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Abstract—In this paper, we address a fundamental problem con-
cerning the optimal searching strategy in terms of searching cost
for the multi-target discovery problem in wireless networks. In or-
der to find the nearest k targets from a total of m members with
the least cost, how many searching attempts should we use, and
how large should each searching area be? After providing the ap-
plications that motivate our research, we model the problem and
derive a general formula for the expected cost as a function of the
parameters of the number of searching attempts n and the search-
ing area for each attempt, Ai. Based on this formula, we propose
several algorithms to determine the optimal parameters to achieve
the minimal cost, either pre-calculated or performed online. Using
the optimal parameters derived from analysis, we experiment with
these algorithms on general wireless network scenarios. The results
show that our algorithms perform consistently close to optimal, and
they exhibit much better performance than other heuristic schemes.
The desired performance is achieved by adapting the searching ra-
dius to estimates of network parameters such as the total number
of nodes and the total number of targets.

I. INTRODUCTION

The target discovery process exists extensively in applications
of nowadays fast growing wireless ad hoc networks and sensor
networks. Usually, query packets are propagated inside the net-
work to search for the targets. The target nodes will respond
upon receiving the query packets. Unlike most unicast traffic,
the query process usually includes a flooding process. Thus, it is
crucial to determine the best way to search for a target to mini-
mize the searching cost. More specifically, the question is: what
are the number of searching attempts and the searching area for
each attempt for the optimal searching strategy?

Of course, the simplest searching strategy is to search the en-
tire interested area only once. Some other heuristic solutions are
proposed and implemented as well. In DSR [1], the one-hop
neighbors are first queried and the entire area is searched if the
target is not among the one-hop neighbors. In AODV [2], an ex-
ponential expansion ring (EXP) scheme is applied, which is to
start searching from one hop and increase the searching radius
exponentially upon each failure.

Depending on the number of targets available, the target dis-
covery problem can be divided into single-target discovery and
multi-target discovery. The single-target discovery process is

oriented for unique information such as the node ID in routing
protocols [1], [2] or a unique service provided by a specific
service provider [3], [4]. Previously, we showed that for single-
target discovery, the expansion ring scheme cannot reduce the
expected searching cost [7]. Instead, it increases both the cost
and the latency dramatically. We also showed that the cost sav-
ing of even the optimal scheme is negligible, and the simplest
searching scheme, which is to search the entire area only once,
actually is the best scheme from both the cost and the latency’s
perspective. The reason that using multiple searches does not
reduce cost is that the cost saving from a successful search in the
local area cannot cover the extra cost when the local search fails
since in wireless networks, the previously searched area has to
be covered again for the new query to reach the farther area.

In this paper, we study a more general case, the multi-target
discovery problem. Unlike the single-target discovery problem,
using multiple searching attempts with increasing searching ar-
eas can reduce the cost for the multi-target discovery problem.
The chance of finding a target in the local area increases as the
total number of targets increases, and this increase is exponen-
tially related to the total number of available targets. Thus, the
cost saving from the local searching may eventually cover the
extra cost from the possible failure of the local search.

Determining the optimal scheme for the multi-target discov-
ery problem is crucial for applications in large wireless net-
works, especially those whose components are battery-supplied
and power sensitive. For some applications, k servers must be
found in order to function. For example, in NTP (Network Time
Protocol) [5], the three closest servers are needed to synchro-
nize a node’s clock. In sensor networks, a node may need to
find out the hop-distance to the nearest k anchors in order to per-
form location estimation [11]. Also in sensor networks, a mobile
host may need to collect, say 20, temperature samples from the
nearby sensors to have an accurate overview of the local temper-
ature situation. There may be some other applications that per-
form multi-target discovery in order to distribute the load evenly
among the network. For example, in a peer-to-peer file sharing
network [9], a peer may locate a number of nearby peers and
distribute the load among them. Another example is to discover
an ensemble of special nodes nearby to distribute the computa-



tion among them. Also, multi-target discovery may be inten-
tionally performed for robustness. A simple example is to locate
more service providers than necessary. When the primary ser-
vice provider cannot function well, there will be some backup
to take the place to avoid interruption without initializing an-
other search. For security sensitive applications such as NTP
[5] and NIS (Network Information System) [6], multiple-target
discovery is almost a necessity, both for security and robustness
concerns.

Despite the extensive existence and importance of the multi-
target discovery problem in wireless networks, the study of this
field is almost non-existent. The schemes being used are merely
from intuition without analytical support. To the best of our
knowledge, this paper is the first formal study undertaken to gen-
eralize the problem and solve it both analytically and experimen-
tally.

The rest of this paper is organized as follows. Section II pro-
vides an overview on the previous efforts in reducing discovery
overhead and some other related work. Section III models the
multi-target discovery problem in an infinite network and pro-
poses several algorithms to determine the optimal number of
searching attempts and the searching area of each attempt. In
Section IV, we turn to realistic small-scale networks and illus-
trate how our previous analysis and algorithms can be applied
into these scenarios. Extensive simulations are performed to
compare our algorithms with existing schemes. Section V con-
cludes the paper and discusses potential future work.

II. RELATED WORK

In [7], we analyzed the single-target discovery problem and
showed that searching the entire area only once is actually the
best scheme in terms of both cost and latency. In this work, we
will study the multi-target discovery problem, which can be seen
as an extension to the single-target discovery problem.

