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Abstract—Cooperative routing has been shown to be an ef-
fective technique to improve the throughput/delay performance
of multi-hop wireless ad hoc networks. In addition, suitable
cooperation selection policies also allow for a reduction of the
overall energy expenditure. In a previous study, we proposed
a centralized algorithm to obtain optimal cooperation selection
policies in multi-hop networks with the aim of minimizing a linear
combination of energy and delay costs. In this paper, we look at
this problem from a different angle, devising three online and
fully distributed algorithms which only exploit local interactions
for the selection of the cooperators. The first technique selects
at each hop a fixed number of nodes having the minimum
distance with respect to the destination. The second one adopts
a look-ahead strategy, which selects a fixed number of nodes
at each hop, according to their expected advancement toward
the destination. The third technique utilizes a more refined
look-ahead strategy, which dynamically adjusts the number of
nodes that cooperate at each hop. Numerical results are thus
presented for the proposed techniques, comparing them against
the optimal centralized strategy and competing algorithms from
the literature. These results indicate that our techniques improve
upon existing distributed approaches and achieve close-to-optimal
performance.

I. INTRODUCTION AND RELATED WORK

Cooperation for the transmission in wireless networks has

been proposed as an effective way of increasing the through-

put and also potentially reducing energy consumption. Early

studies dealt with two-hop transmissions [1], where the com-

munication between two nodes is assisted by a third node,

usually located within them. As an example, [2] presents a

distributed routing protocol that at each hop selects the best

relay node based on instantaneous channel measurements. In

this paper we focus on multiple hop transmissions where co-

operative routing becomes relevant. Various approaches have

been investigated and the paradigms of virtual antenna arrays

or cooperative diversity have been proposed. In [3], [4] and [5]

it is proposed that a subset of nodes that have received the

information at a given hop cooperate in forwarding it to nodes

placed farther away. However, the routing path is calculated

ignoring cooperation. In [6] the number of cooperative nodes

is computed during the network initialization phase and kept

constant throughout the entire end-to-end path. Although sub-

optimal, these approaches improve the throughput and reduce

energy consumption.

With opportunistic routing, decisions are made in an online

manner by choosing the relay at each hop based on the actual

transmission outcomes as well as a rank ordering of neighbor-

ing nodes. For this approach, it has been shown that the impact

of poor wireless links can be mitigated by exploiting the

broadcast nature of wireless transmissions, also referred to as

wireless broadcast advantage (WBA), [7]. Without considering

cooperative diversity, the superiority of opportunistic rout-

ing when compared to traditional routing has been provided

through a Markov decision theoretic formulation in [8], while

a distributed algorithm for optimal policies is presented in [9].

We derived in [10] the optimal cooperator selection policies

exploiting opportunistic routing and we provided an analyt-

ical tool meant for centralized and off-line use. Distributed

protocols combining opportunistic routing with cooperative

diversity in virtual multiple input single output (MISO) trans-

missions and space-time block codes have been proposed

in [11] and [12]. While these protocols exploit opportunistic

routing for the selection of the relay nodes, the end-to-end

path is still calculated ignoring cooperation.

This paper extends the work in the literature, and in par-

ticular [10]. We consider a multihop wireless network where

a source node sends a message to a destination node and

intermediate nodes that decode this message forward it to the

next hop until the destination is reached. At each hop, relay

nodes (referred to as cooperators) implement a virtual antenna

array and realize a distributed space-time coding scheme with

decode and forward (DF). The focus of this paper is on

devising efficient online and localized cooperator selection

policies. In particular, cooperating nodes are selected on the

basis of a) their knowledge of the local topology and b) the

fact that they correctly decoded the message at the previous

hop. In [10] a centralized solution to this problem has been

proposed, where full knowledge of the topology is exploited.

In this paper, we propose three techniques that aim at solving

the problem in a distributed fashion. The first technique selects

at each hop a fixed number of nodes having the minimum

distance with respect to the destination. The second one

performs a look-ahead strategy, which selects a fixed number

of nodes according to their expected advancement toward

the destination. The third technique dynamically adjusts the

number of cooperating nodes at each hop, thus exploiting a

further degree of freedom in the local optimization process. We

compare our online cooperator selection schemes against the

optimal centralized approach of [10], showing that they attain

close-to-optimal results. In addition, we show the superiority
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of our techniques with respect to the heuristic protocol of [12],

which already outperforms other existing solutions.

