
DSP Architectures: Past, Present and Future*

Edwin J. Tan, Wendi B. Heinzelman
Department of Electrical and Computer Engineering

University of Rochester
Rochester, NY 14627

{etan I wheinzel)@ece.rochester.edu

A b s t r a c t - A s far as the future of c o m m u n i c a -
t ions is concerned , w e have s een that there is great
d e m a n d for audio and v ideo data to c o m p l e m e n t
t e x t . Dig i ta l s ignal process ing (D S P) is the sci-
ence that enables tradi t ional ly analog audio and
v ideo signals to be proces sed digital ly for trans-
miss ion , s torage , reproduct ion and manipulat ion .
In this paper , w e wil l expla in the various D S P
archi tec tures and its s i l icon i m p l e m e n t a t i o n . W e
wil l also discuss the s ta te -o f - the art and e x a m i n e
the i ssues perta in ing to performance .

1 I n t r o d u c t i o n

In the last few years, the future of communica-
tions has been largely influenced by the rapid growth
of wireless telephony, the Internet and mobile com-
puting. The traditional purposes of signal processing
such as modems, music synthesis and noise cancel-
lation, while important , have been overtaken by the
new-found Web based applications. These emerging
technologies, especially in the area of wireless com-
munications and Internet audio/video, have led to a
50% increase in DSP processor shipments in 1999 [1].

As a result of this rapidly expanding market, DSP
vendors are vying for an ever larger slice of the pie.
To entice end product manufacturers to adopt their
chips as well as to meet the needs of the emerging
technologies, new innovations in DSP capabilities are
required. We will look at the traditional DSP as well
as the current features and the historical concepts
behind the DSP architecture.

Like its microprocessor counterpart , performance
is of great interest. Benchmarking provides a com-
mon means for DSP users to evaluate and compare
DSP chips in the market. These results show that
DSP processors are also bounded by tradeoffs in
terms of speed, power and computational tasks.

*This work was supported in part by the University of
Rochester SEAS Graduate Student Fellowship No. 2-11144-
1641.

2 D S P P r o c e s s o r F u n d a m e n -
ta l s

In the literature, the definition of a digital signal
processor takes many forms. In a strict sense, a DSP
is any microprocessor tha t processes digitally repre-
sented signals [2]. A DSP filter for example, takes one
or more discrete inputs, xi[n], and produces one cor-
responding output, y[n] for n , - 1 , 0, 1, 2 , . . . ,
and i = 1 , . . . , N [3], where n is the n th input or out-
put at t ime n, i is the i th coefficient and N is the
length of the filter. In effect, the DSP implements
the discrete-time system. As its name implies, it is
assumed that there must be some form of preprocess-
ing if the signals are in the continuous time domain,
and this is easily accomplished by an analog to digital
converter (ADC).

In general, DSP functions are mathematical op-
erations on real-time signals and are repetit ive and
numerically intensive. Samples from real-time signals
can number in the millions and hence a large mem-
ory bandwidth is needed. It is because of this very
nature tha t DSP processors are created with an ar-
chitecture unlike those of conventional microproces-
sors. Most DSP algorithms are not complicated and
only require multiply and accumulate calculations [4].
Most, if not all, DSP processors have circuitry built
and hard wired to execute these calculations as fast
as possible.

2.1 P r o c e s s o r A r c h i t e c t u r e s

The signal processing algorithms and functions
define a suitable architecture for implementation. We
use a simple example of an FIR filter as a basis for
the building blocks of the DSP architecture.

One algorithm used to create an FIR filter uses a
direct form or tapped delay line s t ructure with M + 1
taps. The M + 1 most recent input samples are saved
as "filter states". According to Equation (1),

- - 6 m

M

y(n) -- ~ ~x(n - i) (1)
i----O

the products of each filter state x(n - i) and its cor-
responding coefficient ci are accumulated or added
to produce the current output sample y(n). We can
also use the signal flow graph as shown in Figure 1
to represent this algorithm. However it is not clear
as to the sequence of the computations since it looks
like all the operations can be carried out at the same
time.

This cannot be the case as operations have to fol-
low a sequence for proper algorithm functionality. It
is also not stated as to where the locations of the data
operands and coefficients are before they are used in
the computations. Thus, a more accurate picture has
to be formed by using micro-operations at the regis-
ter transfer level (RTL), sequenced temporarily from
left to right as seen in Figure 2 [3].

c o x~ c I •
t o o c

y(n)

Figure 1: Tapped delay line structure of a FIR filter.

x(n) y(n) Input und Output

! "' ... '" ~].'~] i ~ ~ ! "~] il]I ~ D'!!l!il e re@i!! !i! i

Figure 2: Register transfer level representation of a
FIR filter.

The delayed inputs are stored in the data memory,
D1 and the coefficients, Co, c l , . . . C(M) are located in
the coefficient memory. The contents of both memo-
ries are fetched and multiplied together. The result
is then added to the temporary memory, T1. T1
is where the results of the previous taps are stored.
This cycle is repeated with a different coefficient until
completion, producing the final result as y(n).

We can make certain assumptions for a funde-
mental general purpose DSP architecture. From

our understanding of DSP algorithms, we see that
most computations are multiply and add operations.
Looking at the example from the previous section,
we will require multiple memory units for storage of
different data as well as memory for the arithmetic
operation sequences. Registers can serve as tempo-
rary storage locations and buses will be needed to
connect these units together.

At this point, the reader may be tempted to ask
how this design is different from a general purpose
microprocessor (GPP). If we recap the issues central
to a DSP function, most DSP calculations are repeti-
tive, require a large memory bandwidth and numeric
precision, all executed in real time [5]. One might
also argue that modern GPPs have clock speeds and
cycles per intsruction (CPI) that outperform DSP
processors but GPPs have operations and program
flexibility that are unecessary for DSP [4]. DSPs
must execute their tasks efficiently while keeping
cost, power consumption, memory usage and devel-
opment time low [5], especially in the age of mobile
computing.

Since many signal processing applications process
millions of samples of data for every second of op-
eration, the minimum sample period is usually more
important than the computational latency of the pro-
cessor [3]. We define the sample period as the time
between each sequential sample of the input data.
The time difference between the input data and the
result of its computation is known as the computa-
tional latency. Once the initial sample is calculated
with a certain latency, the subsequent results will
however, be produced at the sample period rate. As
the number of calculations increases, the relatively
larger latency of the processor will be negligible com-
pared to the sample rate.

