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Abstract

Efficient use of the resources in mobile ad hoc networks (MANETs) is of great

importance to maintain the required quality of service and to prolong the network

lifetime. The utilization of the resources such as bandwidth and energy depends on

a number of conditions such as network size, node density, and load distribution.

These conditions are uncontrollable and often vary throughout the operation of the

network. In order to efficiently use the resources, the protocols that determine the

behavior of the network should dynamically adapt to these changing conditions.

My thesis is that a protocol architecture for MANETs that dynamically adapts

to changing conditions based on cooperation and information sharing leads to more

efficient use of the system resources compared to competition based architectures.

In particular, in this dissertation we explore the benefits of adaptation based on

cooperation and information sharing at the medium access control (MAC) and

network (routing) layers of the protocol stack.

At the MAC layer, we develop an analytical model that reflects the relation-

ships between protocol parameters and the overall performance of the protocol un-

der various network conditions. This model reveals that the protocol parameters

at the MAC layer can be adjusted to make best use of the channel resources de-

pending on the application requirements and network conditions obtained through

information sharing, such as average network load density. In order to provide a

dynamic system that adapts not only to changing conditions but also to spatially

non-uniform traffic load distributions, a lightweight dynamic channel allocation
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algorithm and a cooperative load balancing algorithm that facilitate efficient use

of resources based on local information sharing are proposed. Through extensive

simulations, we show that both dynamic channel allocation and cooperative load

balancing improve the bandwidth efficiency under non-uniform load distributions

compared with protocols that do not use these mechanisms as well as compared

with the IEEE 802.11 uncoordinated protocol.

Properly routing the data over a MANET is another challenging topic due to

the dynamic behavior of the network, yet it is also crucial in terms of efficient

use of resources. Two important routing schemes, network-wide broadcasting

and multicasting, are investigated for trade-offs and merged into a single frame-

work. The framework allows the selection of the optimal routing scheme based

on the network conditions obtained through information sharing, leading to the

best use of the system resources in terms of spectrum efficiency and energy effi-

ciency. The interaction of a network with other networks coexisting at the same

site also strongly determines its efficiency. We developed an approach for symbi-

otic networking using hybrid nodes, and our results clearly show that symbiotic

networking can provide vital support to co-located networks, which is especially

important in resource-constrained networks such as MANETs.

Although theoretical analysis and simulations are efficient tools to compara-

tively evaluate the efficiency of different protocols, they cannot reflect many of the

challenges for real implementation of these protocols, such as clock-drift, synchro-

nization, imperfect physical layers, and interference from devices outside of the

system. In order to prove the feasibility of the MAC and Network layer algorithms

proposed in this thesis, a working prototype system that incorporates these algo-

rithms is implemented on the Microsoft Research’s SORA software defined radio

(SDR) platform. The experiments with the prototype system show not only the

viability of real time communications but also show the resilience of the system

against interference.
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To sum up, a variety of methods ranging from MAC layer techniques for op-

timal spatial reuse and dynamic channel allocation, to network layer techniques

for optimal data dissemination schemes and symbiotic interactions with co-located

networks are described in this thesis. These concepts enable protocol architectures

for MANETs that dynamically adapt to changing conditions based on coopera-

tion and local information sharing. The efficient use of the limited bandwidth and

energy resources obtained through such protocol architectures with a realistic set

of constraints ensure the viability of future applications.
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1 Introduction

Wireless communication has been around for over a century and has within the

last decade become a regular mode of communication in people’s everyday lives,

thanks to the success of cellular and WiFi communication. Recently, researchers

have focused on eliminating the need for fixed infrastructures in wireless com-

munication, which has led to the development of ad hoc networks. A mobile ad

hoc network (MANET) further considers node mobility within the ad hoc setting.

Efficient use of resources and adaptation are vital in order to create a high perfor-

mance MANET. This dissertation addresses the efficient use of network resources

to obtain the desired quality of service and performance in MANETs.

1.1 Mobile Ad Hoc Networks

A mobile ad hoc network (MANET) is a self-configuring communication system

that uses the nodes themselves as not only sources and sinks but also routers.

Nodes in a MANET are typically battery operated devices with limited-range,

half-duplex radios for communication. MANETs are easy to set up and use since

their operation does not depend on any fixed infrastructure. There are many

applications that can benefit from MANETs such as:
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� Military tactical operations. A communication network that relies on a

certain infrastructure is not desirable for military tactical operations, as it

constitutes a soft spot in hostile environments. Elimination of the need for

the hard/impossible to set up fixed infrastructure makes MANETs perfect

candidates for such operations.

� Search and rescue missions. Oftentimes search and rescue missions are per-

formed in remote locations with no communication infrastructure, such as

the top of a mountain, the middle of a forest or inside a cave. MANETs are

easy to use communication systems for such scenarios.

� Disaster relief. MANETs provide communication in environments where

existing infrastructure is destroyed or left inoperable.

� Law enforcement. Law enforcement operations can be extended to include

locations with no communication infrastructure. MANET systems provide

fast and secure communication in such scenarios.

� Commercial use. MANETs can be used to support data exchange between

people and applications in large meetings and conventions.

MANETs are unique among communication networks, as can be observed from

the vital application areas. However, the unique characteristics required by these

applications necessitate unique solutions and differentiate MANETs from other

conventional networks. There are various challenges that have to be taken into

account when designing a MANET.

First of all, the communication channel between the nodes in the network is

highly unreliable. A MANET operates over wireless channels that incur higher bit

errors compared to wired interfaces. MANET protocols have to be designed with

the assumption of an erroneous channel. MANETs also are designed to work in

any environment, whether it is a desert, forest or mountainous region. The lack of



3

a-priori knowledge about the propagation characteristics of the wireless medium

also presents challenges to protocol design for MANETs.

Node mobility is another challenge in the design of MANETs. The topology

of a MANET can change not only with changing propagation characteristics of

the medium but also due to the mobility of the nodes in the network. In order to

reliably convey information, MANET protocols have to include mechanisms for

proper mobility management. Having limited storage and computational capabil-

ities further restrict the range of algorithms that can be used in MANETs.

Moreover, MANETs have limited bandwidth and energy resources. The as-

sumption of mobility inherently limits the energy supply available at each node.

Thus, it is important for a MANET to be energy efficient and energy aware.

Typically, the bandwidth available for the communication is also limited. The

erroneous channel characteristics further decrease the channel capacity, making

bandwidth a valuable resource for MANETs. Efficiency in using the bandwidth

and energy resources and a carefully adjusted spatial reuse algorithm are some of

the key criteria for the design of MANET algorithms.

Security (due to potentially hostile environments), quality of service require-

ments (due to demanding applications), and scalability can be counted among the

other challenges in the design of a MANET.

1.2 Motivation and Goals

The previous section defined MANETs, their potential application areas, and

the challenges in their design. In order to meet the demanding quality of service

(QoS) and performance requirements, it is crucial for MANET protocols to adjust

the utilization of bandwidth (a common resource) and energy (a node specific

resource) according to the dynamic operating conditions. The overall efficiency of

the system depends strongly on the careful adjustment of the resource usage in
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all layers of the protocol stack, from the physical layer on up to the application

layer.

The MAC protocol is the key element in the protocol stack that determines

the ability of a wireless network to meet application requirements, since the MAC

protocol has a direct impact on throughput, Quality of Service (QoS), energy

dissipation, fairness, stability, and robustness [2, 3].

In particular, coordinated channel access schemes provide support for QoS, re-

duce energy dissipation, and increase throughput for low-to-mid noise levels and

for dense networks [1]. MH-TRACE [4] and IEEE 802.15.3 [5] are examples of

such coordinated protocols. The IEEE 802.15.3 protocol is specifically designed

for high-rate and short range wireless personal area networks (WPANs) [6]. MH-

TRACE is designed for mid-range medium-rate transmissions [4]. Both of those

algorithms use a TDMA structure together with soft clustering of the nodes for

channel access, as this approach has been shown to provide satisfactory perfor-

mance in terms of QoS and energy dissipation.

Many of the protocol parameters in cluster-based protocols are set a-priori

based on estimates of network conditions and based on a specific physical layer.

TDMA parameters, which determine the amount of spatial reuse and interference,

distribute the available bandwidth among clusters so as to reduce the interference

throughout the network. Reducing the interference is a desirable goal since high

interference leads to high error rates, decreasing the throughput as studied in [7].

However, reducing the available bandwidth per cluster also decreases the capacity

per cluster. Non-uniform node distribution and node mobility may increase the

local load above the cluster capacity, resulting in dropped packets and decreasing

the throughput for real-time traffic [4]. The decision of how to set these parameters

should thus be based on this trade-off and would be affected by various conditions

such as node density and physical layer parameters. An analysis that describes

the relationship between the protocol parameters and the performance metrics is
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needed to ensure efficient use of the limited resources in MANETs, and we develop

such a model in this dissertation.

The conditions in which a MANET operates may change over time. Non-

uniform traffic loads are typical in MANETs due to intrinsic characteristics such

as dynamically changing environment conditions and node mobility. The network

designs should include dynamic channel allocation strategies in order to support

non-uniform traffic. The objective of these strategies is to distribute the channel

resources to the nodes that require channel access while taking the interference

levels and spatial reuse into consideration. Although various dynamic channel

allocation strategies have been proposed for other network types such as cellular

networks, due to the specific characteristics of MANETs, these strategies are

not directly applicable. In this thesis, we propose a dynamic channel allocation

strategy that sets operating conditions on the fly for efficient resource utilization

for MANETs. We further propose a cooperative load balancing algorithm for

smoothing out the non-uniformity in the load distribution and combine it with

the dynamic channel allocation strategy.

Data dissemination is another topic that is very important for reducing redun-

dant usage of resources. The data generated in a MANET is oftentimes intended

to be sent to more than one destination. One-to-many group communications are

generally classified into two types: network-wide broadcasting and multicasting.

In network-wide broadcasting the objective is to distribute the generated data to

all the nodes in the network. However, the objective of multicasting is to deliver

the data to a subset of the nodes in the network. In general, the overhead added

to the packets in multicasting protocols is more than the overhead in network-

wide broadcasting protocols. On the other hand, multicasting protocols prevent

redundant transmissions on the parts of the network in which no multicast mem-

ber resides. Investigating the trade-offs between multicasting and broadcasting

in order to determine the conditions that make one of them preferable over the
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other is needed to increase the efficiency and is discussed in this dissertation.

MANETs may operate in close proximity to other networks such as wire-

less sensor networks, cellular networks, or other MANETs. Optimizing networks

internally, aiming to achieve individual objectives considering only individual net-

work resources and using only local information about the network and ignoring

co-located networks’ resources and the effects the networks have on each other,

results in sub-optimal overall performance. Symbiotic Networking, on the other

hand, enables the mutual support of co-located networks through the symbiotic

integration of otherwise independent networks. In symbiotic networking, networks

not only can cooperate rather than compete in using common resources such as

bandwidth but also help each other in routing the data following each network’s

individual goals. We examine how to exploit this cooperation in symbiotic net-

works in this dissertation.

Although simulations are efficient tools to comparatively evaluate the efficiency

of the protocols, they cannot reflect many of the challenges for real implementa-

tion of these protocols, such as clock-drift, synchronization, imperfect physical

layers, and interference from devices out of the system. Such issues may crip-

ple a protocol that otherwise performs very well in software simulations. Thus,

hardware implementation is essential for testing a protocol before any practical

deployment. We focus on the implementation challenges of cooperation for a com-

munication system and implement CDCA-TRACE protocol on a software defined

radio platform.

It is clear that the efficient usage of the resources in MANETs is an important

topic that is affected by various factors. This dissertation describes our analysis,

design and simulations for MAC and Routing layer protocols that ensure efficient

resource utilization in MANETs. My thesis is that a protocol architecture for

MANETs that dynamically adapts to changing conditions based on cooperation

and information sharing leads to more efficient use of the system resources com-
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pared to competition based architectures. Contributions of these research efforts

are summarized in the following section.

