑥) coincides with 𝒜(𝑥) in case the number of nodes in this set is
smaller than or equal to 𝜒max.

Algorithm 1: Focused Real Time Dynamic Programming.
Data: Initial state of the system
Result: Optimal policy and relative cost
𝑠← initial state;1

D ← D0;2

while (𝐽(𝑠)− 𝐽(𝑠)) > 𝜖 do3

(𝑞𝑝𝑟𝑒𝑣, 𝑛𝑝𝑟𝑒𝑣, 𝑞𝑐𝑢𝑟𝑟, 𝑛𝑐𝑢𝑟𝑟)← (0, 0, 0, 0);4

trialRecurse(𝑠, W = 1, d = 0);5

if (𝑞𝑐𝑢𝑟𝑟/𝑛𝑐𝑢𝑟𝑟) ≥ (𝑞𝑝𝑟𝑒𝑣/𝑛𝑝𝑟𝑒𝑣) then D ← 𝑘𝐷D;6

end7

Algorithm 2: trialRecurse(x, W, d). This function recur-
sively implements each trial of FRTDP.

(𝒩 ′(𝑥),𝒜′(𝑥))← Prune(𝑥);1

𝑎∗ ← argmin𝑎∈𝒜′(𝑥) {𝑄(𝑥, 𝑎,J)};2

lower ← 𝑄(𝑥, 𝑎∗,J);3

𝛿 ← ∣𝐽(𝑥)− lower∣;4

𝐽(𝑥)← lower;5

𝐽(𝑥)← min𝑎∈𝒜′(𝑥)
{
𝑄(𝑥, 𝑎,J)

}
;6

𝑦∗ ← argmin𝑦∈𝒩 ′(𝑥)
{
𝛾𝑝′𝑥𝑦(𝑎∗)𝑓(𝑦)

}
;7

𝑓 ← min𝑦∈𝒩 ′(𝑥)
{
𝛾𝑝′𝑥𝑦(𝑎∗)𝑓(𝑦)

}
;8

𝑓(𝑥)← min(∣𝐽(𝑥)− 𝐽(𝑥)∣ − 𝜖/2, 𝑓);9

if d > D/k𝐷 then10

(𝑞𝑐𝑢𝑟𝑟, 𝑛𝑐𝑢𝑟𝑟)← (𝑞𝑐𝑢𝑟𝑟 + 𝛿W, 𝑛𝑐𝑢𝑟𝑟 + 1);
else (𝑞𝑝𝑟𝑒𝑣 , 𝑛𝑝𝑟𝑒𝑣)← (𝑞𝑝𝑟𝑒𝑣 + 𝛿W, 𝑛𝑝𝑟𝑒𝑣 + 1);11

if
(∣𝐽(𝑥) − 𝐽(𝑥)∣ ≤ 𝜖/2

)
or (𝑑 ≥ 𝐷) then return;12

trialRecurse(𝑦∗, 𝛾𝑝′𝑥𝑦∗(𝑎
∗)W, d+1);13

𝑎∗ ← argmin𝑎∈𝒜′(𝑥) {𝑄(𝑥, 𝑎,J)};14

𝐽(𝑥)← 𝑄(𝑥, 𝑎∗,J);15

𝐽(𝑥)← min𝑎∈𝒜′(𝑥)
{
𝑄(𝑥, 𝑎,J)

}
;16

𝑓 ← min𝑦∈𝒩 ′(𝑠)
{
𝛾𝑝′𝑥𝑦(𝑎

∗)𝑓(𝑦)
}
;17

𝑓(𝑥)← min(∣𝐽(𝑥)− 𝐽(𝑥)∣ − 𝜖/2, 𝑓);18

decision processes having a large number of states. It involves
simulated greedy searches within the state space, where cost
estimates are updated in a dynamic programming fashion.
That is, whenever state 𝑥 is reached, its new cost estimate
𝐽new(𝑥) is updated as: 𝐽new(𝑥) ← 𝑄(𝑥, 𝑎∗,J), where J is
the vector of the current cost estimates and 𝑎∗ is the optimal
action based on this vector. We then integrate our pruning
techniques of Section III-D into FRTDP to obtain the modified
algorithms shown in Algorithms 1–3. The algorithm performs
repeated walks through the state space, all starting from 𝑠
and terminating in 𝑡. Upper and lower bound estimates of
the costs are updated for each visited state 𝑥; the lower
bound 𝐽(𝑥) is used to compute optimal policies, whereas
the upper bound 𝐽(𝑥) is used for the stopping criterion.
Among other advantages, empirically, policies obtained from
lower bounds tend to perform better [27]. Trials terminate
whenever upper and lower bounds of the estimated policy cost
from 𝑠 → 𝑡 are sufficiently close. trialRecurse(𝑥,𝑊, 𝑑)
is the recursive function implementing each trial, starting
from node 𝑠 and performing actions until node 𝑡 is reached.
𝑊 represents the probability (updated recursively) of being
in state 𝑥. We modified FRTDP adding the new function
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Algorithm 3: Prune(𝑥). This function implements the state
pruning technique of Section III-D.
input : 𝑥 ∈ 𝒮
output: sets 𝒩 ′(𝑥) and 𝒜′(𝑥)