The rest of the paper is organized as follows. In Section II

we present the system model and the cooperator selection

problem. In Section III we present our online algorithms for

cooperative routing. In Section IV we prove the effectiveness

of the proposed algorithms by comparing them against optimal

policies and competing online heuristics from the literature.

Finally, Section V concludes the paper.

II. SYSTEM MODEL

Consider a wireless network consisting of a set N of nodes

spread out according to any distribution. Time is slotted with

a slot corresponding to the fixed transmission time of a packet

and all nodes are synchronized at the slot level. We want to

deliver a message from a source node s to a termination node

t.

In the first transmission slot, only the source node s has

the message and broadcasts it to all the nodes in the network.

After this transmission, a set R1 ⊆ N of nodes has correctly

decoded the message and, according to the DF scheme, they

are all eligible for transmitting it in the next hop. However,

only a subset a2 ⊆ R1 will actually cooperate in the second

time slot, and they do so by simultaneously transmitting the

message with a distributed space-time code. Decoding and

cooperative retransmission are iterated until the termination

node t is reached. At the generic hop i, i = 1, 2, . . ., nodes

in set ai simultaneously broadcast the message, and they are

chosen from the set Ri−1 of nodes that have correctly decoded

the message in the previous time slot. ai is referred to as the

relay node set in slot i.

A. Link Model and Packet Outage Probabilities

Each node is equipped with one antenna, and when the

nodes in a set a ⊆ N cooperatively transmit, the total number

of transmit antennas is |a|. We assume that nodes operate

in half-duplex mode and that the same power is used at all

transmit antennas. Furthermore, we assume no instant channel

knowledge at the transmitter, i.e., transmit nodes are not aware

of channel conditions of surrounding nodes.

As transmit nodes are not aware of channel conditions,

messages are encoded with a capacity-achieving code having

spectral efficiency R. When the channel capacity, normalized

with respect to the bandwidth, is below R, outage occurs.

In this case the packet is not decoded at the receiving node

and is discarded. Let C(a, n) be the capacity of the channel

between nodes in a and node n, normalized with respect to

the bandwidth. Then, the outage probability is

pout(a, n) = P[C(a, n) < R] . (1)

The computation of pout(a, n) has been detailed in [10] in

a scenario with path loss and fading.

B. Cooperator Selection Objectives

The evolution of the considered cooperative multihop net-

work can be described by a Markov chain, where a generic

state x of the chain represents the set of nodes that have

correctly decoded the message in a particular time slot, [10].

For each generic state x for which t /∈ x, let a ⊆ x be the set

of nodes that will cooperate in the next slot. The dynamics of

the network are captured by transition probabilities pxy(a),
describing the probability that nodes in state y correctly

decode the message after it has been transmitted by nodes

in the set a, when the state was x. In addition, a positive

normalized cost is associated with each transition

c(x, y, a) = αCE(x, a, y) + (1− α)CD(x, a, y) , (2)

where CE(x, a, y) = |a| (energy cost) accounts for the energy

spent in transmitting the message and CD(x, a, y) = 1 (delay

cost) accounts for the delay, in number of hops, associated with

a path from s to t, while α ∈ [0, 1] is a parameter that we tune

to drive the optimization. Note that the cost is normalized with

respect to the cost associated to a single packet transmission.

The objective of our optimization is the minimization of the

average cost over all possible paths in the network, according

to a routing policy. In particular, for each possible state x we

have to identify an action a∗(x) so that the message reaches

the termination state, where the destination t has correctly

decoded the message, following the path with minimum av-

erage cost. To this end, [10] presents an analytical tool that

returns the optimal policies for general network topologies.

The performance of these policies represent an upper bound

on the performance achievable by any routing algorithm.