The multi-target discovery problem can be further divided into
two branches. The first branch is to find at least 1 target from a
total of m targets. The most common use of the this one-out-
of-m discovery is in routing protocol implementations. Typical
examples are DSR [1] and AODV [2]. Although the target is
a specific node ID, there may be caches among the other nodes
and the searching becomes a multi-target problem. Also, the
searching schemes adopted by DSR and AODV, especially the
expansion ring scheme, can be used for comparison with our
approaches.

The other branch is a more general case, which is to find at
least k targets from m members. The k-out-of-m multi-target
discovery problem also has extensive applications, as we men-
tioned earlier. Examples that require a mandatory multi-target
discovery are NTP [5], ITTC (Intrusion Tolerance via Thresh-
old Cryptography) [8], sensor localization [11], and sensor in-
formation collecting [12]. Examples that require a multi-target
discovery for robustness are NIS, NTP and any application re-
quiring auxiliary backups. Examples that require a multi-target
discovery for load distribution are peer-to-peer systems [9] and
distributed computing systems [10]. Depending on various ap-
plication requirements, different portions out of the total targets

are to be found. For NTP, only three servers are required. For
temperature monitoring sensor networks, quite a few sensors are
required. For peer-to-peer systems or distributed computation
systems, as many as possible peers are usually preferred.

In [13], the concepts of anycast and manycast are introduced
to ad hoc networks. The so-called anycast is close to our 1-
out-of-m problem in nature, and the manycast is comparable to
our k-out-of-m problem. Although the authors propose several
mechanisms to perform manycast delivery, their primary goal is
to provide an investigation on the trade-offs of these mechanisms
between performance, reliability and ease of implementation. In
this paper, we only focus on the discovery phase, and we provide
optimal solutions based on analysis.

III. MULTI-TARGET DISCOVERY IN INFINITE NETWORKS:
MODELING AND ALGORITHMS

A. Problem modeling, assumptions and terminology

Without loss of generality, we assume a large number of nodes
are placed randomly and independently in a two-dimensional
space R

2. A source node wants to find at least one target within
a unit area of interest. Suppose that m targets are distributed
uniformly within this unit area. What is the optimal scheme to
search this unit area to have the minimum cost? In other words,
how many searching attempts n should be performed and what
should be the searching area set A(n) = {A1, A2, · · · , An} for
these n searching attempts?

Using this model, every searching strategy, including those
mentioned earlier, can be exclusively expressed by A(n). For
example, for the simplest searching strategy, which is to search
the entire interested area only once, it is A(1) = {1}. For DSR’s
searching strategy, which is to query the one-hop neighbors first
and then search the entire area, it is A(2) = { 1

M2 , 1} if we de-
note M as the maximum hop limit allowed. For the exponential
expansion ring scheme applied in AODV, the parameter set be-
comes A(dlog2(M)e+1) = { 1

M2 , 22

M2 , 42

M2 , · · · ,
(2dlog2(M)e−1)2

M2 , 1}
if we assume that the searching area is on the order of the search-
ing hop squared.

Here, we define the cost as the total area that has been
searched. This general assumption does not contradict the tra-
ditional cost definition as the number of transmissions. In wire-
less networks, a node usually needs to forward packets for other
nodes, and in order to search a certain area, the nodes within
this area have to forward the queries. Thus, the number of query
transmissions to search an area of A is proportional to A by a
constant coefficient determined by the forwarding mechanism
such as flooding and gossiping. Also, by defining the cost di-
rectly as the searching area, we minimize the number of vari-
ables and simplify our analysis without loss of generality. The
conclusions drawn from this definition can be specified for dif-
ferent applications simply by mapping the area to realistic appli-
cation parameters.

Also, we ignore the potential increase of the packet length
and the cost it brings during packet propagation. For simplicity,
we also ignore potential packet collisions, which can be effec-
tively decreased by inserting a random delay time before for-



TABLE I
NOTATIONS USED THROUGHOUT THIS PAPER.

m the total number of targets

k the number of targets to be found

n the number of attempts performed

Cn cost of an n-ring scheme

D cost difference between two schemes

Ai searching area of the ith attempt

A(n) optimal searching set for n-ring search

warding. Routing protocols are not needed for target discovery
since broadcasted query packets will set up paths towards the
source node that reply packets can follow.

During our analysis, we assume we are studying a snapshot of
the network and nodes are static during the analysis. However,
even if nodes are mobile, there are several reasons that our analy-
sis is still valid. First, the flooding search time is short and nodes
will not move too far away. Second, since nodes are moving
randomly and independently, the number of nodes in a certain
region is stable and will not have adverse effects on our analysis.

The model we are going to use in this section is based on the
assumption that the source node is at the center of the searching
area and the searching areas are concentric circles within the unit
area as shown in Fig. 1. This assumption is valid for infinite net-
works, or practical large-scale networks. This simplified model
expedites our current analysis and is easy to extend for realistic
small-scale networks, as we will illustrate in Section IV.

We also assume that the targets are uniformly distributed
throughout the searching area. For applications such as sensor
networks, even if some sensors run out of energy, this general
assumption should still be valid. This is because for a good sen-
sor network architecture, sensors should deplete their energy in
a balanced and uniform manner. However, there do exist some
scenarios where the target distribution is non-uniform. We will
discuss these non-uniform target distributions in Section V.

For quick reference, we use the term n-ring as a strategy that
nodes attempt at most n times to discover the targets. Other
notations are listed in table I.