1.3 Contributions

This dissertation aims to achieve efficient bandwidth and energy utilization for

MANETs and focuses specifically on the MAC and the routing layers. The con-

tributions of my research include:

Medium Access Control Layer

� Developing a mathematical model that estimates the performance of soft

clustering protocols for a set of parameters. This model describes the re-

lationships between the defining operating conditions such as packet gener-

ation, node distribution, signal propagation and protocol parameters. The

model provides estimates for performance metrics such as average packet

drop probability, average number of transmitted packets, average number of

collisions, average number of receptions, and average energy consumption.

The values for the performance metrics obtained through simulation studies

are compared to model results.

� Optimization of spatial reuse in soft clustering protocols for a given set of

operating conditions. The degree of spatial reuse determines the trade-off

between the number of collisions and the number of transmissions for a soft

clustering protocol. We optimize the degree of spatial reuse in the MH-

TRACE protocol for various operating conditions using the mathematical

model for both maximum throughput and maximum energy efficiency. The

optimal values are compared with simulation results.

� Predicting the performance variations of soft clustering protocols as the ex-

ternal conditions change. Typically, extensive simulation studies are used to
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find the performance of a protocol under an arbitrary set of operating con-

ditions. This approach requires excessive amounts of processing power and

time. We use our mathematical model to predict the performance variations

as the external conditions (such as data generation rate) vary.

� Proposing a cooperative load balancing algorithm that smooths the non-

uniform load distribution among the clusters. While coordinated channel ac-

cess protocols have been shown to be well suited for highly loaded MANETs,

these protocols are in general not as well suited for non-uniform load distri-

butions as uncoordinated channel access protocols. Based on MH-TRACE,

we developed a MAC protocol, CMH-TRACE, in which the nodes in the

network select their channel access provider based on the availability of the

resources. CMH-TRACE improves the performance of MH-TRACE under

non-uniform load distributions and can be integrated into the rest of the

TRACE family of protocols for improved performance.

� Proposing a light weight dynamic channel allocation scheme based on spec-

trum sensing for cluster-based mobile ad hoc networks. Due to the dynamic

nature of MANETs, the network has to be designed flexibly for dynamically

changing conditions. We develop a dynamic channel allocation protocol,

DCA-TRACE, based on MH-TRACE. DCA-TRACE improves the perfor-

mance of MH-TRACE under non-uniform load distributions and can be

integrated into the rest of the TRACE family of protocols for improved

performance.

� Combining cooperative load balancing and dynamic channel allocation al-

gorithms to provide better support for non-uniform load distributions. The

problem of non-uniform load distribution is addressed by the cooperative

load balancing and dynamic channel allocation algorithms from the per-

spective of the source nodes and the channel coordinators, respectively. We
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combine both algorithms and design the CDCA-TRACE protocol that max-

imizes the improvements in the system.

Routing Layer

� Analyzing the trade-offs between data dissemination schemes for group com-

munications. We compare a network-wide broadcasting protocol, NB-TRACE,

and a multicasting protocol, MC-TRACE, in terms of their resource con-

sumptions. We determine the conditions that make one of them preferable

over the other one. Then, we combine unicasting, multicasting and network-

wide broadcasting services in a single protocol called unified-TRACE, U-

TRACE. U-TRACE chooses the most efficient data dissemination scheme

depending on the requested service and network conditions.

� Exploring the benefits of symbiotic routing. The operating region of a

MANET may intersect with the operating regions of other networks. We ex-

plore the potential performance gains and reduction in resource consumption

of co-located networks that exploit hybrid nodes to enable network interac-

tions that allow cross-network performance optimizations and cross-network

information and service sharing. We use both simulation and mathemati-

cal frameworks that model the routing performances of both symbiotic and

independent networking to quantify the routing benefits of symbiotic net-

working.

Practical Issues in Implementation

� Determining the challenges of implementing a MAC protocol on real hard-

ware. Simulation studies do not accurately reflect many of the challenges

encountered in real implementations such as limited processing power, clock

drift, synchronization, imperfect physical layers, and cross band interference.

We develop a reusable hardware framework to evaluate the performance of
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wireless protocols, in particular the TRACE protocol for real-time commu-

nication in mobile ad hoc networks.

� Designing synchronization algorithms for cooperative mobile ad hoc net-

works. The limitations of the hardware platform and imperfect PHY layers

make synchronization a non-trivial task. We propose two synchronization

algorithms that address these issues. The algorithms enable implementa-

tion of TDMA based protocols and are used with the implementation of the

TRACE protocol.

� Testing the TRACE implementation for packet losses. The operation of

the TRACE protocol depends on the cooperation and control information

exchange between the nodes in the network. On the other hand, packet losses

in the system disrupt the availability of such information. We add packet

loss compensation systems in the TRACE implementation to increase the

robustness of the implementation against packet losses.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 presents the related work on coordi-

nated medium access control schemes used in MANETs, mathematical modeling

of MAC performance, dynamic channel allocation strategies, data dissemination

schemes and network symbiosis. After reviewing the literature in this area, we

begin by exploring the effects of MAC layer decisions on resource utilization. In

Chapter 3, we present a mathematical model that estimates the performance of

soft clustering protocols, and we use that model for predicting the performance

of the MH-TRACE protocol and for optimization of the spatial reuse according

to the network conditions. Chapter 4 proposes a light weight dynamic channel

allocation algorithm and a cooperative load balancing algorithm for cluster based
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MANETs and incorporates these algorithms into the TRACE framework leading

to the DCA-TRACE, CMH-TRACE and CDCA-TRACE protocols. We continue

by exploring the effects of routing layer decisions on resource utilization. Chap-

ter 5 presents U-TRACE, a protocol that combines unicasting, multicasting and

network-wide broadcasting services in a single protocol that selects the appropri-

ate data dissemination scheme depending on the requested service and network

conditions. Chapter 6 explores the possible gains of network symbiosis for co-

located networks that exploit hybrid nodes that allow cross-network performance

optimizations. Then, we investigate the practical issues encountered in implemen-

tation in Chapter 7. Finally, Chapter 8 concludes the thesis and provides thoughts

on future research in this area.
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2 Related Work

2.1 Medium Access Control in MANETs

In wireless communications, the goal of the medium access control (MAC) protocol

is to efficiently utilize the wireless medium, which is a limited resource. The

effective use of the channel strongly determines the ability of the network to

meet application requirements such as quality of service (QoS), energy dissipation,

fairness, stability, and robustness [2], [3].

Based on the collaboration level, MAC protocols can be classified into two cat-

egories: coordinated and non-coordinated [8]. Channel access in non-coordinated

protocols is typically based on a contention mechanism between the nodes. IEEE

802.11 [9] is an example of a non-coordinated protocol. Although it is easier to

support non-uniform traffic with non-coordinated protocols, these protocols are

unsuitable for highly loaded networks due to the contention mechanism. On the

other hand, in coordinated channel access protocols, the medium access is reg-

ulated, making them better suited for networks where the network load is high.

IEEE 802.15.3 [10], IEEE 802.15.4 [11], and MH-TRACE [4] are examples of

such coordinated protocols. Coordinated channel access schemes provide support

for QoS, reduce energy dissipation, and increase throughput for low-to-mid noise
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levels and for dense networks. However, these protocols perform poorly under

non-uniform traffic loads.

IEEE 802.15.3, IEEE 802.15.4 and MH-TRACE all manage the multiple access

scheme through a TDMA structure, as this approach has been shown to provide

satisfactory performance in terms of QoS and energy dissipation. MH-TRACE

further uses a soft clustering approach where the clustering mechanism is utilized

only for providing channel access to the member nodes. Hence, each node is

capable of communicating directly with every other node provided that they are

within communication range of each other. IEEE 802.15.3 and IEEE 802.15.4

only allow communication among the members of distinct clusters (piconets) in

their peer to peer mode, while in star topology mode, nodes in distinct clusters

can only communicate through their piconet controllers.

2.1.1 Clustering Approaches

Regardless of the partitioning scheme, the main consideration in forming clusters

is the load distribution in the network. Clusters should be formed in such a way

that they are able to meet the demand for channel access of the nodes in the

cluster as much as possible. When the cluster is not able to meet the demand,

either some of the transmissions are deferred (better suited for guaranteed delivery

traffic) or the packets are dropped (better suited for best effort traffic). Thus,

while designing a protocol or determining the performance of a specific protocol,

the load distribution has crucial importance.

Clustering approaches may be classified as soft and hard clustering. In hard

clustering approaches, such as GSM networks [12], nodes belong to the cluster

in which they operate. Direct communication is only possible within the cluster.

On the other hand, in soft clustering approaches such as MH-TRACE, nodes

interact with clusterheads only to obtain channel access. There is no membership
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relation between the nodes and the clusters. In other words, nodes are able to

communicate directly with the nodes of other clusters and to choose the cluster

from which they receive channel access. In general, soft clustering approaches

are superior to hard clustering approaches in distributing the load evenly among

clusters. On the other hand, soft clustering approaches tend to be more vulnerable

to interference and collisions among co-frame clusters, since the boundaries of the

clusters are not strict. In this dissertation, we consider soft clustering approaches.

Due to fading, two distinct transmissions may successfully operate over the

same frequency, code and time range if they are well separated spatially. A suc-

cessful protocol should employ this kind of spatial reuse for the sake of efficient

use of the channel resources.

Clustering protocols, aim to maximize the distance between the clusters using

the same portion of the channel. In cellular networks, the same set of frequencies

may be assigned to cells (clusters) that are separated well enough depending on

the frequency reuse factor employed [13, chap. 3]. Analogously, in MH-TRACE,

each cluster operates in one of several frames separated in time. MH-TRACE has

internal mechanisms that maximize the distance between clusters operating in the

same frame (co-frame clusters) [4].

2.1.2 MH-TRACE Summary

In this work, we analyze the performance of soft clustering protocols to determine

how to best set their parameters for efficient use of the channel resources. Specifi-

cally, we analyze the MH-TRACE protocol. Here we briefly explain the clustering

mechanisms of MH-TRACE. A detailed description of MH-TRACE is available

in [4].

In MH-TRACE, time is divided into superframes of equal length, as shown in

Fig. 2.1, where the superframe is repeated in time and further divided into frames.
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Figure 2.1: A snapshot of MH-TRACE clustering and medium access. Diamonds

represent selected clusterheads and dots represent the nodes in the network. CH-

frame matching, together with the contents of each frame, is depicted.

There are randomly chosen clusterheads that regulate the channel and provide

channel access for the nodes in their communication range. Each clusterhead

(CH) operates using one of the frames in the superframe structure. There is also

a spatial reuse mechanism that allows more than one CH to operate in the same

time frame provided that the interference is low.

Each frame in the superframe is further divided into sub-frames. The control

sub-frame constitutes the management overhead. Beacon, cluster announcement

(CA), and header slots of the control sub-frame are used by the CHs, whereas
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contention slots and information summarization (IS) slots are used by the ordinary

nodes.

At the beginning of the frame, the CH announces itself to the nearby nodes

by sending a beacon message in the beacon slot of the control sub-frame. The

CA slot is used for interference estimation for CHs operating in the same frame

(co-frame CHs). During the CA slot, the CH transmits a message with a given

probability and listens to the medium to calculate interference caused by other

CHs operating in the same frame. Contention slots are utilized by the nodes to

pass their channel access requests to the CH. A node that wants to access to

the channel selects a contention slot randomly among the contention slots and

sends a contention message in that slot. After listening to the medium during the

contention slots, the CH becomes aware of the nodes that request channel access

and forms the transmission schedule by assigning available data slots to the nodes.

After that, the CH sends a header message that includes the transmission schedule

that will be followed for the rest of the frame.

There are an equal number of IS slots and data slots in the remainder of the

frame. During the IS slots, nodes send short packets summarizing the information

that they are going to be sending in the order announced in the Header. By lis-

tening to the relatively shorter IS packets, nodes become aware of the information

that are going to be sent and may choose to sleep during the corresponding data

slots if they are not interested in (or the recipient of) the data.