𝑎max ← take the 𝜒max nodes in 𝑥 closest to 𝑡;1

obtain 𝒜′(𝑥) from 𝑎max;2

𝜅← 1; v← 0; 𝒱(𝑥)← ∅;3

forall elements 𝑛 in set 𝒯 −(𝑥) do4

remove element 𝑛 from 𝒯 −(𝑥);5

𝑣[𝜅]← 𝑝succ(𝑛, 𝑎max);6

𝜅← 𝜅+ 1;7

end8

SortNonDecreasingOrder(v, ∣𝒯 −(𝑥)∣);9

𝜅← 1; 𝑀 ← Δ
𝑐max+𝛾max𝑥∈𝑆 𝐽(𝑥)

;10

𝑀(𝑥)← 0;11

repeat12

𝑀(𝑥) =𝑀(𝑥)(1 − 𝑣(𝜅)) + 𝑣(𝜅)
∏𝜅−1

𝑧=1 (1− 𝑣(𝑧));13

if 𝑀(𝑥) ≤𝑀 then14

𝒱(𝑥)← 𝒱(𝑥) ∪ {𝑚(𝜅)};15

𝜅← 𝜅+ 1;16

end17

until (𝑀(𝑥) > 𝑀) or (𝜅 == ∣𝒯 −(𝑥)∣) ;18

obtain 𝒩 ′(𝑥) from 𝑥 and 𝒱(𝑥);19

return (𝒩 ′(𝑥),𝒜′(𝑥));20

Prune(𝑥). In detail, for each state 𝑥 in a path, according to
Proposition 3.6 we prune the neighborhood set. These states
have a small probability of being visited and a negligible
impact on the performance. Prune(𝑥) works as follows: we
select the 𝜒max nodes in 𝑥 that are closest to node 𝑡 (see
Remark 3.8) and obtain the action set from these. Hence, we
use the pruning algorithm of Proposition 3.6 considering all
nodes 𝑛 ∈ 𝒯 that have not yet decoded the message and
pruning those with smaller probability of being reached at
the next transmission. In particular, we add new nodes until
𝑀(𝑥) > 𝑀 , as dictated by Proposition 3.6. In addition, for
𝑀(𝑥) we consider the approximation of Remark 3.7. 𝒩 ′(𝑥),
i.e., the neighborhood set, is finally obtained from the set of
selected nodes. The remainder of trialRecurse(𝑠,𝑊, 𝑑)
is as specified in [27]. In short, the new optimal action
𝑎∗ for state 𝑥 is selected according to the DP optimal
equation using the latest cost estimates J. Upper and lower
bounds are updated according to the optimality equation as
(𝐽new(𝑥), 𝐽new(𝑥)) ← (𝑄(𝑥, 𝑎∗,J),min𝑎∈𝒜′(𝑥)𝑄(𝑥, 𝑎,J))
(lines 3 and 6). The next state to visit, 𝑦∗, is picked by
maximizing the occupancy times excess uncertainty metric,
i.e., 𝑊 (𝑦)Δ(𝑦), where 𝑊 (𝑦) is the average probability of
visiting the state and Δ(𝑦) = (𝐽(𝑦)−𝐽(𝑦))− 𝜖/2, represents
the accuracy of its cost estimates. This is implemented as in
the original algorithm [27] through a priority function 𝑓(𝑦),
which is recursively computed for each state. The current
trial terminates when the final state is reached (note that
𝐽(𝑡) = 𝐽(𝑡) = 0), when a state 𝑥 having estimates sufficiently
close to the optimum cost is reached, i.e., 𝐽(𝑥)−𝐽(𝑥) ≤ 𝜖/2

s t
d d d d

2 
m

2 
m

2 
m

2 
m

Fig. 1. Network topology for scenario A (4 columns, 21 nodes).

or when the current path is longer than 𝐷. Whenever the
current trial terminates, optimal actions, lower and upper
bounds and priority are updated on the way back along the
traversed path from 𝑠 → 𝑡 (lines 14 − 18). For the check
on the path length, poor outcome selection early in a trial
could lead to traversing a large number of irrelevant states,
which take a long time to escape. The check on the maximum
hop length implements the adaptive maximum depth (AMD)
trial termination of [27], which solves this problem by cutting
excessively long paths.