B. Finding 1 out of m targets

Let us first look at the simplest case, finding only one target
out of a total of m targets. Let us restate this 1-out-of-m
problem briefly. Now, there are m targets distributed randomly
and uniformly in the unit area. The source node located at the
center wants to find at least one target from these m targets with
the least cost by using the optimal n searching attempts.

1) A two-ring approach: Suppose a two-ring approach is ap-
plied, and for the first searching attempt, the searching area is
A1. For the second searching attempt, the searching area A2 is,
of course, the entire area and hence equals 1. As long as not all
the m targets are located outside the A1 area, the target will be
found within the first attempt. Therefore, the probability P1 to

0
A1 A2Ai An=1Ai+1

Fig. 1. The simplified model of the multiple target discovery. The searching
areas are concentric circles. Both the target nodes (black dots) and non-target
nodes (not shown) are uniformly distributed in the searching area.

discover at least one target in the first attempt and the cost for
the first searching attempt are

P1 = 1 − (1 − A1)
m, C1 = A1 (1)

However, if the first attempt fails, another search has to be
performed, and the total searching cost for these two searches
C2 is

C2 = A1 + A2 = A1 + 1 (2)

Note that if a second search needs to be performed, the total cost
is not only just the second searching area, but includes the cost
from the previous failed searching attempt.

If a second search is required, it means that all the m targets
are located in the second ring outside the A1 area, and the prob-
ability P2 for this case to happen is

P2 = (1 − A1)
m (3)

Thus, the expected cost C2 for a two-ring scheme to complete
the 1-out-of-m target discovery is

C
2 = P1C1 + P2C2 = (1 − (1 − A1)

m)A1 + (1 − A1)
m(A1 + 1)

= A1 + (1 − A1)
m

(4)
It is easy to determine the minimum C2 for A1 ∈ [0, 1] by

solving ∂C2

∂A1
= 0, which results in

A1 = 1 − m− 1
m−1 (5)

2) An n-ring approach: To aid the expression, let us define a
virtual 0th attempt search for the area of A0 = 0. If the ith search
attempt succeeds, the total cost Ci is simply the cost summation
of the first i attempts

Ci =

i∑
j=1

Aj (6)

Similarly, in order to perform an ith search attempt and com-
plete the task, there must be no targets in the area Ai−1 and there
must be at least one target in the area Ai. Thus, the probability
Pi for the task to be completed in the ith attempt is

Pi = (1 − Ai−1)
m − (1 − Ai)

m (7)



Therefore, the expected cost Cn for a general n-ring searching
approach is

C
n =

n∑
i=1

PiCi =

n∑
i=1

((1 − Ai−1)
m

− (1 − Ai)
m))(

i∑
j=1

Aj)

=

n−1∑
i=0

Ai+1(1 − Ai)
m

(8)

The final equality above can be easily proven through mathemat-
ical induction. Due to space constraints, we skip the intermediate
steps.

C. Finding k out of m targets
Now, we can easily extend the study to a general case of

finding at least k targets out of a total of m targets. Again, let us
start from a two-ring approach.

1) A two-ring approach: Given the first searching area A1,
the probability pi for exactly i nodes to be located within the A1

area is actually of binomial distribution

pi = Ci
mAi

1(1 − A1)
m−i (9)

In order to find at least k nodes within the first attempt, there
must be greater than or equal to k nodes within the first area A1.
The probability P1 for this case to happen is the summation of
the probabilities pi for i ≥ k.

P1 =
m∑

i=k

pi =
m∑

i=k

Ci
mAi

1(1 − A1)
m−i (10)

Of course, the probability P2 is the summation of the proba-
bilities that there are less than k nodes within A1.

P2 =
k−1∑
i=0

Ci
mAi

1(1 − A1)
m−i (11)

To simplify the expression, let us first define

I(p;m, k) =
m∑

i=k

Ci
mpi(1 − p)m−i (12)

For a given (m, k) pair, we may further simplify I(p;m, k) as
I(p) without causing confusion.

Eventually, we can write the cost for a two-ring searching
scheme in a simpler form

C
2 = P1C1 + P2C2 = I(A1)A1 + (1 − I(A1))(A1 + 1)

= 1 + A1 − I(A1)
(13)

2) An n-ring approach: In order to find k targets in the ith
searching attempt, there must be more than k nodes within the
area Ai. Also, there must be fewer than k nodes within the area
Ai−1, or else the search would end in the (i− 1)th attempt. The
probability Pi for the ith search to complete the searching task
is

Pi = I(Ai) − I(Ai−1) (14)

The cost of the ith search, the same as before, is

Ci =
i∑

j=1

Aj (15)

Thus, we have the expected cost for a general n-ring search

C
n =

n∑
i=0

PiCi =

n∑
i=0

((I(Ai) − I(Ai−1)(

i∑
j=1

Aj))

=

n−1∑
i=0

Ai+1(1 − I(Ai))

(16)

In the next section, we will propose several algorithms to de-
termine the optimal searching area set A(n) to minimize Cn

based on equations 8 and 16.

D. Algorithms
We classify the algorithms into pre-planned algorithms and

online algorithms, depending on when the parameters are deter-
mined. For pre-planned algorithms, A(n) for various n are all
calculated before the search starts. The source node will refer
to these precalculated values during the searching process. For
online algorithms, the source node only calculates the current
searching area exactly before this search starts. Online algo-
rithms need less computation than pre-planned algorithms, while
they may perform less than optimal due to the lack of global
knowledge.

