
Reprogramming over the Air and Sensor Island

Management through SYNAPSE++

Nicola Bui, Cristiano Tapparello, Michele Rossi and Michele Zorzi

Dept. of Information Engineering, University of Padova, 35131 Padova, Italy.

Email: {bui, tappare1, rossi, zorzi}@dei.unipd.it

I. INTRODUCTION

Wireless sensor networks (WSNs) have been one of the

main topics of networks research of recent years and now they

are widely considered as a viable communication solution for

resource constrained environments with moderate perfomance

requirements. WSNs are often deployed in regions where

it is difficult or too expensive to collect and redistribute

the nodes for maintenance. However, there is often a need

to reprogram all the nodes in the network, either during

application test phases on deployed networks, or to support

software upgrades. Therefore, a reliable method of sending a

relatively large amount of data to each node in the network

is required to support these functions. Also, such a feature

moves forward the obsolescence time of the network, since

new applications can be installed on the devices without any

on site intervention.

The challenge to designing such in-network node repro-

gramming protocols lies in the potentially large amount of

energy required to successfully transmit an entire program

image to every node of the network. Typical issues related

to the wireless channel include loss probability, fading effects

and collisions. The use of unicast retransmissions for error

correction for each node can be prohibitive in terms of traffic

generation and hence transmission cost. Additionally, such

retransmission techniques are known to result in feedback

implosion [1] in dense networks. Coding solutions allowing

different errors at various nodes to be corrected with single

packet transmissions are preferable. However, many such tech-

niques, using forward error correction codes (FEC), tend to

be inefficient for wireless sensor networks. This is mainly due

to the inherent computational complexity of standard codes

(e.g., Reed Solomon). In addition, standard block codes have

a fixed code rate, that cannot be changed on the fly according

to channel errors or number of receivers. As a solution to

these problems, in this demo we present SYNAPSE++, a

tinyOS [2] reprogramming system on SYNAPSE [3] that

efficiently copes with the above requirements through the use

of rateless Fountain Codes [4] (FCs). These allow for high

performance in dense as well as noisy environments, and

substantially mitigate the feedback implosion problem. The

novelties of this reprogramming system are:

This material is based upon work partially supported by the European
Commission under contract number INFSO-ICT-215923 (SENSEI), by the
Italian Foundation Cassa di Risparmio di Padova e Rovigo (CARIPARO).

• We design a new dissemination protocol consisting of

an original pipelining strategy, coupled with a novel

and distributed channel access mechanism, called soft-

TDMA.

• SYNAPSE++ improves the FC implementation of

SYNAPSE by a joint design with the forwarding mech-

anism so as to maximize the number of errors that are

corrected through overhearing, thus limiting the number

of explicit retransmissions.

• SYNAPSE++ features advanced bootloader and memory

management modules, which allow the dissemination of

binary images written in any operating system and make

application and reprogramming software completely in-

dependent in terms of memory and variables.

• This demo will demonstrate how SYNAPSE++ can effi-

ciently disseminate different applications to sensor nodes

and allows users to easily interact with them.

II. SYSTEM DESCRIPTION

Next, we present the data dissemination and error recovery

algorithms of SYNAPSE++. Our aim is to disseminate a

program image to all nodes of a WSN. Due to the inherent

memory constraints of sensor nodes an efficient dissemina-

tion requires splitting this file into B transport blocks (TB)

of K packets each, so that they can be processed in the

available RAM. They are thus encoded through a dedicated

Fountain Code into K
′ = K + δ packets each (δ is the

number of redundant packets) before being transmitted. We

tested SYNAPSE++ effectiveness against the standard de

facto in WSN reprogramming, Deluge [5]: during our exten-

sive experimental campaign in actual multi-hop deployments

SYNAPSE++ showed an average dissemination times at least

10% shorter than that of Deluge (see fig. 1) with performance

gains as high as 50% in dense networks. Below, we briefly

describe SYNAPSE++’s protocol elements.

ADV/REQ handshaking: Any given node n maintains a

bit-mask b(n) indicating the TBs that it correctly received

so far. As done in [5]–[7], either periodically or whenever a

new TB is received, any node n advertises its status b(n) by

sending an ADV. This informs its neighbors about the TBs

that this node can provide and allows an out-of-order delivery

of transport blocks within the network. Interested neighbors

respond with a REQ message including the smallest identifier

among the blocks they need.



2

0 1 2 3 4 5 6 7 8
40

45

50

55

60

65

70

Hop Count

D
is

s
e
m

in
a
ti
o
n
 T

im
e
 [
s
]

 

 

SYNAPSE++

SYNAPSE++ average

Deluge

Deluge average

Fig. 1. Dissemination time as a function of the hop distance.

Fountain codes: fountain code (FC) encoding is applied to

each TB. That is, given the K original packets of a given

TB, FC produces a slightly larger number of packets K
′,

where the overhead δ is picked to have a successful recovery

with probability greater than a minimum threshold at the first

transmission of the TB. Each time a node n has a TB to send,

it picks a suitable random seed s and obtains the K
′ encoded

packets for this TB. To achieve good performance, random

seeds have been carefully selected.

Pipelining: SYNAPSE++ implements pipelining through a

novel approach as 1) packets are encoded through a suit-

able FC, 2) transmission turns among nodes are coordinated

through an original pipelining scheme exploiting soft-TDMA

schedules for improved efficiency (see Fig. 2 illustrating an

example of ADV/REQ/DATA contention in two subsequent

hops) and 3) pipelining and FCs are coupled through the

selection of proper seeds to encode and transmit data over

subsequent hops. In particular SYNAPSE++ is designed so

that residual errors within hop i are corrected while forward-

ing the image to the nodes in the next hop i + 1.