2.1.3 Mathematical Modeling of MAC Performance

The most direct approach to determine the MAC performance is to obtain samples

of field measurements on the performance metrics [14,15]. However, the difficulty

in implementation on real hardware and taking a large set of field measurements

make this method impractical for most cases, and not the best approach in the
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protocol design stage. It is easier and more convenient to implement a protocol on

a simulation platform. Thus, simulation studies are the most widely used methods

to evaluate the performance of protocols [16–18]. However, it is impractical to

determine the performance of a protocol for large sets of conditions as simulations

require excessive amounts of processing power and time. Analytical models are

the most suitable tools to obtain insight into the performance of a MAC protocol.

Various analytical studies of protocol performance exist in the literature. These

studies range from detailed protocol specific models to more general models that

can be applied to a group of protocols.

One line of research is focused on more generalized analysis that covers a set

of protocols that share a certain property. These studies use general assumptions

and focus on certain descriptive performance metrics rather than trying to model

the details of a certain protocol. For example, the authors in [19–21] study the

optimal size of a cluster for cluster based data aggregation schemes without going

into the protocol dependent parameters. Studies on the delay and the throughput

characteristics of TDMA/CDMA MAC protocols, such as those described in [22,

23], also fall under this category.

Protocol specific studies approximate the protocols under concern in detail

using protocol dependent assumptions. IEEE 802.11 is one of the most exten-

sively studied protocols. Bianchi et al. [24] present a simple analytical model to

compute the saturation throughput performance of the IEEE 802.11 Distributed

Coordination Function. Later on, more detailed studies on IEEE 802.11 have been

proposed, based on the protocol and its extensions [25–27] such as IEEE 802.11e,

which has several quality of service (QoS) enabling features to support real time

traffic.

Being one of the most widely used network types, GSM networks have also at-

tracted considerable attention, with most of these works analytically deriving the

performance of GSM networks. For example, in [28], a model for cell dimensioning
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and performance evaluation is presented.

IEEE 802.15.4 is another widely studied protocol. The very first analytical

study of IEEE 802.15.4 was described in [29] in the context of medical sensor

body area networks. Various other papers [30–33] have been published since

then, having different sets of assumptions and different operation modes of the

protocol. For instance, in [30] the analysis is focused on the star topology, while

in [31], a peer to peer beacon-enabled cluster-tree structure is considered. Similar

analytical studies for IEEE 802.15.3 can be found in the literature, such as the

ones in [34,35].

In Chapter 3, we use an approach that lies in between these two lines of

research for analyzing protocol performance. Even though we focus on a specific

cluster based MAC protocol utilizing soft-clustering, namely MH-TRACE, the

assumptions used in the analysis make the generalization of the model to other

MAC protocols that employ a TDMA structure possible.

2.1.4 Dynamic Channel Allocation Strategies

The responsibility of the MAC layer is to coordinate the nodes’ access to the

shared radio channel, minimizing conflicts. In a multi-hop network, obtaining a

high bandwidth efficiency is only possible through exploiting channel reuse op-

portunities. Indeed, efficient utilization of the common radio channel has been

the center of attention since the early development stages of wireless communica-

tion [36].

Cidon et al. [37] present a distributed dynamic channel allocation algorithm

with no optimality guarantees for a network with a fixed a-priori control channel

assignment. Alternatively, there are various game-theoretic approaches to the

channel allocation problem in ad hoc wireless networks [38, 39]. Gao et al. [38]

model the channel allocation problem in multi-hop ad hoc wireless networks as a
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static cooperative game, in which some players collaborate to achieve a high data

rate. However, these approaches are not scalable, as the complexity of the optimal

dynamic channel allocation problem has been shown to be NP-hard [40–43].

In a multi-hop wireless network, CSMA [44] techniques enable the same ra-

dio resources to be used in distinct locations in a network, leading to increased

bandwidth efficiencies at the cost of possible collisions due to the hidden termi-

nal problem [45]. Different channel reservation techniques are used to tackle the

hidden terminal problem. Karn et al. [46] use an RTS/CTS packet exchange mech-

anism before the transmission of the data packet. 802.11 distributed coordination

function (DCF) uses a similar mechanism but adds an ACK packet indicating the

successful reception of the packet. Although this handshake reduces the hidden

node problem, it is inefficient under heavy network loads due to the exposed ter-

minal problem. Several modifications to the RTS/CTS mechanisms have been

proposed to increase the bandwidth efficiency [47, 48] including use of multiple

channels such as [49–51].

However, these approaches attempt to solve the problem of channel assign-

ment when there is a single intended destination of each transmission and do not

cover group communication. We are interested in MANET scenarios where the

destination of the generated packet is not a specific node in the local neighbor-

hood but all the nodes in the immediate neighborhood of the transmitter. Such a

scenario is only covered with 802.11 DCF basic access mode where the RTS/CTS

mechanism is disabled.

In coordinated MAC protocols, channel assignment is performed by channel

coordinators. Channel reuse is incorporated into the system through use of the

same channel by coordinators that are spatially separated. The cellular concept

[52] that regulates channel access through fixed infrastructure called base stations

also forms the basis of the widely deployed GSM systems [53].

The types of strategies for on-demand dynamic channel allocation used in
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cellular systems can be divided into two categories: centralized and distributed

schemes. In centralized dynamic channel allocation schemes [54], the available

channels are kept in a pool and distributed to various cells by a central coordina-

tor. Although quite effective in maximizing channel usage, these systems have a

high overhead and cannot be applied to MANETs. Distributed dynamic channel

allocation for cellular networks has also been studied extensively [55–57]. In dis-

tributed dynamic channel allocation, each cell is assigned a number of channels.

These channels can be exchanged among adjacent cells through message exchange

mechanisms between the channel regulators (cell towers) in an on demand basis.

This approach, too, is not directly applicable to MANETs. Unlike in the cellular

case, in MANETs, the message exchanges between the channel regulators also

consume network resources. Due to node mobility and the dynamic behavior of

the network, the large overhead associated with the frequent message exchanges

overwhelms the network and decreases the bandwidth efficiency.

Dynamic channel allocation [55–57] and channel handoff [58] algorithms dy-

namically adjust the number of channels accessed by base stations proportional

to their load and help keep bandwidth efficiency and service rate high simulta-

neously even under non-uniform load. However, such algorithms either require

centralized control or frequent message exchanges between base stations and thus

are not directly applicable to MANETs.

Load balancing has also been studied within the context of heterogeneous net-

works. In the case of excess demand, part of the network load can be offloaded to

other networks using heterogeneous gateway nodes. Song et al. [59] present a pol-

icy framework for such resource management in a loosely coupled cellular/WLAN

integrated network.

Although dynamic channel allocation and channel handoff are studied exten-

sively within the context of cellular networks, they have not been studied much

in the context of MANETs, where the bandwidth efficiency and load balancing
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are mostly studied at the network layer [43, 60, 61]. Wu et al. [60] extend the

AODV protocol to include a distributed system to infer the network status and

to optimize routes considering bandwidth efficiency and stability. A centralized

load aware joint channel assignment and routing algorithm is proposed in [43].

At the MAC layer, Tseng et al. [62] propose a location aware dynamic channel

allocation scheme for MANETs. However, their protocol mandates that location

information be provided to each node. Gireesan et al. [63] study the capacity

of the IEEE 802.15.4 protocol for linear and grid topologies and calculate the

optimal channel assignment yielding the maximum possible channel reuse. How-

ever, the results are not generalizable to the complex and dynamic topologies

of typical MANETs. Primary Collision Avoidance type channel allocation algo-

rithms [64–67] assign channels to the nodes one by one, mitigating the conflict re-

lationships in a connection graph at each iteration. Finally, Chowdhury et al. [68]

propose a dynamic channel allocation scheme for IEEE 802.15.4 systems using

a single hop overlay weight-based clustering structure. Although the proposed

system reduces the message exchanges over previously built Primary Collision

Avoidance algorithms, the proposed system is entirely message driven and re-

quires the construction of clusters. Also this system is susceptible to topology

changes during the channel allocation phase.

To the best of our knowledge, our work in Chapter 4 is the first attempt to

solve the dynamic channel allocation problem solely based on carrier sense mea-

surements (i.e., spectrum sensing), greatly reducing the overhead. We analyze the

dynamic adaptability of the channel allocation and non-uniform load distribution

problem from both the perspective of the clusterheads and the member nodes. We

introduce two algorithms, a dynamic channel allocation and a collaborative load

balancing algorithm, and adopt these algorithms to the TRACE framework. By

combining the dynamic channel allocation and collaborative load balancing algo-

rithms, we propose the CDCA-TRACE protocol that has the highest bandwidth
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efficiency among the TRACE family of protocols.

2.2 Routing in MANETs

2.2.1 Group Communications

Group communications is essential for many applications in mobile ad hoc net-

works, including supporting electronic classrooms, tactical military communica-

tion, and communication in disaster recovery missions. One-to-many group com-

munications are generally classified into two groups: network-wide broadcasting

and multicasting. In network-wide broadcasting the objective is to distribute the

generated data to all the nodes in the network. The most basic network-wide

broadcasting approach is simple flooding, where at each node the received data is

retransmitted with the aim of reaching all nodes in a connected network. There

are several more efficient network-wide broadcasting schemes that increase the

efficiency by reducing the number of redundant retransmissions and/or collisions.

On the other hand, the objective of multicasting is to deliver the data to a subset

of the nodes in the network. By using a data dissemination structure, multicasting

protocols limit the diffusion of the data to a certain subset of the entire network,

namely to the multicast members. The data dissemination scheme used in mul-

ticasting protocols range from tree based routing strategies where the redundant

transmissions are eliminated to mesh-based routing strategies that cope with fre-

quent link breakages by controlled addition of redundant links. The authors in [69]

and [70] present recent surveys on various group communication protocols.

There is additional overhead incurred in multicasting protocols compared to

broadcasting protocols. In certain scenarios, the cost of collecting and processing

the additional information overwhelms the gains in limiting the data dissemina-

tion structure to the multicast members. As one might expect, in scenarios where
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the majority of the nodes are part of the multicast group, one can increase the

efficiency by using a broadcasting protocol instead of using a multicasting pro-

tocol. In this dissertation, our objective is to investigate the trade-offs between

multicasting and broadcasting in order to determine the conditions that make one

of them preferable over the other.

There are similar studies that point out the trade-offs between multicasting and

broadcasting. Researchers in [71] compare a selected multicast protocol, namely

on demand multicast routing protocol (ODMRP), with a selected network-wide

broadcast protocol, namely scalable broadcast algorithm (SBA). The authors re-

port that while multicasting is preferable for small group sizes, as the group size

increases, broadcasting becomes more efficient. However, the protocols considered

in this work are quite different in nature. While the aim of SBA is to minimize the

number of redundant transmissions, ODMRP follows a mesh-based approach in

which redundant routes are created intentionally. Thus the comparison between

those protocols does not provide a full understanding of the trade-offs between

multicasting and broadcasting.

Towards the goal of investigating the trade-off between multicasting and broad-

casting, we perform extensive simulation studies on a chosen protocol from each

class: Network-wide broadcasting through time reservation using adaptive control

for energy efficiency (NB-TRACE) [72] for broadcasting; and Multicasting through

time reservation using adaptive control for energy efficiency (MC-TRACE) [73] for

multicasting. The first reason for choosing these protocols is that they have been

shown to outperform many other protocols in their class [72,73]. Moreover, these

protocols are built on top of the same MAC structure, and thus their sensitivity

to MAC layer issues such as mobility and link errors is similar. Finally, the data

maintained by the protocols are very similar to each other, and any additional

burden of multicasting can be directly observed. Consequently, the protocols can

be combined into a unique framework and coexist simultaneously. Ultimately,
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this approach yields a unified protocol where the better approach (broadcasting

or multicasting) can be used depending on the situation.

2.2.2 Group Communications in the TRACE Family of

Protocols

The main purpose of this section is to give the reader insight into the differences

between NB-TRACE and MC-TRACE. The details of the protocols, NB-TRACE

and MC-TRACE, can be found in references [72] and [73], respectively.