1) Brute force (BF): Given n, there are n − 1 searching
area variables from A1 to An−1 (An is set to one). BF searches
every possible Ai ∈ [0, 1] and calculates the cost based on
equation 8 or 16. It picks the smallest cost as the optimal cost
and the corresponding area set as the optimal solution. Despite
its simplicity, this brute force technique requires excessive
computation time and may be infeasible. We perform it offline
just to provide a lower bound on achievable cost for the other
algorithms. During realization, the interval of [0,1] for each Ai

has to be discretized, and the results from this discretization
may not be optimal. With a granularity of δ for each dimension
Ai, the computational complexity is on the order of ( 1

δ
)n−1 for

an n-ring scheme.

2) Ring-splitting (RS): Since BF cannot find the optimal so-
lution within tolerable time, we may better focus on an alter-
native algorithm that is able to find good solutions using fewer
computations. An intuitive solution is to insert a new search-
ing ring between existing searching rings to reduce the cost as
much as possible. We implement this idea in the Ring-splitting
scheme. Suppose we already have an n-ring scheme. By insert-
ing another searching attempt with searching area Aj between
the ith attempt and the (i+1)th attempt, an (n+1)-ring scheme
can be derived from the original n-ring scheme. From equa-
tion 16, the cost difference D between the old n-ring scheme
and the new (n + 1)-ring scheme is

D = C
n
− C

n+1

= Ai+1(1 − I(Ai)) − Aj(1 − I(Ai)) − Ai+1(1 − I(Aj))
(17)



RS starts from the one-ring searching scheme with [A0 =
0, A1 = 1] and splits the ring that provides the largest cost reduc-
tion among all the possible ring splitting choices. This continues
until there are no possible choices to split a ring to achieve any
more cost savings. The procedure is as follows.

1) Start with the ring [0, 1].
2) With an existing n-ring scheme, a given ring set of

{[0, a1], [a1, a2], · · · , [an−1, 1]} already exists. Check all
these n rings and find out the candidates that can be split
to further reduce the cost.

3) Terminate if there are no more candidates. Else, go to Step
4.

4) Pick the candidate that will reduce cost the most and split
it. Go back to Step 2.

Whether a ring between [Ai, Ai+1] should be split and be-
come a candidate is a maximization problem of D and is deter-
mined as follows.

1) By solving ∂D
∂Aj

= 0, we have the potential splitting point
Aj . Numerical methods for root-finding are required to
find Aj .

2) First, check if Aj is within [Ak, Ak+1]. Second, check if
D(Aj) is larger than zero. Only when both requirements
are satisfied, should Aj be a ring splitting candidate for
[Ak, Ak+1].

Since each splitting only brings two rings for calculations in
the next step, if the optimal scheme is found at the n0 ring, the
total computation is only 2n0 − 3. The number of comparisons
is i−1 for the i-ring scheme, so the total number of comparisons
is only

∑n0

i=1(i − 1) = n0(n0−1)
2 .

Although RS does not guarantee the final solution set to
be optimal, it reduces the computation time dramatically
compared with the BF scheme. Also, it is scalable to n by
providing a sub-optimal solution for all n-rings within one
sequence of calculation, while BF has to calculate the solu-
tion for each n-ring scheme separately. This property makes
RS more desirable for realistic implementations than scheme BF.

3) Online ring-splitting (ORS): BF and RS are pre-planned
algorithms. The optimal number of searching attempts and the
optimal searching area set are determined before the first search
begins. ORS, instead, calculates the searching area only for the
current search and only when necessary, either when the search
is just beginning or the last search failed and a new search has to
be performed.

In this algorithm, the source node always plans to finish the
search within two attempts by splitting the remaining area. How-
ever, once it fails, it performs another splitting on the remaining
searching area and performs another attempt. This process con-
tinues until the target is found, or there will be no more cost
saving in splitting the remaining area.

Suppose the source node has already searched the area of S0

and k0 targets have been found. The new goal is to find k − k0

targets from the remaining m − k0 targets in the remaining 1 −
S0 area. If the source node plans to finish the searching within
two attempts by using A as the first searching area, the new cost

would be

Ce = I(
A − S0

1 − S0
; m − k0, k − k0))A

+ (1 − I(
A − S0

1 − S0
; m − k0, k − k0))(A + 1)

= 1 + A − I(
A − S0

1 − S0
; m − k0, k − k0)

(18)

Again, some numerical methods for root-finding are required
to solve ∂Ce

∂A
= 0. Also, the root Ã has to pass the following

two checks to provide the maximum cost saving: Ã ∈ [S0, 1]
and Ce < 1. If the check fails, just use A = 1 to finish the last
searching attempt. If not, use Ã to perform the next search.

ORS is similar to RS but is performed online. Upon each fail-
ure, it only determines how to split the remaining area, although
there may be some better splitting methods in the previously
searched area. Thus, it performs even less than optimal com-
pared to RS. However, it requires even less computation. There
is only one computation for each additional searching attempt,
and there is no wasted computation.

E. Numerical results
1) Algorithm analysis: In the previous section, we proposed

several algorithms that vary in their computational requirements
and their performance. Let us first determine the optimal search-
ing area set A(n) using these algorithms and compare the ex-
pected cost of these algorithms.