Synchronization and priority: in order to reduce the number

of collisions and avoid idle times, which are typical of pure

CSMA schemes, we opted for a loosely synchronized channel

access scheme, which we call soft-TDMA. According to this

technique ADV/REQ/DATA phases follow a specific time

frame structure (see Fig. 2). Specifically, the transmission

is subdivided into three time intervals: the first two are

dedicated to the transmission of ADVsand REQs, respectively,

and the last is allotted to DATA transmission and decoding.

Synchronization is maintained by including in ADVs the

remaining time to the next REQ interval. We refer to this

frame synchronization as ”loose” as only those nodes within

the same transmission range must be synchronized at the

frame level for correct reception; in this case a precision of

a few milliseconds suffices (time skews are accounted for

adding guard intervals among ADV, REQ and DATA periods).

Fig. 2. ADV/REQ/DATA contention example and time frame structure.

ADV and REQ intervals are further subdivided into access

slots with two priority levels to push newest data towards

unexplored portions of the network.

ADV/REQ suppression: in order not to produce too much

control messages, ADVs and REQs related to transport block

with lower or equal than those already advertised or requested

in the same time frame are dropped.

Failure management: In case a node is unable to recover

from losses through overhearing (i.e., its decoding matrix is

rank deficient), it explicitly ask for incremental redundancy.

These requests are served with low priority so as to promote

the advancement toward unexplored portions of the network.

Back-off policy: a node that receives no response to its ADV

defers the transmission of its next ADV according to a random

timer whose maximum value is doubled at each transmission

attempt (up to a maximum back-off time) and reset upon the

reception of a REQ.

Energy conservation: due to the imposed frame structure,

each node can infer whether the next TB to be transmitted

will be useful or not interpreting eithr the preceding ADVs

and REQs or the first DATA packet. Hence it is possible to

switch-off the radio during the DATA interval in case of not

needed TBs.

Bootloader for reprogramming WSNs: the Boot Loader

manages many operations on the external storage (i.e., format-

ting, saving new applications and exchanging data between the

internal and the external memories). Before issuing the reboot

command an application writes in the information memory,

which is non-volatile, information about the operation that

has to be executed at the next reboot from the Boot Loader.

Possible commands are: format, store, load.

We designed our system to maintain a complete inde-

pendence between SYNAPSE++ and the third-party appli-

cations that are distributed and executed in the network.

The advantages of this approach are manyfold: first, the

reprogramming system does not interfere with the running

program and second, this allows a better utilization of the

scarce memory resources of the nodes. Additionally, even if

SYNAPSE++ is written using TinyOS 2, there is no O.S. or

language limitation for third-party applications. SYNAPSE++

can distribute and load any binary code, without jeopardizing



3

the network functionality as long as all applications include

a procedure to reboot the node (the code needed to do this

only takes a few bytes). After a reboot the Boot Loader will

load the SYNAPSE++ image, that is always present in the

first partition of the EM, and the network will be ready to

distribute, load and execute any new application.

III. DEMO SETUP

This demonstration will show SYNAPSE++ as it dissem-

inates new applications in a reliable fashion over multiple

hops, activates these new programs in the network and per-

forms management tasks such as checking nodes status (e.g.,

installed applications, memory usage).

In order to show SYNAPSE++’s true potential, during

the demo we will use typical WSN applications, such as

data gathering and a topology analyzer. Finally, we will

demonstrate the user-friendliness of the system thanks to

our graphical user interface: this extremely intuitive software

provides easy access to every SYNAPSE++’s feature while

hosting a visualization tool that shows data coming from the

installed applications.

A small testbed will be deployed for the demonstration con-

sisting of 20 TmoteSky sensor nodes (telosb achitecture [8]),

one of which (the sink node) will be connected to a laptop pc

running the graphical user interface. The whole setup requires

a standard exhibition desk (about 1 square meter). The demo

begins with all nodes running SYNAPSE++ and having their

external memory empty (no applications installed). Subse-

quently, the sink node disseminates the application images to

the other nodes, checking that it is received correctly by all

sensors. The new applications will be loaded by all nodes and

their output will be showed thanks to the visualization tool.

Finally, after resetting the network to SYNAPSE++ further

dissemination runs can be executed and the memory of the

nodes can be managed.

REFERENCES

[1] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based Loss
Recovery for Reliable Multicast Transmission,” IEEE/ACM Trans. on

Networking, vol. 6, no. 4, pp. 349–361, 1998.
[2] “TinyOS: an open source OS for the networked sensor regime,” Last

time accessed: March 2009. [Online]. Available: http://www.tinyos.net
[3] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. Harris III, and

M. Zorzi, “SYNAPSE: A Network Reprogramming Protocol for Wireless
Sensor Networks using Fountain Codes,” in IEEE SECON, San Francisco,
CA, US, Jun. 2008.

[4] D. J. C. MacKay, “Fountain Codes,” IEE Proceedings – Communications,
vol. 152, no. 6, pp. 1062–1068, 2005.

[5] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale,” in ACM SenSys, Baltimore,
Maryland, USA, Nov. 2004.

[6] S. S. Kulkarni and L. Wang, “MNP: Multihop Network Reprogramming
Service for Sensor Networks,” in IEEE ICDCS, Columbus, Ohio, USA,
Jun. 2005.

[7] R. K. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless
Reprogramming for Sensor Networks,” in IEEE INFOCOM, Anchorage,
Alaska, USA, May 2007.

[8] “Crossbow,” Last time accessed: October 2008. [Online]. Available:
http://www.xbow.com