3 Processor Evolut ion

Even though DSP processors have seen dramatic
changes through the past couple decades, there are
certain features central to most DSP processors in the
market today. We already know that these proces-
sors need multiple memory banks with independent
buses, but in addition, specialized instruction sets,
addressing modes, control and peripherals are also
required.

It is widely known in the industry that the general
DSP architectures can be divided into three or four
categories or generations [5] [6] and we will look at
each of them in turn. We will not address custom
DSP architectures for specific DSP algorithms in this
paper.

3.1 E a r l y S i n g l e C h i p D S P P r o c e s s o r s

The first single chip processors [7] were the foun-
dation on which modern DSP processors were built.
Although most of them were not commercially suc-
cessful, manufacturers were quick to learn the pitfalls
surrounding each of them. It is also interesting to
note that among these early chip vendors, only one
has maintained a DSP product line to this day.

In 1978, AMI released a "Signal Processing Pe-
ripheral" known as the $2811 which was designed
to operate along with a GPP such as the 6800 from
Motorola. The $2811's main function was to relieve
the burden of performing math intensive subroutines
from the main processor. In short, it behaved as a
math coprocessor and was never used in large quan-
tities in any end product.

A year later, Intel announced an "Analog Signal
Processor" which had an analog to digital converter
(ADC) and digital to analog converter (DAC) re-
siding on the die. The disadvantage of this proces-
sor, 2920, was that it did not have a true multiplier.
Multiplication was accomplished by bit shifting and
adding partial products; thus the performance of the
2920 was only silghtly better than a GPP. Commer-
cially, the chip was only used in modems.

AT&T's Bell Laboratories introduced the DSP1 in
February of 1980. The DSP1 had most of the func-
tional units seen in current DSP processors such as a
multiply and accumulator (MAC), parallel address-
ing unit, control and data memories. Its success was
also due to the fact that development tools were avail-
able for rapid prototyping. The DSP1 architectural
heritage has survived until today, evolving into the
DSP 1600 processor family from Lucent Technologies.

3 .2 F i r s t G e n e r a t i o n C o n v e n t i o n a l

This class of architecture represented the first
widely accepted DSP processors in the market, ap-
pearing in the early 1980's. There were a few
key manufacturers that offered processors that share
many similar traits. The chips were designed around
a Harvard architecture with separate data and pro-
gram buses for the individual data and program
memories respectively. The key functional blocks
were the multiply, add and accumulator units, but
these processors could only perform fixed-point com-
putations. The software that accompanied the chips
had specialized instruction sets and addressing modes
for DSP with hardware support for software looping.

These processors were the TMS320C10 from Texas
Instruments and the ADSP-2101 from Analog De-
vices. A graphical representation of the general ar-
chitecture is depicted in Figure 3.

Program
memory

r

Figure 3:
tecture.

Program bus

Data bus

Data] M
memory

Control " I

J
First generation conventional DSP archi-

3 .3 S e c o n d G e n e r a t i o n E n h a n c e d
C o n v e n t i o n a l

The next stage of development started in the
late 1980's/early 1990's, and variants of this architec-
ture have lasted until today. These processors retain
much of the design of the first generation but with
added features such as pipelining, multiple arithmetic
logic units (ALU) and accumulators to enhance per-
formance. The advantage in this is that most pro-
cessors are code compatible with their predecessors
while providing speedup in operations.

Shrinkage of feature sizes also allowed more func-
tional units to be included on the chip. Peripheral
device interfaces, counters and timer circuitry, impor-
tant to data acquisition, are now incorporated in the
same die as the DSP. In addition, parallelism could
be attained by duplicating key functional units.

The TMS320C20 from Texas Instruments com-
bines both a pipelined architecture and an Auxil-
Iary Register Arithmetic Unit (ARAU). In addition,
the on-chip data RAM can be configured either as
data or program memory. The ARAU can provide
address manipulation as well as compute 16-bit un-
signed arithmetic, off-loading some of the processing
from the Central Arithmetic Logic Unit (CALU) [8].

Another example from this era is the Motorola
DSP56002. It has a three-stage pipeline and pe-
ripherals such as a Serial Communications Inter-
face (SCI), Synchronous Serial Interface (SSI), Paral-
lel Host Interface, Timer/Event Counter and Phase
Lock Loop (PLL). There are three RAMs, one for
program and storage and two for data. A 24 by 24-
bit multiplier is accompanied by two 56-bit accumu-

lators [9].
The latest Lucent Technologies' fixed point

DSP16xxx family of processors looks very much like
its predecessor introduced in 1990, the DSP1600. Its
enhancement is in its data path, which includes two
16 by 16-bit multipliers, an additional 3-input adder
and eight 40-bit accumulators [10]. The simplified
data path is shown in Figure 4 for comparison with
a traditional DSP architecture [10] [11]. Ignoring the
shifters and swap/split multiplexers, the basic data
flow of the multiplier, ALU and accumulator is con-
ventional.

. • y(32) x(32)

swap multipl /

I I
16 x 16 multiply [I 15 x 16 multiply

I I

i rift _ , +
bit 3 input adder

~_~ manipulation
unit

split/multipl /

8 x 40 bit accumulator

i l l l
Figure 4: Simplified Lucent Technologies DSP16xxx
data path.

3 . 4 T h i r d G e n e r a t i o n N o v e l D e s i g n s

It is about this time that designers were looking
at incorporating GPP architectures into DSPs. This
speeds up computations while retaining the func-
tions critical to DSP. Today's DSPs execute single in-
struction multiple data (SIMD), very long instruction
word (VL1W) and superscalar operations. On the
software side, more advanced debugging and appli-

cation development tools have been created to com-
plement multiple instruction hardware loops, modulo
addressing and user defined instructions [5].