III. HEURISTIC ROUTING POLICIES

The computation of the optimal policies, according to

the objectives introduced in the previous section, requires a

complete knowledge of the network topology and an off-

line, centralized solver [10]. Here, we present three heuristic

policies suitable for a distributed implementation and having

a lower computational complexity.

A. K-Closest

The idea of the K-Closest policy is to have a fixed number

of relays retransmitting the message at each time slot and

select them according to their distance to the termination node.

For any node n ∈ N let δn = dn,t be the distance between

node n and the termination node t. We assume that each node

n can collect this proximity metric from all nodes closer to the

destination than itself. All the nodes that correctly receive the

message in time slot i are ranked by the transmitters according

to δn = dn,t, i.e., the ordered set is

Ri = {r
(1)
i , r

(2)
i , . . . , r

(|Ri|)
i } , (3)

with

δ
r
(k)
i

≤ δ
r
(k+1)
i

, k = 1, 2, . . . , |Ri| − 1. (4)

With the K-Closest policy at most K nodes cooperate in

each time slot, and they are selected among those closest to the
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Fig. 1. Example of a scenario where K-Closest would choose an unreliable
relay set.

destination. Thus, the set of nodes that cooperatively transmit

at slot i+ 1 is

ai+1 = {r
(1)
i , r

(2)
i , . . . , r

(min{K,|Ri|})
i } . (5)

Note that if less than K nodes correctly decoded the message

at slot i, they are all elected as relays in the next time slot

i+ 1.

B. K-One Step Look Ahead (K-OSLA)

The K-Closest policy exploits the knowledge of the ge-

ographical distance between each potential relay and the

termination node t. However, due to the limited amount of

information that it uses, K-Closest has the potential drawback

of choosing relays having a small number of neighbors in

their proximity. Notably, this may increase the average number

of retransmissions necessary to reach the next set of relays.

As an example, consider the scenario of Fig. 1 where the

number of nodes that cooperate for the transmission in each

time slot is K = 2. At a generic time slot i, nodes in the relay

set ai cooperatively transmit the message and nodes in set

Ri correctly decode it. Following the rationale of K-Closet,

nodes r1 and r2 would be selected as the relays for the

next transmission slot i + 1, since they are the closest nodes

to the destination t. However, despite the fact that node r1
is the closest to t, it does not have additional intermediate

nodes between itself and t. Additionally, as r1 is quite distant

from the destination, it will give a small contribution into

the successful forwarding of the packet towards it. Choosing

nodes r2 and r3 as the next relay set ai+1 will instead avoid

unnecessary retransmissions by taking advantage of multi-

hopping through the neighboring nodes q and n. In what

follows, we extend the K-Closest heuristic with a suitable

metric, which keeps into account the presence of neighboring

nodes in order to avoid the discussed drawback.

Formally, let q ∈ ai be a node that transmits the message

at slot i and n be a candidate node for the (cooperative)

transmission of the message in the next time slot i + 1. The

difference between the distances of node q and node n with

respect to the termination node is denoted as

gq,n = δq − δn , (6)

which describes the geographical advancement toward t pro-

vided by n. For each node q ∈ N we can also compute the

expected maximum advancement toward t provided only by

node q without the support of other cooperating nodes, i.e.

gq =
∑

n:δn≤δq

gq,n[1− pout({q}, n)]
∏

m:δm≤δn

pout({q},m) .

(7)

This equation can be better understood if we consider the

scenario in Fig. 1. In this example, we have that the maximum

expected advancement toward t provided by a transmission

from node q is determined as a weighted sum of the geograph-

ical advancements provided by node t and n, wtgq,t+wngq,n,

where the weighting parameter wt represents the probability

that node t correctly receives the message and wn represents

the probability that only node n correctly decodes the message

and thus it is selected as the next relay.