IV. NUMERICAL RESULTS

In this section we provide an example application of the
proposed optimization techniques for cooperator selection
policies, showing numerical results and obtaining insights for
possible low-complexity implementations. We consider the
network topology of Fig. 1, where a source node 𝑠 transmits a
message to a destination node 𝑡 and the remaining nodes are
available for cooperation. All nodes except the destination are
organized in a number of columns, each comprising five nodes.
The inter-column distance 𝑑 is picked in the range 45÷80 m,
while the distance between two adjacent nodes in a column
is 2 m. The path-loss exponent is 𝜈 = 3.5 and the reference
distance is 𝑑0 = 1 m. In what follows, two network scenarios
are considered: scenario A) is the topology of Fig. 1 with four
columns and 21 nodes and scenario B) where we extended
the number of columns to eight for a total of 41 nodes. The
transmit data rate 𝑅 and the average SNR are set in order to
obtain, for a single active link, an outage probability of 0.2
at a distance of 30 m, while transmissions among adjacent
nodes in a column have average outage probability 2 ⋅ 10−5.
Each node is equipped with a single antenna (i.e., 𝑁A = 1).
We evaluated the performance for various values of 𝜔 ≥ 0
and we observed a straightforward behavior for the optimized
cost, which increases linearly with increasing 𝜔. Therefore, in
what follows we only discuss the case 𝜔 = 0.

Our optimization is driven by the cost model of (4), which
returns the cost over a single transmission hop taking into
account a weighted sum of energy (𝑐E) and delay (𝑐D), where
𝛼 ∈ [0, 1] is the weighting factor. Analogously, the overall
cooperator selection policy is characterized by the two costs
𝐶E and 𝐶D that are respectively the expected normalized
energy and the expected total delay of the optimal cooperator
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TABLE I
PERFORMANCE OF THE MODIFIED FRTDP OPTIMIZER AS A FUNCTION OF Δ.

Scenario A: 21 nodes network Scenario B: 41 nodes network
Δ Visited Failure Δ𝐶 [%] Δ𝐶 [%] Visited Failure Δ𝐶 [%]

States Prob. 𝑝fail(Δ) Actual Predicted States Prob. 𝑝fail(Δ) Predicted

0 1.3 ⋅ 109 0 0.00 — — — —
0.001 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 0.76 3.3 ⋅ 108 5.0 ⋅ 10−6 0.45
0.005 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 3.82 3.3 ⋅ 108 5.0 ⋅ 10−6 2.24
0.01 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 7.64 3.3 ⋅ 108 5.0 ⋅ 10−6 4.49
0.05 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 38.18 3.3 ⋅ 108 5.0 ⋅ 10−6 22.45
0.1 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 76.35 3.3 ⋅ 108 5.0 ⋅ 10−6 44.89
0.5 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 381.77 3.3 ⋅ 108 5.0 ⋅ 10−6 224.46
1 2.2 ⋅ 106 9.0 ⋅ 10−6 0.00 763.53 3.3 ⋅ 108 5.0 ⋅ 10−6 448.92
5 1.5 ⋅ 106 5.9 ⋅ 10−5 5.13 3631.35 2.9 ⋅ 108 1.3 ⋅ 10−5 2175.95
10 7.0 ⋅ 105 3.6 ⋅ 10−4 13.88 6704.66 1.6 ⋅ 108 2.5 ⋅ 10−5 4293.26

selection policy used to route packets from 𝑠 to 𝑡.2 Picking
𝛼 = 1 returns optimal policies in terms of 𝐶E, while 𝐶D is
ignored. Conversely, 𝛼 = 0 returns optimal policies in terms
of 𝐶D, ignoring 𝐶E. Intermediate values of 𝛼 lead to suitable
trade-offs between energy and delay. In what follows, optimal
policies are obtained setting 𝛾 = 0.99, which is adequate for
static networks, see Section III-A. For our FRTDP technique
we set 𝜖 = 10−3, 𝐽(𝑥) = 0, ∀𝑥 ∈ 𝒮, 𝐾𝐷 = 1.1 and 𝐷0 = 10.
For the upper bound 𝐽(𝑥) we considered Δ = 0.001 and a
large initial 𝐽(𝑥) = 100, ∀𝑥 ∈ 𝒮 ∖ 𝑡. We obtained a first
policy and the corresponding cost 𝐽∗