SIMD is characteristic of most high performance
GPPs that are also capable of multimedia extensions
(MMX) and AltiVec algorithms. SIMD allows one in-
struction to be executed on many independent groups
of data. For SIMD to be effective, programs and data
sets must be tailored for data parallel processing, and
SIMD is most effective with large blocks of data [5].
In DSP, SIMD may require a large program memory
for rearranging data, merging partial results and loop
unrolling. The two common ways of implementing
SIMD are to use split execution units and multiple
execution units or data paths depicted in Figure 5
[5].

32-bit x input register

16bits I 1

32-bit y input register

16 bits 16 bits

I functional units

~its

32-bit output register with two 16-bit results

Figure 5: SIMD split execution unit data path.

VLIW processors issue a fixed number of instruc-
tions either as one large instruction or in a fixed in-
struction packet, and the scheduling of these instruc-
tions is performed by the compiler [12]. For VLIW
to be effective, there must be sufficient parallelism in
straight line code to occupy the operation slots. Par-
allelism can be improved by loop unrolling to remove
branch instructions and to use global scheduling tech-
niques, but then a disadvantage of VLIW is low code
density if loops cannot be sufficiently unrolled.

Superscalar processors, on the other hand, can is-
sue varying numbers of instructions per cycle and
can be schedulled either statically by the compiler or
dynamically by the processor itself [12]. As a result,
superscalar designs may hold a couple of code density
advantages over VLIW. This is because the proces-
sor can determine if the subsequent instructions in a
program sequence can be issued during execution, in
addition to running unschedulled programs.

Recently, we have seen that VLIW has been regain-
ing popularity as a means to improve performance.
The latest instruction set architecture co-developed
by Intel and Hewlett-Packard, the IA-64, retains
much of the VLIW flavor with nuances of CISC and

- - 9 - -

RISC [13]. This hybrid architecture is called explic-
itly parallel instruction computing (EPIC) and its
main purpose is to permit the compiler to group in-
structions for parallel execution in a flexible fash-
ion. This VLIW-like concept has also been ported
to the DSP domain. The joint-venture between Mo-
torola and Lucent Technologies, StarCore, has an-
nounced a new DSP architecture known as variable
length execution sets (VLES). Like EPIC, VLES
combines CISC, RISC and traditional VLIW into an
architecture that tries to eliminate VLIW's two ma-
jor disadvantages: code density and code scalabil-
ity/compatibility [14].

The latest DSP chip family from Texas Instru-
ments, TMS320C64x, combines both VLIW and
SIMD into their architecture known as VelociTI.2.
Instead of varying the length of instruction groups as
in EPIC and VLES, this scheme improves the perfor-
mance of VLIW by allowing execution packets (EP)
to span across 256-bit fetch packet boundaries [15].
Each EP consists of a group of 32-bit instructions
and the EP can vary in size as seen in Figure 6. By
removing these boundaries, no operation (NOP) in-
structions, common in traditional VLIW, are elimi-
nated and code size is minimized [16].

I I I I I I I I I
9 ~

EPI

I I I I I I I I I
EP2 EP3

I I i l 1 1 1 1 1
EP3 EP4 EP5

9 iP

256 bits

Figure 6:VelociTI.2 architecture allowing boundary-
less EP.

The VelociTI.2 architecture implements the SIMD
philosophy in providing two register file data cross
paths [15]. Each data path includes a general pur-
pose register file and can be used for either data, data
address pointers or condition codes. The cross paths,
1X and 2X, allow functional units from one side to
access a 32-bit operand from the register file of the
other side. This access can be performed simultane-
ously while the other side's functional units are using
operands from its register file. Figure 7 is a simpli-
fied diagram of the 'C64x data cross paths. The eight
functional units are L1, L2, S1, $2, M1, M2, D1 and
D2. DA1 and DA2 are the data address paths.

The debate between the merits of superscalar and

VLIW is not only restricted to the GPP universe. LSI
Logic Corp. prefers the superscalar approach and is
currently the major manufacturer to champion this
architecture. We know that a key difference between
superscalar and VLIW lies in the hardware and soft-
ware complexity respectively. The argument pre-
sented by LSI Logic is that the VLIW methodology
requires a greater programming effort and is at the
mercy of the compiler. A change in the processor
hardware will also require a corresponding change in
the compiler to preserve efficiency [17].

It is also common in DSP programming to hand
code assembly code instructions for optimization, es-
pecially in loop operations. However, because of
VLIW's bundling of instructions, it is difficult for
programmers to track the multiple instructions for
different functional units in a deeply pipelined struc-
ture. The ZSP architecture from LSI Logic, real-
ized as the ZSP16400, intends to reduce program-
ming and compiler complexity without loss of per-
formance by implementing hardware techniques. In
addition to adopting a five stage pipelined architec-
ture, the superscalar ZSP16400 can issue up to four
instructions per cycle to two MACs and ALUs. Many
of the other features are almost identical to a GPP;
a one cycle RISC instruction set, load/store architec-
ture, fixed length instructions and hardware schedul-
ing [18]. The ZSP processor architecture is shown in
Figure 8 [18].

3.5 P o w e r C o n s i d e r a t i o n s

Power has been a major concern lately with in-
creased use of DSPs in mobile computing. Fortu-
nately, the architectural concepts we discussed in this
subsection help to play a part in reducing power con-
sumption. Power dissipation is lowered as parallelism
is increased with the use of multiple functional units
and buses. As a result, power usage is reduced when
memory accesses is minimized [19].

Increasing the word size as well as implementing a
VLIW-like algorithm allows more data to be fetched
per cycle and improves code density. An optimum
code density saves power by scaling the instruction
size to just the required amount. This is the basic
idea of a variable length instruction set processor.
The burst-fill instruction cache in the Texas Instru-
ments' TMS320C55x family is flexible enough to be
optimized based on the code type. This mechanism
improves the cache hit ratio and reduces memory
accesses. The core processor can also dynamically
and independently control the power feeding the on-
chip peripherals and memory arrays. If these arrays
and peripherals are not used, the processor switches
them to a low power mode and brings them back to

10

I Sl $2 D
LI

register A0 - A31 2X

DAI
(address)

IX

DA2
(address)

register B0 - B31

Figure 7: Simplified diagram of the 'C64x data cross paths.

J
, !

~ 2X

intermpt input
, . ~ .