The K-one step look ahead (K-OSLA) policy works as

follows. At time slot i (relay node set ai), the transmitter

closest to the destination t is elected as the relay leader

(denoted by r∗), i.e.,

r∗ = argmin
r∈ai

δr . (8)

All nodes n ∈ Ri that correctly receive the message are ranked

by node r∗ according to the overall expected advancement

provided in the next two transmission slots, i.e.,

µr∗,n = gr∗,n + gn . (9)

Note that a high metric value is achieved by nodes n pro-

viding both a good direct advancement toward t (term gr∗,n)

and a good expected advancement (gn). The latter metric is

particularly important to prevent the forwarding of the message

toward connectivity holes, see [13]. Now, similar to K-Closest,

node r∗ elects as relays the K receivers with the highest

value of µr∗,n and if less than K nodes correctly decode

the message, they are all elected as relays. Hence, nodes are

ordered as in (3), where now (4) is replaced by

µ
r∗,r

(k)
i

≥ µ
r∗,r

(k+1)
i

, k = 1, 2, . . . , |Ri| − 1 , (10)

and set ai+1 is provided by (5) .

A discussion is in order. The selection of the leader as the

closest node to t in the set ai provides a unique reference

node for the calculation of the expected advancement toward

t. In addition, this advancement is computed assuming a non-

cooperative transmission scheme where the leader is the only

node that sends the message in the current time slot (term

gr∗,n), whereas the advancement provided in the next time slot

by its neighbors that correctly receive the message is estimated

using (7). This amounts to considering each neighbor n as

the only node that will be transmitting the message in the

subsequent time slot i + 1. As a matter of fact, the expected
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advancements computed in this way do not consider the effect

of cooperative (and thus parallel) transmissions. Nevertheless,

this reduces the computational complexity of the scheme, as

a single node r∗ is used to represent an entire set (ai). Of

course, suitable mechanisms for leader election and feedback

collection must be also considered. However, these algorithms

are outside the scope of this paper.

C. η-dynamic One Step Look Ahead (η-dOSLA)

Both K-Closest and K-OSLA always select a fixed number

of relays, potentially leading to an unnecessary waste of energy

because also nodes that give a marginal contribution to the

cooperative routing performance may be selected. In what

follows, we extend the K-OSLA heuristic to take into account

the impact of cooperation and let the number of relays be

dynamic.

For the η-dynamic one step look ahead (η-dOSLA) policy,

we first define η ∈ [0, 1] as a parameter used to dynamically

tune the number of cooperating nodes, as we will detail later.

η-dOSLA uses the geographical advancement metric of (7)

and, after set Ri has been ordered according to the metric

µr∗,n of (9), the set ai+1 is built iteratively as follows. Node

r∗ starts by initializing the set ai+1 so that it only contains

the node with the highest rank

ai+1 = {r
(1)
i }. (11)

Then, r∗ calculates the expected advancement provided by the

current set ai+1 with respect to the highest rank node r
(1)
i as

γai+1
=

∑

n:δn≤δ
r
(1)
i

g
r
(1)
i

,n

× [1− pout(ai+1, n)]
∏

m:δm≤δn

pout(ai+1,m) .
(12)

Comparing (12) with (7) we observe that, while in (7) the

advancement is computed ignoring the cooperation of other

nodes in ai+1, γai+1
in (12) it includes the effects of the

cooperation among all the nodes in the set ai+1, which is

gradually populated. Then, the normalized expected advance-

ment is computed as

g̃ai+1
=

γai+1

δ
r
(1)
i

, (13)

which represents the expected fraction of the distance δ
r
(1)
i

covered by the cooperative transmission of the nodes in ai+1.

If g̃ai+1
≥ η the procedure terminates. Otherwise, node r∗

adds to set ai+1 the next node in the ordered sequence Ri and

recalculates the normalized expected advancement provided by

all nodes in the new set ai+1. At the generic iteration v, we

have

ai+1 = {r
(1)
i , r

(2)
i , . . . , r

(v)
i } . (14)

The iterative process is terminated either when g̃ai+1
≥ η or

when v = |Ri|.

D. Practical Considerations

It can be noted that all the proposed algorithms are based

on a distance metric between each node and the destination

t. This is similar to the forwarding paradigm of geographical

routing in wireless networks (see for example [14] and [15]),

where it is assumed that each node is aware of its own position

(e.g., exploiting GPS or some distributed localization service)

and that the source is aware of the position of the destination.