Both MC-TRACE and NB-TRACE are cross layer approaches where the MAC

layer and the routing layer functionalities are implemented together in a unique

framework. The MAC scheme of the protocols follows from MH-TRACE [4], where

the network is organized into overlapping clusters, each managed by a clusterhead

(CH).

NB-TRACE

Routing in NB-TRACE makes use of the clustering structure. The protocol sends

a copy of each data packet to all of the CHs, and the CHs retransmit these

packets to their cluster members. Each data session starts with an initial flooding

stage where each rebroadcasting node implicitly acknowledges its upstream node

through IS packets as a part of its transmission. In the case of the existence of

more than one upstream node, only one of them is selected and announced in

the downstream node’s IS packet. A node drops its relaying status and stops

retransmitting the packets when it does not receive an acknowledgement for a

certain amount of time. Only the CHs keep retransmitting the packets even when

they do not receive any downstream acknowledgement. This behavior prunes the

redundant retransmissions and creates a tree that starts from the source node

and ends at the CHs. Since the CHs form a dominating set, this ensures that
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once all the CHs transmit the message, all nodes in the network will receive the

message. The dynamic behavior of the network is handled by a local branch repair

mechanism.

MC-TRACE

MC-TRACE implements multicast routing on top of MH-TRACE using a mixed

layer approach. Like NB-TRACE, MC-TRACE also starts with an initial flooding

stage. Nodes that do not receive a downstream acknowledgement stop retransmit-

ting. However, in MC-TRACE, CHs do not take a special role in routing. Instead,

the member nodes keep sending an acknowledgement to their upstream node even

when they do not receive any downstream acknowledgements. Therefore, the tree

is kept alive directly by the group members.

Furthermore, in MC-TRACE, retransmitting nodes also choose and announce

a downstream node in addition to their upstream node. The first node that

sends an upstream acknowledgement is selected as the downstream node and an-

nounced in the following transmissions. The node that is announced as the down-

stream node is responsible for sending upstream acknowledgements and keeping

the branch alive. With the help of this mechanism, in the case of more than one

leaf member node receiving the data from the same branch, only one of them sends

the acknowledgement messages. Although this mechanism eliminates redundant

acknowledgements, the need for acknowledgements from the leaf nodes makes MC-

TRACE consume considerably more resources compared to NB-TRACE when the

multicast group members are spread throughout the region.

2.3 Network Symbiosis

There is a large diversity in recent communication devices, in terms of the pur-

pose of the devices, the applications using the devices, and the networks the
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devices support. Indeed, it is not uncommon to see devices supporting multiple

networks [74, 75] and several of these networks co-existing in the same physical

environment [76–78]. However, currently network optimizations are mostly done

internally: aiming to achieve individual objectives considering only individual

network resources and using only local information about the network, ignoring

co-located networks’ resources and the effects the networks have on each other.

Optimizing networks with such an individual focus generally results in sub-optimal

overall performance.

Recently, researchers have devised a paradigm to enable the mutual support of

co-located networks through the symbiotic integration of otherwise independent

networks, referred to as Symbiotic Networks [79–81]. This paradigm defines coop-

eration of networks to optimize individual network performances by cross-network

sharing of resources, information and services. The shared information, such as

channel state and congestion information, can be used to optimize MAC level

parameters, whereas sharing network resources allows cross-network relaying and

distributed processing. Clearly these different methods of cooperation can benefit

both networks, enabling the sharing of node resources as well as local cooperation

rather than competition for scarce network resources such as bandwidth [80].

There are several scenarios that motivate the need for symbiotic networking.

For example, consider the scenario described by Poorter et al. in [80], for a Wire-

less Body Area Network (WBAN) consisting of physiological sensors to monitor

heartbeat, body temperature and motion of a person. The person’s WBAN can

interact with another network to get warnings on air pollution. When the per-

son is in his vehicle, his WBAN and the vehicle’s network can integrate so that

the vehicle can monitor the status of the driver using the WBAN sensors, and

can alert the driver along with the surrounding vehicles if the driver falls asleep.

The vehicle’s network can detect the WBAN of pedestrians nearby, to reduce the

chance of accidents. If the WBAN detects that the person is having a heart at-
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tack, the network could automatically interact with the cellular network via his

cell phone and call an ambulance. In the ambulance, the WBAN can integrate

with the ambulance network, and when the patient arrives in the emergency room,

the WBAN can interacts with the hospital network, enabling sensor monitoring

information to be displayed on screens in the emergency room.

Symbiotic networking aims to achieve mutual and full integration of distinct

networks that are defined by different physical layer communication abilities. The

integration of wireless and wired networks has been studied and is still being stud-

ied in the community for specific networks. The solutions proposed are mainly

network specific adaptations and not embracing the mutual integration of generic

networks [76,82–84]. For instance, Wireless LAN (WLAN) and cellular network in-

tegration studies concentrate on the extension of cellular network coverage through

WLAN access points [85–87], and other work on throughput capacity assumes that

base stations are connected by a high-bandwidth wired network and act as relays

for ad hoc wireless nodes [88, 89]. However, all these studies either investigate

one-way integration (i.e., using the WLAN to extend cellular network coverage),

or they consider single or two-hop networks and provide network-specific solutions

for such integration.

The IEEE 802.21 standard has the goal of supporting handovers between spe-

cific network types, specifically cellular, WiFi, Bluetooth and IEEE 802.16. This

standard provides tools for packet switching between networks. However, how to

benefit from such multiple network environments is still an open issue that is not

addressed by this standard.

Symbiotic Networks were first conceptually presented in [90]. Gedge proposes

nodes in ad hoc networks to use other nodes’ resources to extend the service areas

of WLAN access points. In [81], symbiosis of a sensor network deployed along a

highway with a vehicular ad hoc network is proposed. The data is transferred from

the sensor network to the vehicular ad hoc network via a specific gateway. The
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effect of the vehicle speeds on the overall throughput and delay are investigated.

Finally, in [80], a detailed description of symbiotic networks is given along with

several cases where it can be used. As a result, although the integration of different

networks is not a recent research area, past studies concentrate on specific network

tuples, and there are no generic quantitative models proposed to show potential

performance gains with network-level symbiosis to integrate co-located networks,

which is the aim of this dissertation.
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3 Analytical Performance of

Soft Clustering Protocols

3.1 Introduction

Effective resource utilization is particularly important in MANETs from the per-

spective of both the bandwidth and energy efficiency and is strongly related to

the protocol used at the medium access control (MAC) layer. Hence, we begin

our investigation of resource utilization at the MAC layer.

It is important not only to choose the correct protocol but also to adjust the

parameters in accordance with the application requirements. Many of the pa-

rameters in cluster-based protocols are set a-priori based on estimates of network

conditions and based on a specific physical layer. The true relationship between

the parameters and the protocol performance can only be determined by analysis.

Although simulation studies reveal the performance of a protocol for a certain

set of conditions, the statistical accuracy of the simulation results is question-

able unless repeated extensively. For large and dense networks, this approach

requires excessive amounts of processing power. Moreover, results obtained from

those studies are only valid for the selected parameters and do not reveal the full

impact of these parameters on the performance of the protocol.

In order to address this problem, we have developed an analytical model that



30

reflects the relationships between protocol parameters and the overall performance

of the protocol under different network conditions for a TDMA-based clustered

protocol, MH-TRACE. Specifically, we develop a model that relates the TDMA

frame parameters (number of slots per frame and number of frames per super-

frame) and the node density to the expected number of dropped packets and the

expected number of collisions. This model enables us to find the set of parameters

that maximize overall throughput or energy efficiency for TDMA-based clustered

protocols such as IEEE 802.15.3 (peer to peer mode), IEEE 802.15.4 (peer to peer

mode) and MH-TRACE. We use this model to analyze the MH-TRACE protocol.

This chapter is organized as follows. An analytical model that estimates the

performance of soft clustering protocols for a given set of parameters is presented

in Section 3.2. Section 3.3 discusses the validity of the analytical model by compar-

ing the analytical results with those found via simulations for MH-TRACE. Using

the analytical model, the degree of spatial reuse present in a network utilizing the

MH-TRACE protocol is optimized for both maximum throughput and minimum

energy consumption per generated packet in Section 3.4. In Section 3.5, the per-

formance of the protocol is investigated as the transmission power and the data

source model is varied. Section 3.6 summarizes the chapter with final comments.

3.2 Analytical Model

In this section, an analytical model for the MH-TRACE soft clustering protocol is

presented [8,91]. The model is simple enough to be evaluated for a large number

of parameters and provides estimates of simulation averages, eliminating the need

for complicated simulation studies.

As mentioned in Section 2.1.1, clustering protocols divide the available channel

into a number of partitions and assign regulatory nodes, namely CHs, to each

partition forming the clusters in the network. Each partition may be used by
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more than one cluster depending on the spatial reuse factor. Using a high spatial

reuse factor leads to having a smaller number of larger channel partitions and

in turn a higher amount of concurrent traffic that can be supported per cluster,

which decreases the number of dropped packets. On the other hand, since there

are more clusters using the same partition simultaneously, the interference and

the collisions increase.

In terms of throughput, the performance of a protocol is limited both by the

dropped packets and by the collisions. Therefore, these effects must be taken into

account in performance estimation.

3.2.1 Dropped Packets

In real-time communications, packet timing is one of the most critical factors.

It is preferable to discard packets that are not transferred in a timely fashion.

Hence, packets become obsolete after a predetermined amount of time and must

be dropped from the transmit queue.

Any load over the maximum amount of concurrent traffic that can be sup-

ported, MaxTraffic, will eventually be dropped. The probability of dropping a

packet can thus be calculated as

Pdp = max

(
Load−MaxTraffic

Load
, 0

)
. (3.1)

Analysis can most easily be performed on a per cluster basis, as the amount

of traffic that can be supported by a CH is well defined. Hence, using the TDMA

frame as the time unit, Load and MaxTraffic can be defined as the number of

nodes that require channel access within a cluster per frame and the number of

data slots available per frame, respectively.

MaxTraffic directly follows from the parameters of the protocol and hence

is deterministic. On the other hand, Load is a stochastic process that depends on
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various random variables. Since MaxTraffic is known, calculating Pdp reduces

to calculating the distribution of Load for the clusters.

The load in the cluster is mainly determined by three probabilities:

� ps: Probability of a node to be generating data,

� pc: Probability of a node to be in the communication range of a CH.

� pd: Probability of a node that is in the communication range of a CH to

choose that CH as its channel access provider.

In this chapter, we assume that the network is supporting voice traffic. We

further assume that each node generates independent voice packets according to

a common voice traffic model where nodes are either in “spurt” or “gap” dura-

tion, with voice data being generated in the “spurt” duration and no data being

generated in the “gap” duration [92] [93] [94]. Hence, ps accounts for the fact that

nodes will only have data to send when they are in the “spurt” duration.

Since we consider a soft clustering approach, nodes can access the channel

from any CH within range. Therefore, if one CH has no available bandwidth, a

node can request channel access from another CH in range. Hence, pd takes into

account the fact that a node’s expected load to a cluster is distributed among

those CHs in the communication range of that node.

Given these distributions and the number of nodes in the network, N , the load

per cluster per superframe for a given CH is a binomial distribution with a success

probability of pdn = pspcpd as

Pr(Load = k) =

(
N

k

)
pdn

k(1− pdn)(N−k). (3.2)

Probability of a Node to be in Spurt Duration (ps)

We assume a voice model with exponentially distributed spurt and gap durations

(Tspurt and Tgap, respectively) that occur one after the other [92] [93] [94]. The
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probability of finding a node in the spurt state, ps, is calculated as

Pr (Node i in spurt) =
E[Tspurt]

E[Tspurt + Tgap]
= ps. (3.3)

The mathematical model can be used with any packet generation model as long

as this probability of a node generating data, ps, can be calculated.