Intearupt Control

: : ! : ' : : i Instruction _ _ Pipel:ne I < = l ~
luacne , Unit - - Control T

- ; 2 : : : Data : . Bo~,~ 2 2

. tL ~ ? Z Z i ' i

Figure 8:ZSP16400 processor architecture.

11

full power when an access is initiated without any
latency [19]. Another feature unique to this DSP
processor is that the CPU, DMA, peripherals, exter-
nal memory interface (EMIF), instruction cache and
the clock generator can be switched to a low activity
I D L E mode using user controllable software.

We cannot neglect the effects of CMOS process
technologies. Motorola's HIP-6 or Lucent's COM2
0.18 micron process will be used to fabricate Star-
Core's SC140. The six layer copper interconnect
chip's core is estimated to draw 198 mW at 1.5 V
and 300 MHz and 28 mW at 0.9V and 120 MHz with
3000 raw MIPS [14]. As a comparison, the 'C55x core
consumes between 11.2 and 64 mW at 1.2/1.5 V and
between 7 and 40 mW at 0.9 V. However, the 'C55x
can only compute between 140 and 800 MIPS [20].
In summary, the low voltages are especially impor-
tant as power consumption is defined by the product
of load capacitance, voltage squared, transition fre-
quency and clock frequency.

3 .6 F o u r t h G e n e r a t i o n H y b r i d s

The distinction between a true DSP product and a
computer is getting fuzzier, and each day a larger per-
centage of internet traffic is composed of audio and
video data. The problem lies in processing the audio
and video at the users' end. Here lies the dilemma;
the need for signal processing in a computer based
environment, sometimes simultaneously with general
purpose computing. Or in other cases, to be capable
of processing some digital signals but not wanting to
incur the extra cost of a dedicated DSP chip. Devices
such as these process control signals as well as digital
data.

Instead of a DSP core, the hybrids in the mar-
ket now incorporate DSP circuitry with a CPU core.
A positive side effect is that printed circuit board
(PCB) real estate is saved, thereby reducing the size
of the product, costs and more importantly the real
savings in the power consumed. In the hybrid proces-
sor, the GPP instruction set is retained and the ad-
ditional DSP instructions offioad the processing from
the GPP core.

The first commercially marketed hybrid, the Hi-
tachi SH-DSP is geared towards cellular applications
and control intensive DSP products such as disk
drives and modems [21]. The SH-DSP is actually a
combination of two cores, the SuperH RISC proces-
sor and the DSP core with on-chip peripherals such
as timers, communications interfaces, I /O and mem-
ory controllers [22]. It is interesting to note that the
RISC core implements the yon Neumann architecture
while the DSP is Harvard. Integer MAC operations
are carried out by the RISC core while the DSP core

processes the more complex DSP instructions. Both
cores are fed from a load-store five-stage pipeline and
both general purpose and DSP instructions can be in
the same instruction stream.

The I, X, Y and Peripheral buses are the four in-
ternal buses with which the cores communicate with
the memories and peripheral devices. The I bus is
comprised of a 32-bit address and data bus known
as the IAB and IDB respectively. This bus is used
by both the RISC and DSP core to access any mem-
ory block, i.e., X, Y or external. The X and Y bus
is only accessible to the DSP core for the on-chip X
and Y memories, and each bus has a 15-bit address
bus and 16-bit data bus. This address bus is actually
padded with a zero in the LSB position since mem-
ory accesses are aligned on word lengths. Lastly, the
Peripheral bus transmits bidirectional data to the I
bus via the Bus State Controller (BSC) [22]. Figure
9 presents a simplified block diagram of the SH-DSP
architecture. The DSP enhanced RISC core is repre-
sented by the Integer Unit.

24kB ROM I
4kB RAM) [

I bus

Y bus

X bus

I II I

I,
CPU

~ Periphera|
Units

Peripheral bus

Figure 9: Simplified SH-DSP family processor archi-
tecture.

The latest hybrid design comes from Motorola, us-
ing their MoCore RISC microcontroller unit (MCU)
core in conjunction with a DSP56600 DSP core. The
general idea is similar to the SH-DSP in which the
hardware architecture is intended for cellular appli-
ances. Both RISC cores are load-store, pipelined and
require a single cycle to execute most instructions.
The MoCore is a 32-bit processor but its instructions
are 16-bit in length so as to reduce power consump-
tion as well as cost [23]. The DSP core has only one

12

16 by 16-bit MAC but incorporates nested hardware
for do loops [24]. In addition to MCU/DSP shared
peripherals, the newest member of the DSP566xx
family, the DSP56690, has many application spe-
cific DSP peripherals such as a baseband port in-
terface, serial audio codec port, Viterbi accelerator
and layer-1 encryption. These embedded features are
designed to support the most common wireless pro-
tocols in use today; GSM, CDMA, TDMA, iDEN,
GPRS [25]. To reduce die size and power consup-
tion, the chips will eventually be manufactured in
Motorola's HiPerMOS-6 (HIP-6) 0.18 micron tech-
nology.

3 . 7 N e x t G e n e r a t i o n s

Based on the current trends seen in DSP devel-
opment, we can predict that the manufacturers will
be following the path of GPP techniques. We have
already seen that superscalar, VLIW and pipelining
architectural methods, common in GPP, are in use
in the latest DSP processors. Process technologies
such as copper interconnect and submicron feature
size will reduce chip area to enable smaller handheld
devices. Since 1985, there has been an increase of
almost 150% in DSP processor performance and this
trend will certainly continue for the next few years
[5].

This means that we can expect to see more on-chip
peripherals and memory; the system-on-chip (SOC)
may not be too far away. Clock speeds will increase
to reduce MAC computation times, but supply volt-
age must also correspondingly drop to reduce power
consumption. In Section 5 of this paper, we will look
at a few potential techniques currently developed for
GPP that we think may be adopted or modified for
use in DSP.

3 .8 P r o d u c t C o m p a r i s o n s

In any study or evaluation, the inevitable ques-
tion arises; which is the best? We will not attempt to
answer the question but leave this as topic of discus-
sion for the reader. Like in GPP studies, there are
tradeoffs to be made and perhaps there is no clear
choice. Perhaps another way of presenting this ques-
tion is how to select the right DSP processor for each
specific need, since one may be best suited for a par-
ticular application but be a poor choice for another
purpose [26].