In Fig. 2, the expected costs for the solution of the 1-out-of-
m problem calculated by each algorithm are shown. BF and
RS have such close performance that their curves overlap with
each other. ORS performs at most 5% worse than the other two
algorithms. As mentioned earlier, this is because ORS is an on-
line algorithm and lacks global knowledge. However, its perfor-
mance is still very close to that of the pre-planned schemes. For
the pre-planned schemes, although a different number of rings
and different area parameters may be required to achieve their
own optimal point (see column 3 in Table II), these algorithms
perform nearly identically in terms of cost (see column 2 in Ta-
ble II). The BF performance shown in Fig. 2 is on a limited
brute force search on up to 4-ring schemes with a granularity of
0.001. It uses over 165 million computations to achieve the cost
of 0.560852, while RS achieves a very close cost 0.567105 using
only 9 computations. From this view, RS is much more practical
for realistic implementations.

In Fig. 2, we also show the performance of the optimal 2-
ring and 3-ring schemes. For 2-ring schemes, all the algorithms
perform almost the same. For 3-ring schemes, ORS performs a
little worse than the pre-planned algorithms, but it is still close.
Notice that despite the fact that the real optimal solution may
occur at a large value of n, the two-ring schemes have a major
impact on the cost reduction compared with the 1-ring scheme
whose cost is 1, but the three-ring schemes only further reduce
the cost by around a trivial 2-5%. This informs us that it is very
important to find a good searching area at the first attempt.

We also show the results for the k-out-of-m problem using
(m,k) pairs of (6,2), (6,3), (6,4), (20,2), (20,10), (20, 18), (60,2),



TABLE II
A COMPARISON OF DIFFERENT ALGORITHMS FOR FINDING K=1 OUT OF m = 3 TARGETS.

Scheme Cost n A(n) Computations

BF 0.560852 4 {0.251000,0.594000,0.851000,1.0} 165,667,502

RS 0.567105 6 {0.111926,0.422650,0.746721,0.926407,0.988474,1.0} 9

ORS 0.581804 5 {0.422650,0.746721,0.926407,0.988474,1.0} 4
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Fig. 2. The optimal expected cost of finding one target for each algorithm and
the optimal 2-ring and 3-ring cost for each algorithm. The x-axis indicates the
targets available in the searching area. The y-axis indicates the expected cost.
Although the number of rings n to achieve the overall optimal cost is usually
larger than 3, the optimal 3-ring scheme already performs very close to the real
optimal.

(60,30), (60,58). By investigating the results of these discovery
requests, we can have an idea of the trend of the searching cost
and the searching radius for different total numbers of targets
and for cases of searching few/half/most out of these targets.

Only the results from BF and RS are shown. For ORS, after
finding k0 targets, the goal of the next search becomes finding
k − k0 out of m − k0. Therefore, the expected cost of ORS
is dependent on each searching result; hence it is hard to deter-
mine analytically. The performance of ORS will be shown later
through simulations.

As we can see from Fig. 3, the performance of these algo-
rithms is still very close to each other and the curves overlap
with each other. The larger the number of targets that need to be
found, the less the cost can be reduced. Although the details are
not shown here, the 2-ring and 3-ring schemes are still dominant
in the cost reduction and more than 3-ring is unnecessary, which
is the same conclusion as in the 1-out-of-m case.

In summary, we find that the two-ring RS scheme can provide
close to optimal cost performance, and the three-ring RS scheme
can further reduce the cost by at most 5%. More searching
attempts can only reduce the cost by a negligible amount of
less than 1% and are unnecessary. When only a few number of
targets are to be found, or when k << m, the cost saving is
significant. When most of the targets are to be found, the cost is
close to the simple flooding searching scheme.
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each algorithm.

2) Algorithm verification: Since our algorithms are all
stochastically based and our model is built over an infinite net-
work, we experiment with these algorithms in a large-scale
geography-based network to verify that the experimental results
match our analytical expected cost. Also, we would like to ex-
amine how these algorithms affect the discovery latencies com-
pared to the one-ring searching scheme, which is a missing part
in our analysis. Hence, we place a large number of nodes, NT ,
in a disk area randomly and independently. Each node has the
same transmission range of Rt and the density is large enough
for a well-connected network. The source node is located at the
center of the unit area. The targets are chosen randomly from
these NT nodes, and the number of targets m << NT . In this
geography-based scenario, the source node controls its searching
area by appending a searching radius limit on the query packet,
and only nodes inside the distance limit will forward the query
packet. Thus, it is assumed that nodes know about their own
geographic location. In this scenario, latency is defined as the
round trip distance from the source node to the target. For ex-
ample, for the source node to hear the response from the border,
the latency is 2 × 1 = 2.