Probability of a Node to be in the Communication Range of a CH (pc)

Nodes are assumed to be i.i.d. distributed according to a uniform distribution.

Thus, the probability of a node to be in any given region is

Pr(Node in Region) =
Area of Region

Simulation Area
. (3.4)

The coverage region of a cluster is assumed to be a circle centered at the CH’s

location having a radius equal to the maximum reliable communication distance

at the selected power level. Part of a CH’s coverage region may lie outside the

network area depending on the CH’s location, CHloc. The network area can be

divided into 3 regions, as shown in Fig. 3.1. The coverage area that lies within

the simulation area, α1, α2, and α3 for a CH in regions 1, 2 and 3, respectively,

are calculated in [7] and repeated here for reference.

α1 = πr2, (3.5a)

α2 = πr2 − 2I(d0), (3.5b)

α3 =
3

4
πr2 − I(x0)− I(y0) + x0y0, (3.5c)

where x0 and y0 are the distances to the closest vertical (for x0) and horizontal

(for y0) limits of the network area, d0 = min(x0, y0) and the function I(x) is as

given in [7].
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Figure 3.1: Partitioning of the simulation region. Part of the coverage region lies

outside the network region for CHs located in regions 2 and 3 (adopted from [1]).

Replacing “Area of Region” with the appropriate term from (3.5), and aver-

aging over the entire network area leads to the desired pc for a given CH. The

averaging process is done by taking a numerical integral over the region and di-

viding by the simulation area.

The expected number of nodes within the communication range, rc, of a CH

(and for any node) can be calculated using pc as in (3.6).

Nc = Npc (3.6)

Probability of a Node to Choose the CH as the Channel Access Provider

(pd)

The entire simulation area will be fully covered for sufficiently large node densities.

After that point, variations in the node density do not alter the expected number

of CHs in the network and their positions. Thus, the number of CHs in the
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Figure 3.2: Alignment of CHs under maximum packing conditions.

communication range of each node is independent of node density for sufficiently

large node densities. The easiest way to obtain this number is to simulate the CH

selection mechanism of the protocol under concern for a sufficiently large node

density. For MH-TRACE, protocol simulations indicate that 28% of the nodes

are in the communication range of only one CH whereas 52%, 19%, and 1% of the

nodes are in the communication range of two, three, and four CHs, respectively.1

Nodes can select their channel access provider uniformly among the CHs that

are in their communication range. Therefore, the expected load of a node to a

CH, pd, can be calculated as given in (3.7). Using the aforementioned values, for

MH-TRACE, pd is calculated as 0.6058.

pd =
∞∑
k=1

Pr(# of CHs in rc range = k)

k
(3.7)

Substituting ps, pc and pd into (3.2), the statistical distribution of Load can

1This assumption holds as long as the network area is much larger than the area of a circle

with a radius equal to the communication range. For the same simulation area (1000mx1000m),

we have observed that changing rc from 150 to 350 does not alter those values.
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be obtained for a given CH. Pdp can be obtained using the distribution of Load

and Pdp = max
(
Load−MaxTraffic

Load
, 0
)
.

3.2.2 Collisions

CHs manage the channel access within the cluster so as to prevent transmissions

using the same frequency, code and time range. For frequency division networks,

CHs prevent nodes from transmitting in the same frequency band while nodes are

allowed to transmit simultaneously, whereas for TDMA based protocols like MH-

TRACE, nodes can transmit using the same frequency band but are not allowed

to transmit data simultaneously. Hence, data collisions within the cluster are

completely eliminated. Collisions among nodes of clusters operating in disjoint

parts of the channel are also not possible. The only remaining source of collision

is the clusters operating in the same partition of the channel. For MH-TRACE,

this corresponds to co-frame clusters that operate on the same frame within the

superframe.

Our approach for calculating the number of collisions per superframe consists

of two steps. The first step is to relate the number of frames per superframe (Nf )

to the co-frame CH separation, and the second step is to relate the co-frame CH

separation to the number of collisions per superframe.

Relation Between Nf and Co-frame CH Separation

As stated in Section 3.2.1, for large node densities, the network is fully covered

by the CHs. The clustering structure and the number of clusters in the network

become independent of the node density. Thus, the average separation between

two neighboring CHs, dCH , is independent of the node density and Nf . However,

depending on the number of distinct clusters possible, which is equal to Nf , the

separation between the co-frame CHs, dco−CH , varies.
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The number of collisions increase as dco−CH decreases. Due to the CH creation

mechanism, the minimum separation between two CHs is equal to the communica-

tion distance, rc, in the worst case scenario. Under maximum packing conditions,

a third CH is also separated by rc from both of the previous CHs, as shown in

Fig. 3.2. The lines connecting the 3 CHs form an equilateral triangle. At most

6 CHs can be located around the first CH, as shown in Fig. 3.2. Considering an

imaginary cell boundary passing perpendicular to the lines connecting the neigh-

boring CHs, a hexagonal cellular structure can be constructed in the form of the

standard structure used in cellular systems [52]. The labeling structure that is

used in cellular systems is applicable for the clustering structure under concern.

Distinct labels correspond to clusters operating in distinct frames in the super-

frame structure. The separation between co-labeled cells and hence co-frame CHs

is given as

dco−CH = rc ×
√
Nf . (3.8)

We use this separation as a basis to calculate the expected number of collisions,

even though a regular structure that maximizes the distance between co-frame

CHs exists only for a certain set of Nf values. The worst case assumption can be

relaxed by replacing rc in (3.8) by dCH leading to (3.9).

dco−CH = dCH ×
√
Nf (3.9)

Relation Between Co-frame CH Separation and Number of Collisions

We begin the analysis by deriving a function, f(d, r1, r2), that calculates the in-

tersection area of two circles having radii r1 and r2, and whose center points are

separated by d. This function will be used frequently in the later analysis. Fig. 3.3

shows two such circles. The intersection area, which is shown as the shaded area
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in the figure, can be calculated as

xco = (r2
2 − r2

1 + d2)/(2 ∗ d) (3.10)

f(d, r1, r2) = 2

xco∫
d−r2

√
r22−(x−d)2∫

0

dydx+ 2

r1∫
xco

√
r21−(x−d)2∫

0

dydx

= 2r2
1

(
sin(2θ)

4
+
θ

2

∣∣∣θ=π
2

θ=arcsin
(
d−xco
r1

)
)

+ 2r2
2

(
sin(2θ)

4
+
θ

2

∣∣∣θ=π
2

θ=arcsin
(
xco
r2

)
)
.

(3.11)

Nodes vulnerable to collisions should be located at most 2 times the commu-

nication radius, rc, from a CH in order to receive a packet in that cluster’s frame.

Furthermore, those nodes should also be located within the sum of the commu-

nication radius and the interference radius, rc + rint, of a co-frame CH. Thus, the

vulnerable region for two co-frame CHs is the area of intersection of two circles

with radii of 2rc and rc + rint and centers located at the co-frame CH positions.

The lightly shaded area in Fig. 3.4 depicts the vulnerable region for two CHs



39

y

xd
co-CH

r 
   

   
  +

 r
   

  

co
m

m
   

   
   

 in
t

r 
   
 in

t

cand

cand

1

2

Figure 3.4: A typical alignment of co-frame clusters together with their vulnerable

region (lightly shaded region). The dark shaded regions near the CHs are the

regions of member nodes whose packets could collide at the node located at (x, y).

The expected numbers of nodes in these regions are represented by cand1 and

cand2, respectively.

(represented by the diamonds) separated by a distance of dco−CH . The nodes in

the vulnerable region are called vulnerable nodes.

The nodes whose packets may collide at a node in the vulnerable region should

be in the communication range of that node. In Fig. 3.4, the little disk located at

(x, y) represents an arbitrarily selected node among the vulnerable nodes. Packets

transmitted by the nodes in the shaded regions will collide at the selected node

when these packets are scheduled for the same data slot. The expected number of

nodes in these regions for the selected node at (x, y), cand1(x, y) and cand2(x, y),

corresponding to the left and right hand side clusters are:

cand1(x, y) =
f(
√
x2 + y2, rc, rc)

Simulation Area
N (3.12a)

cand2(x, y) =
f(
√

(dch − x)2 + y2, rc, rint)

Simulation Area
N (3.12b)
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where rc and rint are the communication radius and the interference radius at the

given transmission power level.

For a sufficiently large node density, the expected number of data collisions

per frame due to those candidate nodes, Ecoll(x, y), can be approximated as:

Ecoll(x, y) =
cand1(x, y)

Nc

∗ cand2(x, y)

Nc

∗min(E[Load],MaxTraffic), (3.13)

where Load, MaxTraffic and Nc are as defined in Section 3.2.1.

Averaging Ecoll(x, y) over the vulnerable region, V , and multiplying by the

expected number of nodes in a cluster leads to the expected throughput loss on

the transmissions from the nodes of one cluster due to one co-frame cluster, ncollpCH

as calculated in (3.14).

ncollpCH =

∫∫
V

Ecoll(x, y)dxdy
N

Simulation Area
(3.14)

The collisions between each co-frame CH pair decreases the number of packet

receptions of the packets transmitted by the members of the CH by ncollpCH .

Multiplying ncollpCH by the number of permutations of co-frame CH pairs leads to

the expected value for the total number of collisions, ncoll as

ncoll = ncollpCH

(
NCHtotal

2

)
2, (3.15)

where NCHtotal is the expected value of the total number of CHs in the network.

Note that for sufficiently large node density, NCHtotal is independent of node den-

sity and can be calculated similar to the calculation of pd.

Hence, the number of collisions per node per superframe, ncollpN , is calculated

as in (3.16).

ncollpN =
ncoll
N

(3.16)
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3.2.3 Throughput Model

The voice application under concern generates one packet per superframe when the

nodes are in spurt state. Therefore, the expected number of generated packets per

superframe is equal to the expected number of nodes in spurt state per superframe

and can be calculated as

NPgen = ps ∗N. (3.17)

Each generated packet is dropped with a probability of Pdp and transmitted

otherwise. The expected number of dropped packets per superframe can be cal-

culated as

NPdrop = NPgen ∗ Pdp. (3.18)

The number of packets transmitted per superframe per node, TxT , can easily

be obtained by subtracting the number of dropped packets from the number of

generated packets and dividing by the number of nodes as in (3.19a). Note that

TxT can also be interpreted as the probability of a node to get access to the channel

in an arbitrary superframe. This definition is indicated implicitly by the simplified

form of the equation given in (3.19b) as the multiplication of the probability of

not dropping a packet with the probability of being in spurt duration.

TxT =
NPgen −NPdrop

N
(3.19a)

=(1− Pdp) ∗ ps (3.19b)

If there were no collisions, each transmitted packet would have been received

by all the neighboring nodes. Therefore, for an ideal case of no collisions, the

number of packets received per node per superframe would be

RxTideal = TxT (pcN) (3.20)

However, collisions prevent some packets from being received successfully. The

number of collisions per node per superframe, ncollpN , is calculated in Section 3.2.2.
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Subtracting ncollpN from RxTideal yields the expected number of packet receptions

per node per superframe, RxT , as in (3.21).

RxT = RxTideal − ncollpN (3.21)

3.2.4 Energy Model

In addition to throughput, energy dissipation is an important parameter to eval-

uate for a given protocol. Thus, here we describe our energy model that is built

off our throughput model described in the previous sections.

In our energy model, at any instant nodes should be in one of five different

states, namely transmission state (STx), successful reception state (SRx), carrier

sensing state (SCS), idle state (SI), and sleep state (SS). At each state, the power

consumed by the nodes differ.

STx is the state where nodes transmit a message. A node can be in SRx ,

SCS, or SI when it is listening to the medium. SI is the state where nodes

listen to the medium but cannot identify or carrier sense any message. In SCS,

nodes sense some ongoing transmission but cannot extract the message contents

since the transmission is not powerful enough to overcome the noise. When the

transmission is powerful enough for the node to identify its message contents, the

node is assumed to be in SRx . Depending on the physical layer design of the radio,

the power consumption of these three states may differ and are thus differentiated

in our analytical model. SS is the state where nodes, turn off their communication

circuitry to save energy.