We first consider the arithmetic format since the
main purpose of a DSP is to process numerical data.
DSPs can be classified into one of two types; fixed
or floating point. Most general DSPs are fixed point
since the circuitry is easier to design and manufac-

ture. Data widths of fixed point processors are also
smaller than floating point, generally 16-bits as com-
pared to 24-bits respectively. Thus fixed point DSPs
are cheaper and consume less power than their float-
ing point counterparts and are usually used in high
volume, compact sized, low power embedded appli-
cations. However, floating point devices are easier
to program since floating point arithmetic has more
flexibility and a larger dynamic range. The dynamic
range is the ratio between the smallest and largest
numbers that can be represented. A fixed point pro-
gram has to be carefully scaled by the user so as to
preserve the numeric precision required within the
tighter dynamic range.

Speed is a number that tends to get every-
one's attention, and the most common number
quoted for processors is the clock rate specified in
mega/gigahertz. The clock cycle is then the inverse
of clock rate. However, it is incorrect just to com-
pare performance purely on this figure as the work
done per clock cycle by each processor can vary, even
though a significantly high clock rate can outperform
an efficient lower clock rate processor. A related met-
ric that is frequently quoted is MIPS or millions of
instructions per second. The problem with MIPS
is that it is dependent on the instruction set [12]
[26]. The VLIW DSP processors issue and execute
multiple simple instructions per cycle and these sim-
ple instructions typically perform fewer operations
than conventional DSP instructions. Another com-
mon DSP function is multi-bit data shifting which
some processors can implement with a single instruc-
tion while others may require multiple one-bit shift
instructions. Speed and performance is a topic often
debated and we will revisit this issue again in the
benchmarking discussion.

We present a case study [27] to illustrate these
tradeoffs. Texas Instruments has released their lat-
est DSP processors at about the same time, but each
from a different family line tailored to meet specific
needs. The 'C6000 family is optimized for the highest
performance in terms of speed and simplicity in pro-
gramming with a high-level language. On the other
hand, the 'C5000 family was designed to operate on
very low voltages and power consumption. This is to
target the consumer digital market and battery pow-
ered mobile products, whereas the 'C6000 is better
suited for network communications that are powered
by fixed line supplies. Some of these applications
are modems, wireless base stations and machine vi-
sion systems. Architecturally, the 'C6000 incorpo-
rates many new techniques such as VLIW and spe-
cial purpose instructions. This family is rated up to
8800 MIPS at 1.1 GHz. The 'C5000 is an enhanced
conventional processor with an additional ALU and

13

MAC and will deliver between 140 and 800 MIPS
while running on 0.9 V. This study shows that the
power/performance tradeoff is still a real issue that
has not been solved.

4 Benchmarking D S P

As in GPP, DSP users need a basis to compare
performance. This being said, benchmarking is not
an easy task as there are many factors to consider.
Like microprocessors, DSP performance is not gov-
erned by just one factor but a series of specifications
such as power, clock speed, word size, etc. Combina-
tions of these factors may suit a particular applica-
tion and not another [28].

Currently as well as in the past, the popular met-
ric for quoting DSP performance is MIPS. How-
ever~ MIPS is not clear as to what any proces-
sor is good at for the reasons we have already dis-
cussed. As a result, the GPP and computer commu-
nity founded Standard Performance Evaluation Cor-
poration (SPEC) in 1988 to develop a realistic set
of standardized tests for rating computing systems
[29]. SPEC is a suite of C language program frag-
ments, applications and kernels that can be run on
computer systems. The main advantage of suite test-
ing is that the negative effect of one benchmark is
offset by the rest of the programs in the suite [12].
Unfortunately, executing SPEC benchmarks on em-
bedded and DSP processors would also be unrealistic
as the SPEC suite of programs are general in nature
and are not tailored for DSP. Also, it is common to
manually code sections of DSP algorithms in assem-
bly for optimum performance because C complilers
are inefficient in translating C code to DSP assembly
[2].

It is this reason that in 1994, an independent
DSP technology analysis and software development
firm, Berkeley Design Technology, Inc. (BDTi), de-
veloped a set of DSP algorithm kernel benchmarks
[30]. These algorithm kernels are implemented in
hand optimized assembly and so are not architecture
dependent. It is even possible to run these bench-
marks on GPPs for comparison with DSP proces-
sors. Unlike SPEC, BDTi implements and verifies
these benchmarks but will publish these results on
their web site without charge.

BDTi's concept is to strictly define these bench-
marks and to allow only realistic optimizations.
These benchmarks axe described in Table 1 [2]. The
algorithm optimizations are firstly for speed and then
memory use except for the control benchmark in
which memory is optimized first.

The results of the benchmarking can be presented
in terms of cycle counts or execution time and BDTi

Function Description

Real Block FIR Finite impulse filter op-
erating on real data.

Complex
FIR

Block FIR filter operating on
complex data.

Real Single Sample
FIR

FIR filter operating on
single sample of real
data.

LMS Adaptive Fil-
ter

Least mean square adap-
tive filter operating on
single sample of real
data.

Two-Biquad IIR Infinite impulse response
filter operating on single
sample of real data.

Vector Dot Prod- Sum of pointwise multi-
uct plication of two vectors.

Vector Add Pointwise addition of two
vectors resulting in third
vector.

Vector Maximum Locate the value of the
maximum vector.

Viterbi Decoding Decode a block of convo-
lutionally encoded bits.

256-Point-In-Place
FFT

Fast Fourier transform to
convert time domain sig-
nal to frequency domain.

Bit Unpack Unpack variable length
data from a bit stream.

Control Sequence of control op-
erations e.g. test, pop,
push, branch and bit ma-
nipulation.

Table 1: BDTi benchmark suite.

1 4 - -

has chosen the latter in their reports. In some cases,
a single numerical figure is required for quick com-
parison and BDTi has formulated a score known as
the BDTImark2000, based on their application ker-
nels suite. The BDTImark2000 represents DSP speed
and so a higher figure denotes better performance.
The limitation of this score is that it is only an es-
timate of the processor's execution speed and not of
specific applications. Hence a processor's strength in
a particular application may not be reflected in its
BDTImarks score [31]. Energy consumption is ob-
tained by multiplying the typical power usage of the
processor by the execution time of a benchmark. Al-
though it may be a less accurate method, it is less
time consuming and easier to implement [2].