We experiment on 3-ring BF, 3-ring RS and 3-ring ORS using
the area set obtained from analysis for BF and RS and record
their cost and latency. The cost is compared to the expected
cost of the 3-ring RS scheme from analysis. In the top row of
Fig. 4, we show the results of the 1-out-of-m discovery, and on



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8
cost: 1 out of m

m

co
st

analysis 3−ring RS
simu 3−ring BF
simu 3−ring RS
simu 3−ring ORS

0 10 20 30 40 50
0

0.5

1

1.5

2
latency: 1 out of m

m

la
te

nc
y

simu 3−ring BF
simu 3−ring RS
simu 3−ring ORS

0 10 20 30 40 50
0.6

0.65

0.7

0.75

0.8
cost: m/2 out of m

m

co
st

analysis 3−ring RS
simu 3−ring BF
simu 3−ring RS
simu 3−ring ORS

0 10 20 30 40 50
1.4

1.45

1.5

1.55

1.6
latency: m/2 out of m

m

la
te

nc
y

simu 3−ring BF
simu 3−ring RS
simu 3−ring ORS

Fig. 4. The average cost and latency performance for each algorithm for ge-
ographical scenarios. The x-axis indicates the targets available in the searching
area. The top row shows the results of 1-out-of-m discovery, and the bottom row
shows the results of m

2
-out-of-m discovery.

the bottom row, we show the results of the m
2 -out-of-m discov-

ery. In both cases, the cost of these algorithms is very close
to the expected cost of 3-ring RS. This verifies our model and
analysis. For latency, ORS performs a little better than the other
algorithms. This is because it is more aggressive in searching a
larger area and tends to take fewer attempts to complete the task.
Thus, the corresponding latency tends to be smaller.

IV. MULTI-TARGET DISCOVERY IN SMALL-SCALE
NETWORKS

Previously, we studied the target discovery problem based on
a simplified model for infinite networks. In this model, we do not
differentiate source nodes since source nodes are always located
at the center of the interested area to be searched. While these
assumptions simplify analysis and are approximately valid for
large-scale networks, they do not hold true for small-scale net-
works. In small-scale networks, different nodes located at differ-
ent positions in the network have different views of the network,
especially for those nodes that are close to the network borders.
Also, in small-scale networks, source nodes are more likely to
search the entire network to complete the discovery task instead
of searching only a part of the network. Furthermore, since hop
limits are more widely applied to restrict flooding in small-scale
networks than geographical limits, we must determine how to
transform the analytical parameter searching area set A(n) into
hop limit values to make our results practical.

Let us remodel the problem for small-scale networks. Sup-
pose the network is a circle of unit radius, and there are a total
of N nodes and a total of m targets uniformly distributed in this
network. A node wants to find k targets out of these m tar-
gets. What is the best strategy for this node if it has knowledge
about its distance from the network border x0? What is the best
strategy if nodes do not know their location and have to apply a
consistent system-wide searching strategy?
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Fig. 5. The number of nodes Ni,x0 at i hops away from a node that is x0 away
from the border and its estimation Ñi,x0 . The results are shown for 1000 nodes
with transmission range 0.1. The left plot is for the border node x0 = 0, and the
right plot is for the center node x0 = 1.

A. Self location aware

Although we modify our assumptions and network model to
fit small-scale networks, it is interesting to find that equations 8
and 16 still hold true no matter where the source node is located.
This is because we assume that both the nodes and targets are
uniformly distributed in the entire area, which makes the deduc-
tion of the searching cost and the probability of finding targets
follow exactly the same procedures. Therefore, the algorithms
proposed based on these equations can still be applied to de-
termine the searching areas. The only question incurred by the
small-scale network model is how to utilize these calculated ar-
eas in practical applications by transforming them into hop limits
to restrict flooding.

1) Mapping areas into hops: Previously, we provided de-
tailed analysis on how to complete this mapping [7]. To avoid
redundancy, we will just briefly discuss it here. The authors
in [14] point out that each node has to be connected to more
than 5.1774 log N neighbors to have the network asymptotically
connected with probability approaching one. In other words, in
a well connected network, each node’s transmission range Rt

must be large enough to satisfy this requirement. By investigat-
ing the number of nodes at different hops from a node located x0

from the border, we provided a method to estimate the number
of nodes Ñi,x0

at i hops away from the source node based on the
value of N and the transmission range Rt. To concentrate on our
analysis, we assume that we have the estimated sequence Ñi,x0

for a node located at x0. Fig. 5 shows Ni,x0
in a 1000-node

network with x0 = 0 and x0 = 1, along with their estimates
Ñi,x0

.
Since the calculated area A can be seen as the percentage of

nodes to be searched, we only need to find out which hop limit
leads to a ratio of nodes covered close to the value of A. There-
fore, each node first calculates the ratio of nodes within k hops

Tk,x0
using Tk,x0

=
∑k

j=0 Ñj,x0

N
. Given the calculated area Ai,

the corresponding number of hop hi can be found from [1,M ]
where Thi,x0

is closest to the value of Ai. M is the network di-
ameter, which can be estimated using the methods provided in
[7].

We show a mapping example in Fig. 6. In a network with a
total of 1000 nodes and transmission radius of Rt = 0.1, a node
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Fig. 6. An example on how to transform calculated areas into hop limits. First,
Ni,x0 is estimated. Second, normalized Ti,x0 is determined. Finally, hop limits
can be found by matching the areas with Ti,x0 .

located at the network border with x0 = 0 is able to estimate
the number of nodes at exactly i hops Ñi,x0

as shown in the
first plot. Then, it calculates Ti,x0

as shown in the second plot.
Ti,x0

indicates what portion of nodes are located within i hops
from the source node. For a task of finding 3 targets out of 20,
we have A(2) = {0.489045, 1.0} for a two-ring RS scheme,
and A(3) = {0.489045, 0.727723, 1.0} for a 3-ring RS scheme.
In the last plot, we find that T15,x0

≈ A1 = 0.489045 and
therefore the first hop is 15 for the two-ring scheme. Similarly,
T19,x0

≈ A2 = 0.727723, and 19 should be the second hop
limit for the 3-ring searching scheme. Therefore, the hop limit
set should be {15,∞} for the two-ring scheme and {15, 19,∞}
for the three-ring scheme. By using ∞ as the last hop limit, we
mean that any large enough integer can be used just to flood the
entire network. From this example, we can see that with the
estimation of Ni,x0

, we can easily map the calculated area set
A(n) into hop limits and apply these hop limits in small-scale
networks.