The aim of the analytical model is to calculate the average time spent in

each state per node. Since the data sub-frame constitutes the largest part of the

frame, it is crucial to accurately determine the expected value of the throughput.

Using the expected value of the throughput, the average time spent in each state
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Table 3.1: Abbreviations used in the energy model.

Abbreviation Explanation

BeaconL Length of beacon slot in seconds

CAL Length of clusterhead announcement slot in seconds

ContentionL Length of a single contention slot in seconds

HeaderL Length of header slot in seconds

ISL Length of information summarization in seconds

DataL Length of a single data slot in seconds

SFduration Length of the superframe in seconds

NdataS Number of data slots per frame

NcontS Number of contention slots per frame

NCHc Expected number of CHs in the communication range

of a randomly selected node

NCHint Expected number of CHs in the interference range of

a randomly selected node

txPower Average power consumption in transmitting state

rxPower Average power consumption in receiving state

csPower Average power consumption in carrier sensing state

idlePower Average power consumption in idling state

sleepPower Average power consumption in sleeping state

and, in turn, the average energy consumption per successful transmission, can be

calculated for any set of parameters.

Calculation of the time spent in each state depends strongly on the MAC pro-

tocol. In this section, state durations are calculated based on the MH-TRACE

protocol and the corresponding frame structure given in Fig. 2.1. The abbrevia-

tions that will be used in this section are listed in Table 3.1.

As mentioned in Section 2.1.2, randomly chosen CHs regulate the channel
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during the frame in which they are operating for the nodes in their communication

range. In performing this role, CHs transmit and receive additional overhead

packets. Thus, their energy consumption differs from that of ordinary nodes. In

order to reflect these changes, the state durations of the CHs will be calculated

separately.

State Durations for Ordinary Nodes

The first step in calculating the state durations is to determine when the nodes

are transmitting. Considering the frame structure in Fig. 2.1, it can be observed

that the ordinary nodes only transmit during the contention, IS and data slots.

The contention slots are used for passing channel access requests to the CHs. The

nodes request channel access only in the beginning of the entire spurt duration,

since the CH reserves a data slot for the node unless the node goes out of the

communication range or sends an end of stream message in the corresponding

IS slot. Considering the fact that the contention slots are short and only used

in rare cases, their affect on the transmission duration of the nodes is neglected.

For each data slot, nodes transmit one IS slot to announce the data that will be

sent. Given TxT , which was calculated in the previous section, NodeTxt can be

calculated as in (3.22).

NodeTxt = TxT ∗ (DataL + ISL) (3.22)

Nodes listen to the Beacon, CA and all IS slots in all the frames uncondition-

ally. The data slot is only listened if the corresponding IS packet is successfully

received. A node listens to the header slot only if it has data to send, in other

words when the node is in spurt state. Considering these facts, NodeListent can

be calculated as in (3.23).

NodeListent =Nf ∗ (BeaconL + CAL + ISL ∗NdataS)

+RxT ∗DataL + ps ∗HeaderL (3.23)
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NodeListent can be partitioned into three parts: NodeIdleT ime where nodes

are on but cannot hear any transmission that is strong enough even for carrier

sensing, NodeCSTime where nodes can hear and carrier sense the transmission

but cannot decode the message it contains, and NodeRxTime where nodes actu-

ally receive a message.

Nodes can receive Beacon and CA packets from the CHs in their receiving

range. Unless nodes go out of the transmission range just after the beacon mes-

sage, nodes can receive the corresponding header message as well. Each node

receives RxT data messages on the average. For each data message it receives,

it should have received also one information summarization message in the cor-

responding data slot otherwise the node would be in SS during the data slot.

Summing these up, NodeRxt can be calculated as

NodeRxt = NCHc ∗ (BeaconL + CAL ∗ pCA)

+RxT ∗ (DataL + ISL) + TxT ∗HeaderL, (3.24)

where pCA is the probability of a CH to transmit a CA message in the CA slot.

Nodes are assumed to be in SCS state when they are listening the transmissions

that are originated from a transmitter that is out of the receiving range but in

carrier sensing range. Those packets cannot be received successfully. Failure to

receive a successful IS slot makes the nodes to go to sleep in the corresponding

data slot. Hence, in general, rather than carrier sensing the data slot, nodes go

to sleep.

Since the nodes listen to all the beacon, CA, and IS slots, carrier sensing takes

place for these packets if the transmitter is within interference range but not

within communication range. Beacon and CA slots are transmitted by the CHs.

Hence, their length should be multiplied by the number of CHs within interference

range but not within communication range and operating in distinct frames and

added to NodeCSt. Following a similar idea, IS slot length should be multiplied



46

by the number of transmitting nodes within interference range but not within

communication range to calculate the time spent for carrier sensing in IS slots.

Summing up, NodeCSt can be calculated as

NodeCSt = (min(NCHint , Nf )−min (NCHc , Nf )) (BeaconL + CAL)

+ TxT (Nint −Nc) ∗ ISL (3.25)

where NCHint and NCHc are the expected number of CHs in the interference range

and communication range, respectively. If any of those numbers are above Nf , Nf

should be considered in NodeCSt calculation since introducing co-frame CHs do

not increase the carrier sensing duration. Nint is the expected number of nodes in

the interference range of a node and calculated in the same way as Nc is calculated

in (3.6).

The remaining listen time is allocated as the idle time as in (3.26).

NodeIdlet = NodeListent −NodeRxt −NodeCSt (3.26)

When nodes do not transmit or listen to the channel they are assumed to turn

off their radios, and go into the sleep state. Thus, NodeSleept can be calculated

as in (3.27).

NodeSleept = SFduration−NodeListent −NodeTxt (3.27)

State Durations for CHs

In addition to the data and IS slots, CHs also transmit Beacon, CA and Header

slots of their frame. However, CA messages are transmitted with probability pCA;

otherwise CHs listen to these slots. Thus, CHTxt can be calculated as in (3.28).

CHTxt = BeaconL + CAL ∗ pCA +HeaderL + TxT ∗ (DataL + ISL) (3.28)
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CHs are in the listening state during all the beacon slots other than the one

in its own frame, CA slots other than the one it is transmitting, contention slots

of its frame, all IS slots in all frames, and as many data slots as for an ordinary

node. Considering these facts, CHListent can be calculated as in (3.29).

CHListent = (Nf − 1) ∗BeaconL

+ (Nf − pCA) ∗ CAL

+NcontS ∗ ContentionL

+Nf ∗ (ISL ∗NdataS) +RxT ∗DataL (3.29)

CHRxt is equal to the NodeRxTime other than the header slot since CHs are

in the transmission state during that slot. Neglecting the effects of slots, CHRxt

can be calculated as in (3.30).

CHRxt = NCHc ∗ (BeaconL + CAL ∗ pCA)

+RxT ∗ (DataL + ISL) (3.30)

CHCSt, CHIdlet, and CHSleepT ime are calculated in the same way as their

corresponding node equivalents as follows:

CHCSt = (min(NCHint , Nf )−min (NCHc , Nf ))× (BeaconL + CAL)

+TxT

(
N
πr2

int − πr2
c

simarea

)
× ISL (3.31)

CHIdlet =CHListent − CHRxt − CHCSt (3.32)

CHSleept =SFduration− CHListent − CHTxt (3.33)

3.3 Validation of the Analytical Model

The analytical model described in the previous section introduces a simple tool

that estimates the performance of MAC protocols employing a TDMA frame



48

structure and a soft clustering a soft clustering scheme. The model includes

simplifying assumptions about node distributions and communications among the

nodes. The model approximates the behavior of the protocol rather than reflecting

the complex relationships, as can be detailed in simulations, thereby providing an

estimate of the throughput and energy achieved by the protocol. In this section,

we investigate the performance of the MH-TRACE protocol using our model and

compare it with the results of simulations using ns-2 [95] in order to verify the

model.

3.3.1 Simulation Environment

For comparison purposes, we conduct ns-2 simulations of MH-TRACE under dif-

ferent network scenarios and for various number of frames per superframe, Nf ,

values.

The source application is conversational voice, coded at 32Kbps, which trans-

lates into 100B data packets for every 25ms. Voice conversation is simulated with

“spurts” and “gaps”, whose lengths are exponentially distributed and statistically

independent, with mean durations of 1.0s and 1.35s, respectively [96,97].

The channel rate is set to 2Mbps. Given these values, in order to maintain

data packet timing, the superframe duration is adjusted to be as close as possible

to 25ms, which is the voice packet generation period. Table 3.2 shows details of

the frame timing for each value of Nf .

Beacon, CA, contention, and IS packets are all 4 bytes long. The header packet

has a variable length of (4 + 2Nd) bytes depending on the number of data slots

per frame. There is a 4 byte header and 100 byte data packet associated with

each data slot. Details of the various header packet lengths can be found in [4].

The energy model is based on the one used in [98]. We used a constant

transmission power that yields a communication radius of 250m under the two
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Table 3.2: Superframe Parameters

Number Number Number

of of of

Frames Data Contention Superframe

Nf Slots,Nd Slots,Nc Time Tsf

4 12 15 24,976

5 10 6 25,060

6 8 9 24,984

7 7 6 25,172

8 6 6 24,992

way ground propagation model. Nodes are assumed to have the ability to identify

an ongoing transmission and measure its power, as long as the power of the packet

(at the receiver) is higher than the carrier sensing threshold. The transmission

power that we use translates into a carrier sensing radius of 550m.

In the case of more than one packet arriving at a receiver simultaneously,

none of the packets can be received by the receiver unless one of them captures

the receiver. In order to capture the receiver, the power of the packet (at the

receiver) must be at least 10 times stronger than all other transmissions that arrive

at the receiver during the reception duration of the packet. Furthermore, in order

to be received successfully, the packet must also be stronger than the minimum

successful reception power threshold (i.e., the packet must be originated from a

node within the communication radius of the receiver.).

The power spent by each node varies according to the operation performed by

the node. During successful reception, collision and carrier sensing periods, the

node consumes power at the rate of the reception power level. There is also an

idle state where only the power needed to run the circuitry is dissipated without

any actual packet receptions. The nodes are assumed to turn off any circuitry
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when they go into the sleep state, where the power consumption is minimal.

The random way-point mobility model [99] [100] is used in the mobile scenarios,

with node speeds chosen from a uniform random distribution between 0.0 m/s and

5.0 m/s with zero pause time. All simulations are run in an area of 1km x 1km for

100 seconds. The simulations are repeated with the same parameters 10 times.

All results are based on sample averages and sample standard deviations of those

10 iterations.

3.3.2 Validation

The model approximates various statistics about the protocol such as Pdp, TxT ,

ncoll, RxT , and Ec. In this part, the estimates of these statistics are compared to

their counterparts obtained through simulation averages.

Any of those statistics is expected to be a stochastic number with a possibly

complex distribution, since the process leading to the statistics is a combination of

various random events. The aim of the analytical model presented in this chapter

is to estimate the population mean for each statistic. Simulations provide samples

from the population. From the central limit theorem, as the size of the simulation

set increases, the statistical distribution of simulation averages approaches to a

Gaussian distribution. Therefore it is almost impossible to obtain an exact match

between the simulation averages and the population means (i.e., the probability of

obtaining a simulation set whose average is equal to the population mean is zero.).

Thus, any comparison between the simulations and estimated values should be

done with respect to the standard deviations. As the parameters of the protocol

are varied, the means of the statistics calculated with the model are expected to

behave similar to the simulation averages, although the absolute values may not

match exactly.

The mobility is handled by the CH creation and maintenance mechanisms in-
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Figure 3.5: Pdp vs Nf for a communication radius of 250m and a network size of

1km×1km.

herent to the protocol itself. Assuming these mechanisms are working fast enough,

we expect the results of the mobile simulations to be statistically similar to those

of stationary simulations. Thus, the analytical model presented in the previous

section can also be used for mobile scenarios even though the model does not

include any mechanisms to account for node mobility. The analytical results are

compared to the simulation results for both stationary and mobile scenarios.