Another aspect of characterizing performance by
BDTi is application profiling. The results give a bet-
ter picture of how kernels are actually used in applica-
tions. Essentially, profiling calculates the execution
frequency of kernels in applications and it presents
developers the relative weightings of each algorithm
kernel benchmark in a certain application. The com-
parisons between processors can be made by com-
paring the product of kernel execution times and its
number of occurences in the application.

Recently a path taken by the industry was to fol-
low in the footsteps of SPEC. In April of 1997, a
consortium of 21 manufacturers led by a trade publi-
cation, Electronic Design News (EDN), started work
on a new set of benchmarks targeted towards embed-
ded processors. This group is formally known as the
EDN Embedded Microprocessor Benchmark Consor-
tium (EEMBC), pronounced as "embassy". Their
aim was to develop a group of tests that can be eas-
ily ported to different processor architectures, hard-
ware platforms and operating systems while mea-
suring specific areas of the processor's performance
independently [32]. The benchmark scores are re-
ported individually for each test, unlike SPECint95
or SPECfp95 [33]. However, EEMBC also provides
a single composite scores for faster comparisons be-
tween processors. This score is determined by as-
signing a weight to each of the test in the suite. The
EEMBC composite scores are created for each of the
five application test suites, for example, the compos-
ite score for telecommunications is called Telemark,
and for networking, Netmark.

The EEMBC suite of tests are written in ANSI C
for portability and are similar to BDTi's idea of algo-
rithm kernels. Since the embedded market is diverse,
the benchmark algorithms are divided into five cat-
egories so as to allow testers to quantify their prod-
ucts with relevant tests, but there is nothing prevent-
ing testers to run their processors on other test cat-
egories. These five areas are automotive/industrial,

consumer, networking, telecommunications and office
automation. The six telecommunications tests would
apply for purely DSP testing, and these algorithms
are listed in Table 2 [34].

Algorithm Description

Autocorrelation A voice data array and
number of lags (time de-
lays) input is used to cal-
culate an array of sum of
products for each lag.

Bit Allocation The input data bits are
allocated equally over a
series of buffers (fre-
quency bins) using a wa-
ter level algorithm.

Inverse Fast
Fourier Transform
(iFFT)

Converting frequency do-
main data into time do-
main data using iFFT.

Fast Fourier Trans-
form (FFT)

Converting frequency do-
main data into time do-
main data using FFT.

Viterbi Decoder To recover an output
data packet from an en-
coded input data packet
by decoding.

Convolutional En-
coder

An output data stream is
generated from an input
data stream using a lin-
ear shift register and ta-
ble lookup.

Table 2: EEMBC Version 1.0 telecommunications
test suite.

The testing procedure is similar to SPEC in which
DSP vendors will perform the benchmarking and re-
port the results to EEMBC. It becomes official only
after EEMBC verifies the results with the identi-
cal test parameters used by the manufacturers in
EEMBC's testing lab, EEMBC Certification Lab-
oratories (ECL). Both unoptimized and "tweaked"
results can be reported to EEMBC [28]. However,
EEMBC allows anyone to run these tests at any time
and publish the results, but without EEMBC's offi-
cial stamp of approval. Scores are currently reported
in terms of iterations per second so higher figures
represent better performance.

15

Prior to these proposed standards, DSP manufac-
turers often had their own set of benchmarks and
methods of obtaining performance figures. Most of
these benchmark tests are still based on DSP algo-
rithms such as FIR filtering, MAC operations and
Viterbi decoding, but usually optimized and coded
in the chip's assembly language. More often than
not, the specifications are still quoted in MIPS. It is
clear from the discussions at the begining of this sec-
tion that other factors besides MIPS or even speed
may have to be used to characterize DSP processors.
Lucent Technologies has proposed a new measure of
DSP performance called the Applications Cube [35]
seen in Figure 10. The three parameters of the cube,
power, performance and cost, define the axes of the
cube in three dimensions. Each DSP processor when
quantified in these three terms for a particular ap-
plication, results in the volume of the cube and the
smaller the volume, the more suited the DSP is to
the appplication or function. The power parameter
is represented by milliamperes (mA) per function for
a certain voltage. Performance is still measured in
MIPS per function and the cost is calculated as code
size per function.

To round off our discussion on benchmarking, we
present the different benchmark scores [5] [6] [36] [37]
[38] [39] [40] [41] [42] for selected fixed point DSP
processors which we have discussed, for comparison
in Table 3. The EEMBC scores are not listed because
some DSP processors have not been formally tested
with EEMBC as of yet.

Although MIPS and to a certain extent, BDTI-
marks are not truly accurate benchmarks, they core-
late and it can be seen that in general, a high MIPS
figure will also result in a high BDTI.marks number.

5 Future Direc t ions

The trend to port GPP architectural techniques
will most likely continue. At the same time, new
methods of implementing these techniques are also
being carried out for GPP. Rather than lagging be-
hind GPPs, we see this as an opportunity for these
ideas to be applied to DSP concurrently.

An interesting idea that has been explored in dig-
ital circuits is the concept of asynchronous logic de-
sign. Although asynchronous circuits have been re-
searched in the 1950's, the study is regaining popu-
larity because of the positive benefits derived from
the technique. Asynchronous circuits have the po-
tential of providing high performance in terms of re-
ducing data dependent delays, improving the elas-
ticity of pipelines [43] and a higher operating speed
[44]. More importantly for the area of mobile com-
puting and Internet appliances is the benefit of low

power dissipation and electromagnetic compatibility
(EMC) [43] [44] [45].

The power savings in CMOS circuits is a result of
minimizing signal transitions. Asynchronous circuits
by nature do not use power in the idle areas of the cir-
cuit and can instantly activate circuits, modules and
storage elements when required, even without soft-
ware assistance [46]. In circuits where radio frequen-
cies are highly sensitive such as pagers, cellphones
and wireless devices, the frequency spectrum har-
monics of the supply current can cause interference
in the signal reception. The clock in a synchronous
system can contribute significantly to this frequency
spectrum whereas an asynchronous system would not
[43]. We have seen examples of asynchronous logic
successfully applied to application specific DSP such
as pagers [45] and hearing aids [44]. We believe that
future work can be done to incorporate this technique
to general purpose DSP processors. The execution
pipeline of the AMULET2e embedded controller [46]
has a shift and multiply functional unit providing
data to an ALU. This bears a close resemblance to
the architecture of a conventional DSP processor and
modifications may possibly convert the AMULET2e
for DSP use.