2) Simulation results: Using the above mapping method,
we experiment in a small network composed of NT = 1000
nodes with transmission radius Rt = 0.1 in a unit radius cir-
cle area. We compare our two-ring RS scheme with existing
schemes DSR and EXP in a scenario where nodes know their
distance to the border x. DSR is actually a two-ring scheme
with searching radius {1,M}. EXP uses a searching radius set
{1, 2, 4. · · · ,M}. For our scheme, two-ring RS is applied due
to its simplicity and its major impact in cost reduction. Fig. 7
shows that when m is large and k is small, EXP performs close
to RS despite the latency being nearly twice that of RS. Although
we cannot explain this phenomena analytically, one possible ex-
planation is due to the discretization when mapping areas into
hops. DSR shows a close performance to the one-ring search-
ing, whose cost is 1000. Fig. 7 shows that for nodes at differ-
ent locations, RS performs consistently low while the perfor-
mance of EXP varies greatly. This is because RS chooses dif-
ferent hop limit values based on the source node’s location to
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Fig. 7. Searching cost and latency comparison in small-scale networks for self-
location knowledgable nodes. The x-axis indicates the source node location. RS
performs consistently better than schemes DSR and EXP in terms of both cost
and latency for all searching tasks.

match the same optimal searching area to achieve the same op-
timal cost, while EXP chooses the same searching strategy for
every node. Finally, scheme EXP is only suitable for searching a
small number of targets in terms of cost. In addition, the exces-
sive searching expansion procedure incurs unnecessary latency
increase. For finding m

2 -out-of-m targets, the EXP scheme may
have a cost larger than 1000, even worse than the simple one-ring
searching scheme.

B. Self location unaware
In a more general scenario, nodes do not know their positions

in the network, and they have to apply the same searching strat-
egy. The optimal searching strategy that minimizes the searching
cost has to be reconsidered from the system’s point of view.

We limit our scope to the two-ring RS searching scheme since
the three-ring RS scheme does not bring significant cost im-
provement. Although this conclusion is drawn from the ideal-
ized infinite network model, we believe that it should still be
valid for hop-based cases as well. Now, there is only one param-
eter we need to determine, the first searching hop ksys.

1) Determining ksys: It is easy to determine that for a uni-
formly distributed network, the probability that a random node
is located x away from the border is

fX(x) = 2(1 − x) 0 ≤ x ≤ 1 (19)

Given a sampling of x and an arbitrary ksys value, we can find
the corresponding searching area by calculating A(ksys, x) =

Tksys,x based on Ñi,x as in the last section. Then putting
A(ksys, x) into equation 8 or 16, we can obtain the searching
cost C(ksys, x) for this specific node with the searching hop
limit at ksys. Therefore, the system-wide expected cost that
takes into account every node can be expressed as

Csys(ksys) =

∫ 1

0

fX(x)C(ksys, x)dx ≈

1
δ∑

i=1

fX(iδ)C(ksys, iδ)

(20)



Here we propose our two-ring scheme based on Eq. 20.
For each possible value of k less than the estimated network
diameter M , we sample x from [0,1] using sampling interval
δ and determine the corresponding C(k, x). We then use
equation 20 to calculate the system cost Csys(k), and determine
the optimal first searching hop kopt where the minimal Csys is
obtained.

2) Simulation results: We simulate this location unaware
scenario following the above procedure. First, we need to
clarify the sampling interval δ and its effects on the accu-
racy of the first hop limit and the computational complexity.
From table III, we find that when δ decreases as the sequence
{0.1, 0.05, 0.02, 0.01, 0.05}, the hop limit of the 2 out of 20
task is always 7, and the hop limit of the 10 out of 20 task is
{14, 15, 14, 13, 13}, while the number of computations increases
linearly with 1

δ
. This informs us that although a small interval

may bring about more accurate hop count calculation, the im-
provement is restricted since the hop limit must be chosen as an
integer. We believe that the interval of 0.1 is good enough for
use, and we apply δ = 0.1 in the rest of our simulations. The ∞
for the 18-out-of-20 task indicates that there is no better scheme
to find 18 targets more efficiently than just searching the entire
area once by using a large enough hop limit.

TABLE III
THE IMPACT OF SAMPLING INTERVAL δ.

δ Computations First searching hop

of {2, 10, 18}-out-of-20

0.1 10 {7, 14,∞}

0.05 20 {7, 15,∞}

0.02 50 {7, 14,∞}

0.005 200 {7, 13,∞}

In Fig. 8, we compare the system-wide cost and latency
performance of different schemes. In RS, the first hop limit of
{7, 14,∞} are used for finding {2, 10, 18} out of 20 targets.
Again, RS performs consistently well for all the tasks. When
k is small as for the 2-out-of-20 task, EXP performs close to
RS in terms of cost with a much longer latency. The estimated
network diameter M , as seen from the left plot of Fig. 5, is 29,
and the largest possible network diameter from statistical results
is 33. Therefore, using any number larger than 33 as the first
hop limit is actually a one-ring searching scheme.