Throughout this section, the estimates on Pdp, TxT , ncoll, RxT , and Ec are

compared to the simulation averages for both stationary and mobile cases for two

different node densities (125 and 250 nodes/km2) and five different Nf values

(ranging from 4 to 8).
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Probability of Dropping a Packet (Pdp)

One of the main factors affecting the throughput is the dropped packets, as stated

earlier. The dropped packets are the result of channel blockages and are important

to consider while designing the protocol and setting its parameters. Fig. 3.5

compares the estimates on Pdp with the simulation averages and sample standard

deviations for both stationary and mobile scenarios.

As the number of nodes in the network increases, the average node density

and hence Load increases. An increased Load leads to a higher Pdp. This can be

observed by the increase in Pdp as the number of nodes is increased from 125 to

250.

As Nf is increased, the superframe is divided into smaller partitions lead-

ing to shorter frames. Shorter frames can accommodate fewer data slots. Hence

MaxTraffic decreases for increasedNf . Under the same load, decreasedMaxTraffic

leads to an increase in Pdp. This can be observed by the increase in Pdp as Nf is

increased.

In the mobile case, CHs coming near to each other resign. Until, the new CHs

are chosen, the nodes near the resigned CH would have fewer alternatives to reach

the medium. Thus, Pdp in the mobile case is higher than the Pdp in the stationary

case. Since the model does not take into account CH resignations, the estimates

are lower than the mobile case results. Although the results of the mobile case are

not as close to the model result as the stationary case, considering large standard

deviations, the model can provide an estimate for Pdp in the mobile case as well.

Number of Data Transmissions per Node per Superframe (TxT )

The analytical model combines the estimates on the number of generated packets

per superframe and Pdp to yield TxT . Fig. 3.6 presents simulation averages and

estimates on TxT .
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Figure 3.6: TxT vs. Nf for a communication radius of 250m and a network size

of 1km×1km.

The number of nodes in the network inherently determines the number of

generated packets, since each node also acts as a data source. As the number of

nodes increases, the demand for channel access also increases. As a result, each

node has to get a smaller share on the average from the channel. MH-TRACE

maintains ongoing voice streams and denies any new access to the channel until

the channel becomes available again. Thus, some nodes cannot be given channel

access in a timely fashion and have to drop their packets. Thus, TxT decreases as

the number of nodes in the network increases, as can be observed in Fig. 3.6.

TxT also decreases as Nf is increased. A larger Nf translates into shorter

frames. Shorter frames can accommodate fewer data slots. Hence MaxTraffic

decreases for increased Nf . Under the same load, decreased MaxTraffic leads

to an increase in Pdp and hence a decrease in TxT . This can be observed by the

decrease in TxT as Nf is increased.
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For a 125 node network and an Nf value of 6, TxT is almost equal to the

expected value of ps (0.43), which indicates the nodes’ ability to get channel access

whenever they need. Thus, one cannot gain much from decreasing Nf from 6 to 4

for a 125 node network. On the other hand, for a 250 node network, the demand

for channel access is much higher. Thus, for a 250 node network, decreasing Nf

from 6 to 4 increases a node’s chance to get channel access in a timely fashion

and increases TxT from 0.34 to 0.4 packets/node/superframe.

Number of Collisions per Node per Superframe (ncollpN )

Another important factor in estimating the throughput is the collisions. In order

to calculate the effect of collisions on the throughput metrics, we have to consider

the collisions that would result in a packet reception if there were no interfering

transmission. In other words, in the case of a collision, only those packets that

originate from inside the communication radius should be taken into account.

Other colliding packets are not considered as lost since they could not be received

even if there were no collisions. The number of collision figures throughout this

section include only such packets.

Fig. 3.7 presents the simulation averages and analytical model estimates for

the number of collisions per node per superframe. As the number of nodes in the

network increases, the expected value of Load increases. As long as the expected

value of Load is below MaxTraffic, an increase in Load leads to a larger Ecoll

and hence a larger ncollpN . This can be observed by the increase in ncollpN as the

number of nodes is increased from 125 to 250.

CHs choose the frame with the least interference to operate in among the

frames in a superframe. As Nf is decreased, the CHs have fewer alternatives to

choose from. As a result, the expected value of the separation between co-frame

clusters decreases. The nodes that reside in between two co-frame clusters tend
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Figure 3.7: ncollpN vs. Nf for a communication radius of 250m and a network size

of 1km×1km.

to have more interference from one of the co-frame clusters, and hence ncollpN

increases. This can be observed by the increase in ncollpN as Nf is decreased in

Fig. 3.7.

Number of Data Receptions per Node per Superframe RxT

The last step in calculating the number of receptions is to incorporate the effect of

collisions. The analytical model combines the estimates of ncollpN and TxT to yield

RxT . Fig. 3.8 presents the estimates on RxT together with the simulation averages

and sample standard deviations for the number of successful data receptions per

node per superframe.

Increasing the number of nodes in the network has a two-fold effect on the

total number of receptions since each node acts as both a data source and a data

sink. Thus, for the same TxT level, as the number of nodes doubles, RxT is also
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Figure 3.8: RxT vs. Nf for a communication radius of 250m and a network size

of 1km×1km.

expected to increase by a factor of two. This can be observed at the Nf value of

4, where TxT values are almost identical, while RxT for the 250 node network is

almost twice as large as RxT for the 125 node network.

Energy Consumption per Node per Superframe Ec

The analytical model calculates the energy consumption based on the throughput

figures. The average energy consumption per node per superframe, Ec, obtained

through the analytical model is compared to the simulation results in Fig. 3.9.

The average energy consumption is strongly related to RxT . This similarity

can be observed by comparing Fig. 3.9 to Fig. 3.8. Increases in RxT directly

translate into shorter NodeIdleT ime and longer NodeRxTime, which in turn

increases energy consumption.

However, the energy spent for CH creation and maintenance is independent
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Figure 3.9: Ec vs. Nf for a communication radius of 250m and a network size of

1km×1km.

of the traffic load of a CH. Hence, unlike RxT , for the same TxT (Nf value of 4

yields approximately the same TxT for the 125 node and the 250 node networks),

doubling the node density does not double the Ec.

Throughout this section we have observed that in all of the performance met-

rics, the standard deviations in the results are quite large. This is due the strong

dependency of the model on the selection of CHs, which is done through a random-

ized scheme. It is difficult to get an exact match when modeling random variables

with such high variances. The mathematical model presented in this chapter has

been observed to estimate the number of received packets and the average energy,

while following the same trends as the simulation results. In the following section,

we investigate the suitability of the model for parameter optimization.



58

3.4 Optimization of Spatial Reuse

The degree of spatial reuse directly affects the performance of the protocol, both

in terms of throughput and energy consumption. Reusing the channel for clusters

separated enough increases the amount of traffic that can be relayed in a super-

frame and decreases the number of dropped packets. However, it also increases

the interference and in turn the number of collisions. Thus, there is a trade-off

between dropped packets and collisions, which must be arbitrated to make best

use of the channel resources.

In TDMA based protocols such as MH-TRACE, the degree of spatial reuse

is determined by the number of frames per superframe, Nf . Decreasing that

parameter decreases the number of alternative frames that each CH can choose

from and increases the interference in each frame. However, since there are fewer

frames in the superframe, each frame becomes longer and can maintain more data

slots, which in turn increases the MaxTraffic per cluster.

The analytical model introduced in this chapter can be utilized to optimize Nf

for an arbitrary node density. This parameter can be optimized for any statistic.

In this section, we will determine the Nf value that maximizes throughput and

the Nf value that maximizes energy efficiency. After presenting the results for a

number of node densities, the method will be validated by comparing the results

of simulations using the optimized Nf parameter to simulations using other Nf

values.

3.4.1 Optimization Seeking Maximum Throughput

As MaxTraffic per cluster increases, Pdp and in turn the number of dropped

packets in the network decreases. A reduced number of dropped packets leads

to a higher TxT as can be observed from (3.19). Therefore, setting Nf to a
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lower value, leads to higher TxT and tends to increase RxT . On the other hand,

decreasing Nf also decreases the co-frame CH separation as can be observed from

(3.9). As the separation between co-frame CHs is decreased, ncoll, increases and

tends to decrease RxT .

Theoretically, the maximum throughput should be realizable at the Nf value

that minimizes the combined effects of collisions and dropped packets at the given

node density. The analytical model presented in this chapter can be used to resolve

the trade-off between collisions and dropped packets. For a given network size and

node density, RxT can be optimized over any finite set of realizable Nf values by

evaluating the model for each value of Nf in the set and choosing the one that

yields the highest RxT .

The variation in RxT as Nf is varied for 75 node and 300 node networks is

presented in Fig. 3.10. The figure clearly demonstrates that Nf values of 8 and

4 maximize RxT for 75 node and 300 node networks, respectively. When Nf is

increased beyond the optimal point, the loss in throughput due to dropped packets

overwhelms savings due to the reduction in the number of collisions and hence

RxT decreases. Conversely, as Nf is decreased below the optimal point, the effect

of collisions dominate the effect of dropped packets and RxT again decreases.

The argument for 75 node and 300 node networks can be generalized for any

node density. Fig. 3.11 presents the maximum and minimum RxT values together

with the optimizing (maximizing) Nf values over the set Nf ε {3, 4, 5, 6, 7, 8, 9}

as the number of nodes in the network is varied from 50 to 500.

As the number of nodes in the network is increased, the optimal Nf should be

decreased in order to compensate for increased Load in the cluster. This behavior

can be seen directly from Fig. 3.11.

The decision on which Nf value to use is relatively less important for sparse

networks, as can be observed in Fig. 3.11 by the decreasing performance difference

between the minimum and maximum RxT values as node density is decreased. On
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the other hand, the decision about which Nf value to use is quite important for

dense networks. For 500 node networks, choosing an incorrect Nf from the set ε

{3, 4, 5, 6, 7, 8, 9} may lead to 56% loss in RxT .

3.4.2 Optimization Seeking Maximum Energy Efficiency

Another important metric for a MAC protocol is the number of received packets

per unit energy consumption. A larger number of received packets per energy

consumption indicates a more energy efficient protocol. Therefore, the energy

efficiency can be defined as the number of packets received per unit energy con-

sumption.

Nf determines the energy efficiency as it affects both the number of received

packets and the energy consumption. The variation in energy efficiency for 75

node and 300 node networks as Nf is varied is presented in Fig. 3.12.

Fig. 3.13 presents the maximum and minimum energy efficiency values together

with the optimizing (maximizing) Nf values over the set Nf ε {3, 4, 5, 6, 7, 8, 9}

as the number of nodes in the network is varied from 50 to 500.

The deviation between maximum and minimum energy efficiency values are

around 16% of the maximum energy efficiency values for all node densities. For

500 node networks, choosing an incorrect Nf from the set ε {3, 4, 5, 6, 7, 8, 9}

may lead to 17% fewer packet receptions per unit energy consumption.

Comparing Fig. 3.11 and Fig. 3.13, although for some node densities the opti-

mal Nf values for maximum energy efficiency and for maximum RxT are identical,

this cannot be generalized for all node densities. For instance, when the number of

nodes in the network is reduced below 125 nodes, optimization for maximum RxT

suggests increasing Nf above 6 while optimization for maximum energy efficiency

suggests keeping it at the value of 6. For such node densities, the MaxTraffic
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Figure 3.12: Energy Efficiency vs. Nf for 75 and 300 node networks. The Nf

value leading to the maximum energy efficiency is marked with a dot.
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of nodes in the network varies, together with the Nf leading to maximum energy

efficiency.
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in each cluster is sufficient to meet the demand even for higher Nf values (note

that Pdp is close to 0 even for 125 nodes in Fig 3.5). Thus, increasing Nf takes

advantage of reducing ncollpN . Reducing the number of collisions and increasing

RxT are also desirable in optimizing the energy efficiency. However, increasing Nf

also comes with the cost of increased overhead messages per superframe. There

would be more beacon, CA, contention and header slots in a superframe. Both

listening and transmitting the additional overhead increases energy consumption

and reduces energy efficiency. The increase in energy consumption overwhelms

incremental increases in throughput.