𝑝 (𝑥), ∀𝑥 ∈ 𝒮 ∖ 𝑡 and thus
set 𝐽(𝑥)← 𝐽∗

𝑝 (𝑥) + Δ/(1− 𝛾).
The choice of parameter Δ is guided by the trade-off

between sub-optimality of the policy and its computational
complexity. In detail, when Δ = 0 our FRTDP optimizer
does not cut any state and finds optimal policies as done
by RTDP [25], where 𝐽∗(𝑠) is their cost. When Δ > 0
some states are instead pruned according to our techniques
of Section III-D and our optimizer returns an approximation
of the optimal policy, with cost 𝐽∗

𝑝 (𝑠). Note that setting Δ > 0
for any given state 𝑥 reduces the number of neighboring states
𝑦 and, to a lesser extent, also reduces the number of states
for which the policy is computed, as states hit with small
probability are not considered. As a consequence, the optimal
policy is not calculated for these states. Table I shows the
performance of our FRTDP algorithm as a function of Δ,
for 𝑑 = 60 m and 𝛼 = 1 in terms of 1) computational
complexity, expressed in terms of number of visited states, 2)
estimated failure probability 𝑝fail(Δ), i.e., the probability of
hitting a state for which our optimizer did not calculate optimal
actions, 3) actual cost difference with respect to RTDP, i.e.,
100∣𝐽∗

𝑝 (𝑠)−𝐽∗(𝑠)∣/𝐽∗(𝑠) and 4) the maximum cost difference
between 𝐽∗

𝑝 (𝑠) and 𝐽∗(𝑠), as predicted by Theorem 3.4, i.e.,
100Δ/[𝐽∗

𝑝 (𝑠)(1 − 𝛾)]. We discuss the results for scenario
A first. In this case, even a small Δ = 0.001 suffices to
dramatically reduce the number of visited states, which drops
from 1.3⋅109 to 2.2⋅106. For this Δ, our bounds would predict
a maximum additional cost that is just 0.76% larger than
𝐽∗
𝑝 (𝑆). We note that, for this specific network topology, the

solver performance is better than that predicted by the bound.
Also, there is a threshold effect on the number of pruned states

2These costs are the average of the costs obtained over all possible
realizations of the cooperator selection process from 𝑠 to 𝑡 when the optimal
policy is adopted.
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Fig. 2. Normalized costs 𝐶E and 𝐶D as a function of 𝑑 for 𝛼 = 0 and
𝛼 = 1. 𝐶E and 𝐶D are normalized with respect to the energy spent to
transmit a single packet and the message transmission delay, respectively.
Other optimization parameters are: 𝜔 = 0, 𝛾 = 0.99, Δ = 0.001 and
𝜒max = 5.

for increasing Δ, which is due to the specific topology under
consideration. For scenario B (41 nodes) the solver fails to
obtain policies for Δ = 0, due to the excessively large number
of states. However, Δ = 0.001 already provides cooperation
policies having a small bounded additional cost with respect
to the unknown optimal performance. We shall observe that
the bounds of Theorem 3.4 are asymptotically tight, i.e., they
become more accurate as the path length increases. Finally, we
note that 𝑝fail(Δ) is very small in all cases. These results show
the effectiveness of our technique, which makes it possible to
find quasi-optimal policies for large networks at a reduced
complexity.

Fig. 2 shows 𝐶E and 𝐶D as a function of the inter-column
distance 𝑑 for 𝛼 = 1 (minimum energy) and 𝛼 = 0 (minimum
delay). Costs are normalized with respect to the cost incurred
for a single packet transmission. We observe that for 𝛼 = 1
the energy cost 𝐶E increases smoothly with 𝑑, while for
𝛼 = 0 the delay cost 𝐶D increases smoothly with time, since
a larger distance 𝑑 between columns yields higher outage
probabilities which, in turn, lead to longer transmission delays
over single hops. In the figure, we also show non targeted
costs, i.e., 𝐶D when the optimization objective corresponds to
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Fig. 3. Average number of cooperating nodes as a function of 𝑑 for different
values of 𝛼. Other optimization parameters are: 𝜔 = 0, 𝛾 = 0.99, Δ = 0.001
and 𝜒max = 5.

minimizing the energy consumption (𝛼 = 1) and 𝐶E when
the objective is the minimization of the delay (𝛼 = 0). Non
targeted costs generally increase with increasing 𝑑. However,
the corresponding curves have an irregular behavior as in
some cases non-targeted costs decrease with the inter-column
distance. This is due to the fact that the optimization is
performed on a discrete set of policies. For example, when
the target cost is 𝐶E and 𝑑 is slightly increased, to counteract
the increased outage probability cooperation may start earlier
and involve a larger number of nodes. The effect of this is
twofold: 1) 𝐶E is kept as small as possible and 2) the delay
is decreased as more nodes transmit at each hop. Overall, the
result is a slight increase in 𝐶E (thus the smooth curve for
𝐶E) together with a sudden drop of 𝐶D due to the reduced
number of hops (thus the irregular curve for 𝐶D).