3) Robustness validation: As mentioned earlier, our algo-
rithm RS outperforms schemes DSR and EXP because it utilizes
knowledge of the network parameters N and m to choose the
optimal searching hop limits. The EXP scheme, on the other
hand, also requires this topology information to a certain degree.
First, EXP needs m to determine if the task of k-out-of-m is fea-
sible by checking k < m. Then, it requires N to estimate the
network diameter M so that it knows when it should stop the
expansion searching. Failure to estimate M may lead to redun-
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Fig. 8. Searching cost and latency comparison in small-scale networks for self-
location unaware nodes. RS performs consistently close to optimal in terms of
both cost and latency for all searching tasks.

dant attempts to flood the entire network, especially when the
task cannot be completed. During the network design phase, the
scale of the network is usually determined and the value of N

may be roughly estimated. The information of the server num-
bers m can be achieved by letting each server announce its ex-
istence through broadcasting when a service is available. Due
to the dynamic nature of the network, knowing the existence of
a service does not explicitly help in finding a server. Therefore,
the announcement can be so infrequent that the extra cost of this
announcement can be seen as negligible when the number of ser-
vice requests is large. Also, nodes newly joining in the network
can ask their neighbors for the number of services available and
have a rough idea about the services available.

Despite the fact that both RS and EXP require knowledge of
N and m, RS needs it to be much more accurate. Erroneous N

and m may lead to erroneous calculation of the first hop limit
and thus affect the final searching cost. In this section, we will
study the impact of erroneous parameters and test the robustness
of our algorithms.

First, for a network of N nodes, let us define the error of N

as eN = Ñ−N
N

. Ñ is the estimated total number of nodes in the
network by a specific source node. Similarly, we can define the
error for the number of targets m as em = m̃−m

m
, where m̃ is the

estimated total number of targets in the network.
Although eN and em are two different types of errors, when

applying RS using these erroneous values, they eventually end
up in an erroneous value of the first hop limit. For example,
for the 2-out-of-20 task, the hop limits calculated based on erro-
neous eN or em are shown in table IV.

An example of how these erroneous first hop limits affect the
cost can be found in Fig. 9. Only when the error is very large,
e.g., as large as em = 100%, does the cost increase from the
optimal 265 transmissions per search to 364 transmissions per
search. For not so large errors, the cost will be 279 or 315 trans-
mission, which is not so far away from the cost of the optimal
2-ring searching scheme, 265 transmissions.

For small-scale networks, similar conclusions can be drawn
as in the last section. When the knowledge of N and m is accu-



TABLE IV
THE IMPACT OF ERRONEOUS N AND m ON COST.

eN -50% -40% -30% -20% -10% 10% 20% 30% 40% 50%

1st hop 9 9 8 8 8 8 7 7 7 7

em -100% -80% -60% -40% -20% 20% 40% 60% 80% 100%

1st hop 10 9 9 8 8 8 7 7 7 7
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Fig. 9. The cost for all the possible first hops using a two-ring searching in
small-scale networks. The x-axis indicates the first hop limit.

rate enough, RS can be applied to save cost while reducing the
latency by about 50% compared to EXP. When N and m cannot
be accurately estimated but the number of nodes to be found k

satisfies k << m, EXP can be performed to reduce cost while
doubling the latency. When k is close to m or when no infor-
mation is known about the network topology, a simple flooding
searching scheme is not bad since its latency is the smallest and
it may perform even better than an arbitrary n-ring scheme. The
DSR scheme shows a trivial cost improvement and a trivial la-
tency reduction compared to the 1-ring scheme, and hence is of
little practical value.

In summary, we illustrate how to apply our former analytical
results to realistic hop-based small-scale networks. If a node has
knowledge about its current location, it can calculate the optimal
searching area A using RS and transform it into the desired hop
limits. If nodes do not have the knowledge of their location in the
network, a consistent two-ring searching strategy can be utilized
for all nodes to reduce the searching cost from a system-wide
perspective.

V. CONCLUSION AND DISCUSSIONS

In this paper, we studied the multi-target discovery problem
in wireless networks. Through analysis, we provide several al-
gorithms to determine the optimal searching strategies to reduce
cost. We found that a 2-tier search usually performs close to op-
timal already and a 3-tier search can further reduce the searching
by a trivial amount of around 3%. Our analysis is based on gen-
eral assumptions, and the conclusions are universal to wireless
networks. Simulations validate our analysis and show the prac-
tical value of our schemes in realistic scenarios.

One assumption of this paper is that nodes and targets are all
uniformly distributed within the network. The limitation of this
assumption is obvious in that our algorithms cannot be directly
applied to non-uniform target distributions. One potential area
for future work is to determine the optimal solution under the

circumstances where nodes and targets are not uniformly dis-
tributed. In some scenarios, nearer areas may contain more tar-
gets of interest than farther areas. We expect that the first several
searching rings should be even smaller than that in the uniform
distributed network. In some other scenarios, farther areas may
contain more targets of interest, e.g., caches are more likely to
be around the targets and be far from the source nodes. In this
case, a good strategy should be able to direct the query packets
to the targets’ surroundings as fast as possible. Also, the effects
of more realistic wireless propagations and transmissions may
be taken into account and investigated, although we expect them
to have the same effects on RS and EXP.
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