While not related to asynchronism, perhaps a re-
lated circuit technique is wave-pipelining. Although
its roots are in pipelining, the "reduced" use of reg-
isters, hence clocking elements, makes processing a
series of inputs into a combinational circuit asyn-
chronous. The pipelining effect is caused by the in-
herent delays (resistances and capacitances) of the
circuit. The advantages of wave-pipelining are a
simplified clock distribution scheme and a very high
pipeline rate. Wave-pipelining has been utilized in
specialized DSP circuits, for example multipliers [47]
and adaptive filters [48], but detailed studies into its
use in general purpose DSP processors could be car-
ried out further.

Regarding software issues, we must not overlook
the importance of compilers as well. The popular-
ity and ease of use of commercial general purpose
DSP processors is largely due to the availability of
development tools [5]. However the compilers and
tools are still inefficient in certain areas and hence
require hand optimization in the resulting assembly
code for better performance. More research can be
done to improve software tools to reduce manual cod-
ing; perhaps the first step is to reevaluate the choice
of programming languages.

6 Conclus ion

We began by briefly reviewing a digital signal pro-
cessing algorithm that influences the building blocks

--16 - -

m

MIPSffunction

Evaluating thmc diffcrcnt DSP processors tbr a modem application

Figure 10: The Lucent Technologies Applications Cube.

Manufacturer Processor Family Speed (MHz) 1 Architecture MIPS 2 BDTImark2000

Texas Instruments TMS320Clx 20 conventional 8.77 n /a

Hitachi SH2-DSP 100 hybrid 1003 280

Motorola DSP563xx 150 hybrid 150 450

Analog Devices ADSP-21xx 754 conventional 75 230

Texas Instruments TMS320C54xx 160 enh. conventional 160 500

Lucent Technologies DSP16xxx 170 enh. conventional 1705 810

LSI Logic ZSP164xx 200 superscalar 400 n /a

Texas Instruments TMS320C62xx 300 VLIW 2400 1920

Table 3: Comparison of benchmark scores for fixed point commercial DSP processors.

in a DSP processor. Most DSP operations can be
simplified into multiplications and additions, so the
MAC formed the main functional unit in early DSP
processor. Designers later incorporated techniques
from GPPs to enhance the performance of DSPs.
These architectures included pipelining, VLIW, su-
perscalar, and although not discussed in this paper,
branch prediction and speculation. These ideas will
stay with DSP processors and we think that the dif-
ferences between the DSP and GPP will become more
blurred in the future.

There has been a drive to develop new benchmark-

lInstruction clock speed for fastest device in the family
2MIPS for corresponding device speed
3Assuming one instruction per clock cycle
4Input clock is 37.5 MHz
510 ns multiply and accumulate instruction cycle time

ing schemes to measure performance since MIPS is
becoming less acccepted as a reliable metric. We see
two different groups taking an identical approach by
using application kernels and a commercial vendor
that also measures performance in terms of power
consumption, performance and cost. Power issues are
gaining importance as DSP processors are incorpo-
rated into handheld, mobile and wireless devices. Fi-
nally, we discussed techniques such as asynchronous
digital circuits and wave-pipelining that could be ex-
ploited in the future for performance as well as power
awareness.

17

7 A c k n o w l e d g m e n t s

The authors would like to thank Dr. Stephen
McAleavey for his time and effort in directing the
authors to relevant sources of DSP material and for
his insights into the subject.

[13]

[14]

R e f e r e n c e s [15]

[1] Forward Concepts, "Forward Concepts DSP
Market Bulletin", World Wide Web, h t t p : / / [16]
www. forwardconcepts.com/press25.htm, 7th
Apr. 2000.

[17]
[2] Berkeley Design Technology, Inc., "Evalu-

ating DSP Processor Performance", World
Wide Web, http://www, bdti. corn/articles/
benchmk_2000, pal, 2000. [18]

[3] V. K. Madisetti, VLSIDigital Signal Processors:
An Introduction to Rapid Prototyping and De-
sign Synthesis, Boston, MA: Butterworth Heine-
mann, 1995. [19]

[4] J. S. Thompson, S. K. Tewksbury, "LSI Signal
Processor Architecture for Telecommunications [20]
Applications", IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol ASSP-30, No.
4, pp. 613-631, Aug 1982. [21]

[5] Berkeley Design Technology, Inc., "The Evo-
lution of DSP Processors", World Wide Web,
http ://www. bdti. com/articles/evolution. [22]
pdf, 2000.

[6] L. Geppert, "High-Flying DSP Architectures", [23]
IEEE Spectrum, pp. 53-56, Nov 1998.

[7] J. R. Boddie, "The First Single-Chip DSP",
World Wide Web, ht tp: / /www, lucen t , corn/ [24]
m i c r o / d s p / s i n g l e .html, 2000.

[8] Texas Instruments, Inc. TMS3ZOC2x User's [25]
Guide, Austin, TX, Jan 1993.

[9] Motorola, Inc. DSP56002 Technical Data, Rev.
3, AZ, 1996. [26]

[10] J. Bier, "DSP16xxx Targets Communications
Apps", Microprocessor Report, Vol. 11, No. 12,
pp. 11-15, Sep 1997.

[11] Lucent Technologies, Inc., DSP16000, Allen- [27]
town, PA, Sep 1997.

[12] J. L. Hennessy, D. A. Patterson, Computer Ar-
chitecture: A Quantitative Approach, 2nd ed., [28]
San Francisco, CA: Morgan Kauffman Publish-
ers, Inc., 1996.

L. Gwennap, "Intel, HP Make EPIC Disclo-
sure", Microprocessor Report, Vol. 11, No. 14,
pp. 1, 6-9, Oct 1997.

T. R. Halfhill, "StarCore Reveals Its First DSP",
Microprocessor Report, Vol. 13, No. 6, pp. 13-16,
May 1999.

Texas Instruments, Inc. TMS320C64x Technical
Overview, Dallas, TX, Feb 2000.