To better understand the impact of cooperation in a multi-
hop scenario with optimized cooperator selection policies in
Fig. 3 we show the average number of nodes that transmit
simultaneously, as a function of 𝑑 and for various values of 𝛼.
Note that, when the objective is to minimize the delay, optimal
policies tend to maximize the number of cooperating nodes per
hop as the cost in this case is solely given by the number of
hops traveled by the message, irrespective of the number of
transmitting nodes within each hop. When minimizing energy,
the cost also depends on the number of cooperating nodes
within each hop and, as a consequence, the optimal number
of cooperating nodes per hop is smaller. Also in this case
we observe an irregular behavior of the curves, which can
be explained considering the discrete nature of the problem.
In general, the average number of simultaneous transmissions
decreases with increasing 𝑑, as outages occur more often and,
in such cases, fewer nodes are available for transmission.
However, this is true until the cooperation policy changes, at
which point cooperation is forced among a larger number of
nodes in order to minimize the targeted cost. Notably, we can
see a close relationship between Fig. 3 and the non-targeted
costs of Fig. 2: for example, when 𝛼 = 1 at 58.75 m the
average number of simultaneous transmissions increases from
1.45 to 1.86 (Fig. 3) and, at the same time, 𝐶D drops from
8.53 to 6.56 (Fig. 2). This corresponds to a forced earlier
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Fig. 4. 𝐶E vs 𝐶D for several values of 𝜒max. The curves are obtained for
𝑑 = 55 m, varying 𝛼 ∈ [0, 1]. Other optimization parameters are: 𝜔 = 0,
𝛾 = 0.99, Δ = 0.001 and 𝜒max ∈ {1, 2, 3, 4, 5, 6}.

cooperation among nodes which causes an increase in 𝐶E as
well as a subsequent reduction in the number of hops. Fig. 3
also confirms that cooperation is advantageous when multihop
is considered and minimization of energy consumption rather
than delay or rate are targeted. As an example, for 𝛼 = 1
the average number of simultaneous transmissions goes from
20% (i.e., 1 transmitting node for 𝑑 = 45 m over a maximum
of 𝜒𝑚𝑎𝑥 = 5 cooperating nodes) to 60% (i.e., 3 cooperating
nodes over 𝜒max = 5). In addition, we observe that the average
number of cooperating nodes is small with respect to the total
number of nodes in the network, thus it is meaningful to
impose a maximum 𝜒max ≪ ∣𝒯 ∣ on the number of cooperating
nodes, as discussed in Section III-D.

Fig. 4 shows the trade-off between 𝐶E and 𝐶D as a function
of 𝜒max for an inter-column distance of 𝑑 = 55 m. The curves
are obtained by varying the weighting factor 𝛼 in [0, 1] and
provide the delay-energy achievable regions, as for a given
𝜒max no policy can obtain a trade-off point situated below
the corresponding optimal curve, while any point above the
optimal curve is achieved by a suitable suboptimal policy.
However, this figure provides even further insights on possible
implementations of optimal policies. In fact, for 𝛼 > 0 setting
𝜒max = 5 already provides most of the benefits of optimal
policies in the unconstrained optimization case (𝜒max = +∞).
This means that complexity of both policy optimization and
network coordination can be reduced at almost no expense in
terms of performance. On the other side, being too restrictive
on the number of cooperators yields some performance loss,
as for example allowing at most 2 cooperating nodes leads to
a delay increase of about 20% and to an increase of energy
consumption of about 10%. Note that if cooperation is not
allowed (i.e., 𝜒max = 1) delay and energy consumption are
centered around point (𝑥, 𝑦) = (11.8, 11.8) (out of range in
the figure). Therefore, even a minimum level of cooperation,
i.e., between two nodes (𝜒max = 2), provides a substantial
performance advantage. We finally observe that, if at every
hop the maximum admissible number of nodes cooperate, we
obtain the delay optimal policy (𝛼 = 0). This however comes
at the expense of a high energy consumption. A more judicious
choice leads to considerable advantages, e.g., a delay just 4%
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Fig. 5. Random network: Normalized costs 𝐶E and 𝐶D as a function of 𝑑
for 𝛼 = 0 and 𝛼 = 1.
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Fig. 6. Random network: average number of cooperating nodes vs 𝑑 for
different values of 𝛼.

over the minimum provides a drop of consumed energy by
about 30%.