We make the same assumptions here, so that each node n can

determine its distance from the destination δn and exchange it

with the other nodes of the network when needed. In this way,

at each time slot i, we only require the knowledge of the local

topology (i.e., Ri and δr, ∀ r ∈ Ri) to determine the current

relay set. Starting from these assumptions, the complexity of

the proposed techniques varies and is represented by

• K-Closest: at each time slot i, the current transmitters

order the set Ri according to (4), which has a complexity

of O(|N | log(|N |));
• K-OSLA: each node needs to compute the maximum

expected advancement (7), which has a complexity of

O(|N |2). Then, at each time slot i, the current relay

leader r∗ orders the set Ri according to (10), which has

a complexity of, at most, O(|N | log(|N |)).
• η-dOSLA: each node needs to compute the maximum

expected advancement (7), which has a complexity of

O(|N |2). At each time slot i, the current relay leader

r∗ orders the set Ri according to (10), which has a

complexity of O(|N | log(|N |)). Moreover, r∗ iteratively

builds the relay set ai+1. At each iteration, node r∗

computes the expected advancement provided by the

current relay set ai+1 (i.e., (12)), which as a complexity

of O(|N |2). The maximum number of iterations required

to compute the next relay set is |N | − 2 and thus,

computing the next relay set has a complexity O(|N |3).

Moreover, for a practical implementation of the proposed tech-

niques, additional feedback mechanisms for packet decoding,

relays selection and neighbor discovery must be designed.

These mechanisms are out of scope for this work since our

primary objective is investigating the effectiveness of differ-

ent relay ranking criteria when used within an opportunistic

routing protocol.

IV. NUMERICAL RESULTS

In this section we show numerical results of the network

performance attained by the proposed algorithms. All the re-

sults of this section have been obtained using a C++ simulator

that assesses the performance of each algorithm using the

Monte Carlo method. In the following graphs, we compare

the delay and energy costs of the heuristic policies against the

optimal policies obtained in [10]. In particular, we compare

the performance of the distributed heuristic algorithms of

Section III against the curves in [10, Fig. 5, page 515]. For

the simulation scenario, we consider random networks with 21
nodes placed within a rectangular area of 50×d square meters

as follows. Source and destination nodes are placed in the
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Fig. 2. Normalized energy and delay costs as a function of d for optimal
and heuristic policies, when the objective is delay minimization. Solid line:
delay cost; dashed line: energy cost.

 0

 5

 10

 15

 20

 25

 30

 35

 150  200  250  300  350

N
o
rm

al
iz

ed
 C

o
st

Source-destination distance d [m]

 0

 5

 10

 15

 20

 25

 30

 35

 150  200  250  300  350

N
o
rm

al
iz

ed
 C

o
st

Source-destination distance d [m]

K-Closest (K=1)
K-OSLA (K=1)

η-dOSLA (η=0.1)
Energy optimal (α=1)

Fig. 3. Normalized energy and delay costs as a function of d for optimal
and heuristic policies, when the objective is energy minimization. Solid line:
delay cost; dashed line: energy cost.

middle of the two opposite 50 m long sizes, therefore source

and destination nodes are at a distance d. All the remaining

nodes are randomly positioned within the area. Results in [10]

are obtained when the maximum number of nodes that can

cooperatively broadcast the message in a particular hop is

set at χmax = 5. For comparison purposes, we therefore

apply the same limitation to the heuristic policies proposed in

Section III. This limitation implies K ≤ χmax for policies K-

Closest and K-OSLA, while for η-dOSLA we have to add the

additional constraint that at most χmax nodes can cooperate at

each hop. Note that this constraint implies that |ai| ≤ χmax

and possibly leads to cases where g̃ai
< η, see (13). In all

the results of this section the path loss exponent is κ = 3.5.

In addition, we set the data rate R and the average signal to

noise ratio in order to obtain, for a single active link, an outage

probability of 0.2 at a distance of 30 m.
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Fig. 4. Normalized energy and delay costs as a function of the number of
nodes in the network for heuristic policies and OVM, when the objective is
delay minimization. Solid line: delay cost; dashed line: energy cost.