Texas Instruments, Inc. TMS320C64x Digital
Signal Processor Core, Dallas, TX, 2000.

LSI Logic Corp., "Compiler-friendly Architec-
tures for DSP", World Wide Web, h t tp : / /www.
zsp. com/compiler , html, 2000.

LSI Logic Corp., "An Overview of the
ZSP Architecture: White Paper", World
Wide Web, h t tp : / /www.zsp . com/pdf / z sp_
whir epaper_v2, pdf, 1999.

Texas Instruments, Inc., TMS320C55x Techni-
cal Overview, Dallas, TX, Feb 2000.

Texas Instruments, Inc., TMS320C55x Digital
Signal Processor Core, Dallas, TX, 2000.

Hitachi America, Ltd., "SuperH - Digital Signal
Processor (SH-DSP)", World Wide Web, h t t p :
//www.hitachi. com/rd/Micropro .html, 1999.

Hitachi Micro Systems, Inc., SH-DSP Micropro-
cessor Overview, Ver. 0.1, Nov 1996.

J. Turley, "M-Core Shrinks Code, Power Bud-
gets", Microprocessor Report, Vol. 11, No. 14,
pp. 12-15, Oct 1997.

Motorola, Inc., DSP56651 16-bit Digital Signal
Processor Family Manual, Austin, TX, 1996.

T. R. Halfhill, "Motorola Cellular DSP Does It
All", Microprocessor Report, Vol. 13, No. 16,
Dec 1999.

Berkeley Design Technology, Inc., "Choosing
a DSP Processor", World Wide Web, h t t p :
//www.bdti.com/articles/choose_2000.pdf,
2000.

Texas Instruments, Inc., TMS320C64x DSP and
TMS320C55x DSP Cores: Do Something Phe-
nomenal, Dallas, TX, 2000.

J. Turley, "What's the Best Way to Bench-
mark?", Microprocessor Report, Vol. 13, No. 3,
pp. 3, Mar 1999.

h 1 8 - -

[29] The Standard Performance Evaluation Corpora-
tion, "SPEC's Background", World Wide Web,
http://www, specbench, org/spec/ , 1999.

[30] Berkeley Design Technology, Inc., "Inde-
pendent DSP Benchmarks: Methodologies,
Results, and Analysis", World Wide Web,
http ://www .bdti. com/articles/esc99/
benclmar/index, htm, 1999.

[31] Berkeley Design Technology, Inc., "The BD-
Tlmark: A Measure of DSP Execution
Speed", World Wide Web, h t tp : / /www.bdt i .
com/articles/wtpaper_1999, pdf, 2000.

[32] J. Turley, "Embedded Benchmark Work Under
Way", Microprocessor Report, Vol. 12, No. 5, pp.
13, Apt 1998.

[33] T. R. Halfhill, "Embedded Benchmarks Grow
Up", Microprocessor Report, Vol. 13, No. 8, pp.
1, 6-9, Dec 1999.

[34] EDN Embedded Microprocessor Bench-
mark Consortium, "Telecommunications
Benchmark Datasheets", World Wide
Web, http://www, eembc, org/Benchmark/
datasheet/Telecomm/default, asp, 2000.

[35] Lucent Technologies, Inc., A New Measure of
DSP, Allentown, PA, Sep 1997.

[36] Texas Instruments, Inc., "SMJ320E14 DIGITAL
SIGNAL PROCESSOR", World Wide Web,
h t tp ://www. t i . com/sc/docs/products /dsp/
smj 320e14. html, 2000.

[37] Analog Devices, Inc., DSP Microcomputer
ADSP-2189M, Norwood, MA, 2000.

[38] Hitachi America, Ltd., "SH-DSP SH7410
Programming Manual", World Wide Web,
http://www.semiconductor.hitachi.com/
products/product_abstract.cfmTp_id=214,
1997.

[39] Lucent Technologies, Inc., DSP16210 Digital
Signal Processor, Allentown, PA, Sep 1997.

[40] Berkeley Design Technolog~ Inc., "Pocket
Guide to DSP Processors and Cores", World
Wide Web, h t tp : / /www.bdt i .com/pocket /
pocket.htm, 2001.

[41] Texas Instruments, Inc., STRATEGIC DSP
PLATFORM PRODUCT GUIDE, Dallas, TX,
2000.

[42] EDN Embedded Microprocessor Benchmark
Consortium, "Telecommunications Benchmark
Scores", World Wide Web, h t t p ://www. eembc.
org/Benchmark/score/scorereport , asp,
2001.

[43] C. H. Van Berkel, M. B. Josephs, S. M. Now-
ick, "Scanning the Technology: Applications
of Asynchronous Circuits", Proceedings of the
IEEE, Vol. 87, No. 2, pp. 223-233, Feb 1999.

[44] L. S. Nielsen, J. SparsO, "Designing Asyn-
chronous Circuits for Low Power: An IFIR Fil-
ter Bank for a Digital Hearing Aid",

Proceedings of the IEEE, Vol. 87, No. 2, pp. 268-
281, Feb 1999.

[45] J. Kessels, P. Marston, "Designing Asyn-
chronous Standby Circuits for a Low-Power
Pager", Proceedings of the IEEE, Vol. 87, No.
2, pp. 257-267, Feb 1999.

[46] S. B. Furber, J. D. Garside, P. Riocreux, S. Tem-
ple, P. Day, J. Liu, N. C. Paver, "AMULET2e:
An Asynchronous Embedded Controller", Pro-
ceedings of the IEEE, Vol. 87, No. 2, pp. 243-256,
Feb 1999.

[47] D. Gosh, S. K. Nandy, "A 400 MHz Wave-
Pipelined 8 x 8-bit Multiplier in CMOS Tech-
nology", Proceedings of the IEEE International
Conference on Computer Design, 1993, pp. 198-
201.

[48] W. P. Burleson, C. Y. Lee, E. J. Tan, "A 150
MHz Wave-Pipelined Adaptive Digital Filter in
2#m CMOS", VLSI Signal Processing Work-
shop, VII, 1994, pp. 296-305.

- -19 - -