Finally, we considered random networks with 21 nodes
placed within a rectangular simulation area of 50× 𝑑 square
meters as follows: source and destination are respectively
positioned in the middle of the two opposite 50 m long
sizes, whereas the remaining nodes are randomly placed within
the area. Optimization parameters are: 𝜔 = 0, 𝛾 = 0.99,
Δ = 0.001 and 𝜒max = 5. In the graphs, vertical bars are used
to show 95% confidence intervals. For the random scenario,
Fig. 5 shows the normalized costs 𝐶E and 𝐶D as a function of
𝑑 for 𝛼 ∈ {0, 1}. Fig. 6 instead shows the average number of
cooperating nodes for different values of 𝛼. The considerations
for these graphs are similar to those made for the previous
plots. As in the previous results, optimal delay strategies
(𝛼 = 0) entail the largest number of cooperating nodes.
However, differently from the previous results, cooperation
is almost absent when the objective is energy minimization
(𝛼 = 1). Also, we note that 𝑑 has a smaller impact on
the optimal number of cooperating nodes, which is almost
constant (compare Figs. 3 and 6).

V. CONCLUSIONS

In this paper we found optimal cooperator selection policies
for multihop networks with MIMO transmissions. The coop-
erator selection process was modeled for arbitrary topologies
through a suitable Markov chain. Hence, this chain was
reduced according to an original pruning technique which cuts
states with negligible impact on the optimal solution. Thus,
we integrated this pruning technique into an advanced solver
based on real time dynamic programming and we showed the
effectiveness of this approach in terms of goodness of the
policy and computational complexity. Our solver finds policies
with an additional cost bounded with respect to the optimal
and allows to derive the Pareto efficient frontier in terms
of transmission cost vs delay for arbitrary networks. Finally,
through selected application examples we discussed the impact
of: 1) the set of nodes that cooperate at each transmission
opportunity, 2) the selection of the optimization criteria, i.e.,
energy vs delay minimization and 3) the maximum number of
nodes that are allowed to cooperate.

APPENDIX A
OUTAGE PROBABILITY COMPUTATION, SINGLE ANTENNA

NODES (𝑁A = 𝑁R = 1)

When 𝑁A = 𝑁R = 1, the capacity turns out to be
the logarithm of a linear combination of central chi square
random variables, i.e., 𝐶 = log2 (1 + 𝜌𝑦), where 𝑦 is the
sum of 𝑁T exponential random variables with means Σ𝑘,
𝑘 = 1, 2, . . . , 𝑁T. For the general case where some of
the means Σ𝑚 are equal, i.e. Σ𝑘 = Σ𝑚 for some 𝑘 and
𝑚, the outage probability can be obtained using the result
in [37]. By letting 𝜎𝑘, 𝑟𝑘 and 𝑁𝜎 be the unique means, their
multiplicity and the number of equality classes, respectively,
with 𝑘 = 1, 2, . . . , 𝑁𝜎 and

∑𝑁𝜎

𝑘=1 𝑟𝑘 = 𝑁T, the outage
probability for node 𝑛 when nodes in set 𝑎 transmit is found
using (21) at the top of the next page, where 𝑓1(𝑎, 𝑏) is
the cumulative distribution function of a Poisson variable of
parameter 𝑎, whereas the set Ω(𝑁𝜎, 𝑘, ℓ) defines partitions
of ℓ − 1 through the positive integer indices 𝑖𝑗 , such that∑𝑁𝜎

𝑗=1, ∕=𝑘 𝑖𝑗 = ℓ − 1 and 𝜏𝑗(𝑥) = (𝜎−1
𝑗 + 𝑥)−(𝑟𝑗+𝑖𝑗). Simpler

expressions for the outage probability hold when all the means
are equal or when all the means are different, i.e., 𝑟𝑘 = 1,
𝑘 = 1, 2, . . . , 𝑁T, see [38, Section 3.3.1, p. 47] and [39].