Fig. 2 shows the energy and delay costs when the optimiza-

tion objective is delay minimization. The curves in this figure

have been obtained setting α = 0 in the cost function (2),

K = χmax and η = 1 and varying the distance d between the

source and the destination. We observe that for d ≤ 200 m all

the schemes provide similar delay costs, while heuristic poli-

cies return a slightly higher energy consumption with respect

to optimal policies. When d increases, we see that K-Closest

returns the worst performance in term of both energy and

delay costs, while K-OSLA slightly outperforms K-Closest,

and η-dOSLA still approaches the optimal performance with

a delay increase of 22% and an energy increase of 10% in the

worst case. Similar results are obtained in Fig. 3, where the

optimization criterion is energy minimization. In this figure

we set α = 1, K = 1 and η = 0.1. Note that setting K = 1
implies that no cooperation is allowed in both K-Closest

and K-OSLA (and thus energy and delay costs coincide, see

(2)), while η > 0 allows the simultaneous transmission from

different nodes. As before, η-dOSLA outperforms K-Closest

and K-OSLA and, despite attaining higher energy expenditure,

achieves better delay performance with respect to the optimal

policies (note that this is allowed because the optimization

criterion of the optimal policies is energy minimization).

In addition, we compared the performance of the proposed

heuristic policies with that of the opportunistic virtual MISO

(OVM) protocol proposed in [12]. OVM considers that, at

each hop, the current transmitter can be assisted by one relay.

Since in our heuristic policies we can tune the number of

cooperating nodes, we extended OVM in a similar way. We

call this implementation K-OVM, where K represents the

maximum number of nodes that can cooperatively forward the

message to the next hop. Here we consider the same network

structure of the previous figures, except for the size of the

rectangular area, which is now 150× 150 square meters.

Fig. 4 shows the energy and delay costs as a function of the

number of nodes in the network when the objective is delay
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Fig. 5. Energy as a function of the delay for heuristic policies and OVM. The
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minimization. In this figure, the curves have been obtained

setting K = 5 and η = 1. We see that our schemes outperform

OVM in all the considered scenarios. In addition, we observe

that K-OSLA and η-dOSLA perform slightly better than K-

Closest when the number of nodes is less than 30, while all

the three schemes perform closely for higher node densities.

This is reasonable since the additional information about the

expected advancement exploited by K-OSLA and η-dOSLA

is meant to prevent the forwarding of the message toward

connectivity holes, that are more frequent for sparser networks.

In Fig. 5, we set the number of nodes to 20 and we obtained

the points by varying η in (0, 1] for η-dOSLA and K in

{2, 3, 4, 5} for K-Closest, K-OSLA and K-OVM. We observe

that our schemes outperform K-OVM in terms of delay cost

for all the values of K and η. As expected, K-OSLA improves

over K-Closest in terms of both energy and delay, especially

for small values of K (K ≤ 3 in the figure), while for

K ∈ {4, 5} it provides a small delay improvement at the

expense of a slight increase in energy expenditure. In addition,

we observe that η-dOSLA outperforms all the other schemes

and allows for a more refined tuning between energy and delay.

Finally, it is interesting to notice that while in our schemes

increasing the number of cooperating nodes leads to a decrease

in the delay experienced by the message and a consequent

increase in the energy consumption, in K-OVM increasing K
has the effect of simultaneously decreasing both energy and

delay and this reflects the different working principles of the

two schemes.

V. CONCLUSIONS

In this paper, three algorithms for the selection of coop-

erating nodes in multihop wireless networks implementing

a virtual MISO transmission have been proposed. The aim

of these policies is the minimization of a cost obtained as

a linear combination of delay and energy consumption. The

three policies allow the selection of the cooperating nodes at a

local level among the nodes that receive the message at each

hop, thus being viable for a practical implementation. They

differ for various look-ahead strategies that realize a locally

greedy approach for the solution of the otherwise complex

global optimization problem. In a performance comparison

with the optimal centralized approach, the heuristics exhibit

very limited losses and in any case outperform approaches

that had been presented in the literature, thus being of interest

for their use in future networks.
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