APPENDIX B
PROOF OF LEMMAS AND THEOREMS

A. Proof of Lemma 3.1

Proof: Let 𝑓(𝑥, 𝑎, 𝑦)
𝑑𝑒𝑓
= 𝑐(𝑥, 𝑎, 𝑦)+𝛾𝐽(𝑦). For mapping

𝑇 (⋅) (P) we obtain (22) at the top of the next page, where
inequality (1) follows as the minimum taken over a subset
𝒜′(𝑥) ⊆ 𝒜(𝑥) cannot be smaller than the minimum taken
over the original set 𝒜(𝑥). Inequality (2) follows from (8) as∑

𝑦∈𝒩 ′(𝑥) 𝑝𝑥𝑦(𝑎) ≤ 1. Inequality (3) follows from the defini-
tion of upper bound 𝐽(𝑥) and noting that 𝑐(𝑥, 𝑎, 𝑦) ≤ 𝑐max

for all states 𝑥, 𝑦 and actions 𝑎. Inequality (4) follows from
the definition of 𝑀(𝑥).
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𝑝out(𝑛, 𝑎) = 1−
( 𝑁𝜎∏

𝑗=1

𝜎
−𝑟𝑗
𝑗

) 𝑁𝜎∑
𝑘=1

𝑟𝑘∑
ℓ=1

𝜙𝑘,ℓ(−𝜎−1
𝑘 )

𝜎−𝑟𝑘+ℓ−1
𝑘

𝑓1

(
𝜎−1
𝑘

2𝑅 − 1

𝜌
, 𝑟𝑘 − ℓ

)
𝜙𝑘,ℓ(𝑥) = (−1)ℓ−1

∑
Ω(𝑁𝜎,𝑘,ℓ)

∏
𝑗

(
𝑖𝑗 + 𝑟𝑗 − 1

𝑖𝑗

)
𝜏𝑗(𝑥) . (21)

(𝑇𝐽)(𝑥) = min
𝑎∈𝒜(𝑥)

[ ∑
𝑦∈𝒩 (𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦)

]
(1)

≤ min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 (𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦)

]

= min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦) +
∑

𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦)

]
(2)

≤ min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝′𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦) +
∑

𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦)

]
(3)

≤ min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝′𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦) +
(
𝑐max + 𝛾𝐽(𝑥)

) ∑
𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)

]
(4)

≤ min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝′𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦) +𝑀(𝑥)

(
𝑐max + 𝛾max

𝑥∈𝑆
𝐽(𝑥)

)]
= (𝑇𝑝𝐽)(𝑥) + Δ(𝑥) . (22)

(𝑇𝐽)(𝑥) = min
𝑎∈𝒜(𝑥)

𝑔(𝑥, 𝑎)

(1)
= min

𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦) +
∑

𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)𝑓(𝑥, 𝑎, 𝑦)

]
(2)

≥ min
𝑎∈𝒜′(𝑥)

[ ∑
𝑦∈𝒩 ′(𝑥)

𝑝′𝑥𝑦(𝑎)

( ∑
𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)

)
𝑓(𝑥, 𝑎, 𝑦)

]
(3)

≥ (1− 𝜂)(𝑇𝑝𝐽)(𝑥) , ∀𝑥 ∈ 𝒮 . (23)

B. Proof of Lemma 3.2

Proof: Let 𝑓(𝑥, 𝑎, 𝑦)
𝑑𝑒𝑓
= 𝑐(𝑥, 𝑎, 𝑦)+𝛾𝐽(𝑦). By definition

of mapping 𝑇 (⋅) we obtain (23) at the top of this page, where
equality (1) follows from the assumption made in the lemma,
inequality (2) follows as the second sum is greater than or
equal to zero, and by the definition of 𝑝′𝑥𝑦(𝑎) (Eq. (8)). For
inequality (3) consider the following

1 =
∑

𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎) +
∑

𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎)

≤
∑

𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎) +𝑀(𝑥) ≤
∑

𝑦∈𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎) + 𝜂 .

(24)

Hence, we can further write
∑

𝑦∈𝒩 ′(𝑥) 𝑝𝑥𝑦(𝑎) ≥ 1−𝜂, which
proves the lemma.

C. Proof of Theorem 3.4

Proof: From Lemma 3.1 we have:

(𝑇𝐽)(𝑥) ≤ (𝑇𝑝𝐽)(𝑥) +𝑀(𝑥)[𝑐max + 𝛾max
𝑥∈𝑆

𝐽(𝑥)]

(1)

≤ (𝑇𝑝𝐽)(𝑥) + Δ , ∀𝑥 ∈ 𝑆 , (25)

where inequality (1) follows from the assumption made for
𝑀(𝑥) (see Eq. (14)). Hence:

(𝑇𝐽)(𝑥) ≤ (𝑇𝑝𝐽)(𝑥) + Δ , ∀𝑥 ∈ 𝑆 . (26)

Now, applying mapping 𝑇𝑝(⋅) to both sides gives:

(𝑇𝑝(𝑇𝐽))(𝑥) ≤ (𝑇 2
𝑝 𝐽)(𝑥) + 𝛾Δ , ∀𝑥 ∈ 𝑆 , (27)

where the expression on the RHS follows from Lemma 1.1.2
of [26]. Re-applying (26) (LHS):

(𝑇 2𝐽)(𝑥) −Δ = (𝑇 (𝑇𝐽))(𝑥)−Δ

≤ (𝑇 2
𝑝 𝐽)(𝑥) + 𝛾Δ , ∀𝑥 ∈ 𝑆 (28)
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and hence (𝑇 2𝐽)(𝑥) ≤ (𝑇 2
𝑝 𝐽)(𝑥) + 𝛾Δ + Δ. Repeated

iterations of this procedure lead to:

(𝑇 𝑘𝐽)(𝑥) ≤ (𝑇 𝑘
𝑝 𝐽)(𝑥) +

𝑘−1∑
𝑗=0

𝛾𝑗Δ , ∀𝑥 ∈ 𝑆 . (29)

Now, taking the limit as 𝑘 → +∞ to both sides of (29) leads
to:

𝐽∗(𝑥) ≤ 𝐽∗
𝑝 (𝑥) +

Δ

1− 𝛾 , ∀𝑥 ∈ 𝒮 , (30)

which proves (i). For (ii), from Lemma 3.2 we have
(𝑇𝐽)(𝑥) ≥ 𝛿(𝑇𝑝𝐽)(𝑥), where 𝛿 is as in (17). Applying 𝑇𝑝(⋅)
to both sides of this last inequality gives

(𝑇𝑝(𝑇𝐽))(𝑥) ≥ (𝑇𝑝𝛿(𝑇𝑝𝐽))(𝑥)
𝑑𝑒𝑓
= (𝑇𝑝(𝑇𝑝𝐽))(𝑥) , (31)

where 𝑇𝑝(⋅) is mapping 𝑇𝑝(⋅) (Eq. (10)) with discount factor
𝛾 = 𝛾𝛿. Moreover, application of Lemma 3.2 to the LHS of
the above inequality returns

(𝑇 2𝐽)(𝑥)𝛿−1 ≥ (𝑇𝑝(𝑇𝐽))(𝑥) ≥ (𝑇𝑝(𝑇𝑝𝐽))(𝑥) . (32)

Repeated iterations of this procedure lead to (𝑇 𝑘𝐽)(𝑥) ≥
𝛿(𝑇 𝑘−1

𝑝 (𝑇𝑝𝐽))(𝑥). Now, taking the limit 𝑘 → +∞ to both
sides of the previous inequality gives 𝐽∗(𝑥) ≥ 𝛿𝐽∗

𝑝 (𝑥), where
𝐽∗
𝑝 (𝑥) is the optimal cost function for problem P ′ with

discount factor 𝛾 = 𝛾𝛿.

D. Proof of Proposition 3.6

Proof: Set 𝒩 (𝑥) ∖ 𝒩 ′(𝑥) contains the pruned states.
These are states 𝑦 containing nodes with small proba-
bility of receiving the message at the next hop 𝑖 + 1,
given 𝑥. From Lemma 3.5 the maximizing action 𝑎′max =
argmax𝑎∈𝒜′(𝑥)[

∑
𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥) 𝑝𝑥𝑦(𝑎)] corresponds to the

case where the maximum number of nodes allowed by 𝒜′(𝑥)
transmit, as all receiving nodes 𝑛 ∈ 𝒯 −(𝑥) maximize their
reception probability, namely 𝑝succ(𝑛, 𝑎), for this action. Thus,
𝑎′max = 𝑎max, where 𝑎max was defined in Lemma 3.5. This
implies that 𝑀(𝑥) =

∑
𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥) 𝑝𝑥𝑦(𝑎max) which is, by

definition, the probability that the system in hop 𝑖 + 1 will
move to state 𝑦 when action 𝑎max is selected. If we define
𝑦 ∈ 𝒩 (𝑥) ∖ 𝒩 ′(𝑥) as any state for which: 1) all nodes that
were successful in 𝑥 are still successful in 𝑦 and 2) at least one
node in 𝒱(𝑥) is successful, then by the way we constructed
𝒱(𝑥) we have

𝑀(𝑥) =
∑

𝑦∈𝒩 (𝑥)∖𝒩 ′(𝑥)

𝑝𝑥𝑦(𝑎max)

=
∑

Ψ(∣𝒱(𝑥)∣)

∣𝒱(𝑥)∣∏
𝑗=1

𝑣(𝑗)𝜉(𝑗)(1− 𝑣(𝑗))1−𝜉(𝑗)

(33)

and the inequality in (19) is granted by the construction
algorithm.
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