3.4.3 Validation of Optimization Methods Through Ana-

lytical Model

In this subsection, the validity of using the analytical model to optimize the Nf

parameter is tested using the available simulation results as an evaluation basis.

In Figs. 3.11 and 3.13, the optimal values of Nf predicted by the model were

presented for various node densities for throughput and energy efficiency. In

this section, the simulation averages using these Nf values are compared to the

averages of simulation results that use other Nf values.

Validation of Optimization Seeking Maximum Throughput

For throughput optimization, the performance of each Nf value can be defined

as the average simulated throughput for that Nf value as a percentage of the

maximum simulated throughput among all Nf values for a given node density.

Therefore, the Nf value leading to the highest average throughput has 100%

performance. For a range of node densities, Fig. 3.14 depicts the simulated per-

formance of the optimal Nf values predicted by the model together with the
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Figure 3.14: Simulated average RxT of the Nf values decided through the ana-

lytical model together with the worst average RxT for various node densities. All

RxT values are indicated as a percentage of the maximum average simulated RxT

at a given node density.

simulated performance of the Nf value leading to the lowest average simulated

throughput among Nf values ranging from 4 to 8.

All decisions obtained through analysis lie within 6% and 3% of the maximum

realizable throughput for the stationary and mobile cases, respectively. Analysis

is successful in determining the optimal Nf value for dense networks, in both the

mobile and stationary cases. However, in the stationary case, the model estimation

converges to the optimal decision faster as the node density is increased.

For low node densities, the demand for channel access is fairly low and the

MaxTraffic is sufficient. The dropped packets are merely the results of non

uniformities in node distribution. Thus, increasing MaxTraffic per cluster (i.e.,

decreasing Nf ) has relatively weaker impact on throughput. Also the impact of
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collisions on throughput for sparse networks is not as strong as it is for dense

networks since the number of collisions is proportional to the square of the node

density. Hence, the decision on which Nf value to use is relatively less important

for sparse networks, as can be observed in Fig. 3.14 by the decreasing performance

difference between the worst and best decisions as node density is decreased. On

the other hand, the decision about which Nf value to use is quite important for

dense networks. For 300 node stationary and mobile networks, choosing the worst

Nf value achieves only 65% and 64% of the optimum throughput, respectively.

Thus, appropriate setting of the Nf parameter is extremely important, and the

analytical model provided in this chapter can be used to optimally set this value.

Validation of Optimization Seeking Maximum Energy Efficiency

For energy efficiency optimization, the performance of each Nf value can be ex-

pressed as the average simulated energy efficiency for thatNf value as a percentage

of the maximum simulated energy efficiency among all Nf values for a given node

density. The performance of the analytically selected optimal Nf value is com-

pared to the worst performance among Nf values ranging from 4 to 8 for each

node density. Fig. 3.15 depicts this comparison together with optimal Nf values

obtained through analysis for both mobile and stationary cases.

For the stationary case, the optimalNf value estimated by the model is also the

optimal among the simulation results that leads to the highest energy efficiency

among Nf ε {4, 5, 6, 7, 8} and for all node densities, validating the use of the

model in the optimization procedure of Nf for maximum energy efficiency.

For the mobile case, the Nf value suggested by the analytical model leads to

the highest average energy efficiency of the simulation set for all node densities

with the exception of the network with 125 nodes. Even for the relatively sparse

network of 125 nodes, the energy efficiency of the simulation results using the Nf
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Figure 3.15: Simulated average energy efficiency of the Nf values decided through
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maximum average simulated energy efficiency at a given node density.
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value suggested by the analytical model deviates less than 1% of the maximum

average energy efficiency obtained through simulations using all possible Nf values.

Due to the fixed energy consumption for cluster maintenance, as the num-

ber of packets received per unit time increases, the energy efficiency tends to go

up. Therefore dropped packets and collisions both decrease the energy efficiency.

Collisions further decrease energy efficiency, as the transmission energy for col-

lided packets are wasted. Since the impact of collisions and dropped packets are

stronger for denser networks, the decision on which Nf value to use is relatively

more important for denser networks, as can be observed in Fig. 3.15 by the increas-

ing performance difference between the worst and best decisions as node density

is increased. For 300 node stationary and mobile networks, choosing the worst

Nf value leads to 7.5% loss in energy efficiency. Thus, appropriate setting of the

Nf parameter ensures energy efficiency, and the analytical model provided in this

chapter can be used to optimally set this value.

3.5 Varying the Data Generation Rate

In the previous section, the variation in the performance of the protocol is observed

as Nf , which is an internal parameter of the protocol, is varied. The model can

also be used to estimate the performance of the protocol as parameters external

to the protocol, such as data generation rate, are varied.

Data generation rate will be increased by changing the mean spurt and gap

durations while keeping the voice coding rate and the length of each data packet

constant. The mean spurt and gap durations are used in calculating the ps value

as described in section 3.2.1. This section investigates the parameters such as Pdp,

ncollpN , TxT , RxT and Ec as ps is varied from 0 to 1. In the ps = 0 case, nodes do

not generate any data packets, whereas in the ps = 1 case, the input application

generates data packets for each node all the time.
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Fig. 3.16 presents Pdp for various ps values. As ps is increased, Load and Pdp

increase. Increasing ps and increasing the number of nodes in the network has the

same effect on Pdp. Therefore, increasing ps just compresses the curve along the

x-axis in Fig. 3.16. For instance, when ps is 0.2, Pdp reaches 0.2 for an 800 node

network, while it reaches to the same value for a 400 node network when ps is 0.4.

Fig. 3.17 presents ncollpN for various ps values. As ps is increased, the expected

value of Load increases, which in turn increases Ecoll(x, y) for some (x, y) pair, as

can be observed from (3.13).

For low node densities, E[Load] is the determining factor in the last term in

(3.13), min(E[Load],MaxTraffic). As ps is increased, E[Load] increases, which

in turn increase ncollpN . On the other hand, for large node densities, the bounding

factor is the MaxTraffic, which is independent of both node density and ps.

Therefore, increasing ps has negligible effect on ncollpN when the number of nodes

in the network is high.

Fig. 3.18 presents TxT for various ps values. Examining (3.19), it can be

observed that ps effects TxT both through Pdp and through a multiplicative factor.

For low node densities, Pdp is negligible. For a 50 node network, TxT values are

almost identical to ps in Fig. 3.18. On the other hand, for high node densities the

effect of Pdp dominates in TxT as can be observed by the converging curves.

Fig. 3.19 presents RxT for various ps values. For low node densities, the

addition of new load through increasing either the number of nodes or ps increases

RxT as there is unutilized data slots. However, as load is increased, RxT converges

to a fixed value where all the available data slots in the network is exhausted.

As can be observed from (3.17), the average total load injected to the network

can be increased either by increasing the number of nodes in the network (since

each node is also a data source) or increasing the amount of data generated by

each node. However, increasing the number of nodes in the network also increases
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Figure 3.16: Pdp vs. number of nodes in the network for various ps values with

Nf set to 4.
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Nf set to 4.
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Figure 3.18: TxT vs. number of nodes in the network for various ps values with

Nf set to 4.
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Table 3.3: RxT for a network with a total NPgen of 100 Packets/SF.

Number ps NPgen RxT

of Nodes

100 1.0 100 13.9

125 0.8 100 13.6

167 0.6 100 13.2

250 0.4 100 13.0

500 0.2 100 12.4

the variation in Load distribution, which in turn decreases the performance. Ta-

ble 3.3 shows the RxT values corresponding to a network with total NPgen of 100

packets/SF. It can be observed that although NPgen is the same for all 5 cases,

the network with the least number of nodes (or highest ps) performs the best.

Fig. 3.20 presents Ec for various ps values. When the network is idle (no

load on the network), the energy is spent only to maintain the CH structure and

is independent of node density. As load is introduced to the network, additional

energy is spent for data transmissions and receptions. The increase in Ec is similar

to the increase in RxT as ps is increased since energy consumption is mostly due

to reception.

3.6 Summary

In this chapter, we introduced an analytical model that estimates the performance

of MAC protocols employing a soft-clustering structure and a TDMA channel

access scheme, specifically the MH-TRACE protocol. The model eliminates the

need for cumbersome and lengthy simulations to evaluate the performance of the
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Figure 3.20: Ec vs. number of nodes in the network for various ps values with Nf

set to 4.

protocol. The analytical model presented in this chapter is simple enough to be

run in seconds for a large number of parameter sets yet powerful enough to be

used in optimization studies. By using simple probability distributions, the model

accurately estimates the loss in throughput due to dropped packets and collisions,

and thus can determine the expected throughput, the time spent at each energy

state by the CHs and ordinary nodes, and the average energy consumption of each

node in the network.

The analysis made in this chapter also reveals the importance of proper adjust-

ment of the parameters according to the network conditions. It has been shown

that improper selection of the parameters may result in serious throughput losses

(up to 33% for stationary and 32% for mobile scenarios) and increased energy

consumption per data reception (up to 7.5% for both stationary and mobile sce-

narios) in dense networks. The primary determining factor in the decision is the
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node density.

The model presented in this chapter not only makes the analysis possible for

very dense networks, where the simulation of the network is impractical, but the

model also reveals the impact of the parameters on system performance. It should

be emphasized that although the analytical model developed in this chapter was

tested on MH-TRACE, the throughput model can be adapted to any MAC pro-

tocol employing a soft-clustering structure and a TDMA frame structure. Fur-

thermore, the model can be modified for hard clustering protocols as well. The

soft clustering assumption is used in calculating the number of collisions as well

as in the throughput and energy models. To apply this model to a hard clustering

protocol, these sections need to be modified.

The model helps to find the protocol parameters that make best use of re-

sources in the long run using general probability distributions for node mobility

and packet generation. It can neither calculate the protocol performance nor op-

timize the parameters for transient conditions. In the next chapter, we show that

the resource utilization can be enhanced significantly by constructing dynamic

mechanisms in the model that can accommodate for transient behaviors.
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4 Cooperative Load Balancing

and Dynamic Channel

Allocation for Mobile Ad Hoc

Networks

4.1 Introduction

The key challenges in effective MAC protocol design are the maximization of

spatial reuse and providing support for non-uniform load distributions. Spatial

reuse is tightly linked to the bandwidth efficiency. Due to the lossy nature of the

propagation medium, the same channel resources can be used in spatially remote

locations simultaneously without affecting each other. Incorporating spatial reuse

into the MAC protocol drastically increases bandwidth efficiency. On the other

hand, due to the dynamic behavior in MANETs, the traffic load may be highly

non-uniform over the network area. Thus, it is crucial that the MAC protocol

be able to efficiently handle spatially non-uniform traffic loads. Uncoordinated

protocols intrinsically incorporate spatial reuse and adapt to the changes in load

distribution through the carrier sensing mechanism. However, coordinated proto-

cols require careful design at the MAC layer allowing the channel controllers to
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utilize spatial reuse and accommodate any changes in the traffic distribution.

In Chapter 3, we presented a mathematical model that can be used to opti-

mize the protocol parameters for any given condition. It is shown that properly

selected parameters decreases the energy consumption and increases the through-

put significantly.

However, this optimization can be used only where a priori models about the

behavior of the network exist. Oftentimes node distribution patterns and packet

generation patterns are not known in the design phase and also can change sig-

nificantly after deployment and throughout the operation of the network. In such

cases, having a model that can optimize the parameters for any given conditions

does not suffice. The network has to be designed flexibly to accommodate changes

over time.

Changes in the node distribution and packet generation patterns result in a

non-uniform load distribution. Similar to cellular systems, coordinated MANET

MAC protocols need specialized spatial reuse and channel borrowing mechanisms

that address the unique characteristics of MANETs in order to provide as high

bandwidth efficiency as their uncoordinated counterparts. Due to node mobility

and the dynamic nature of the sources in a MANET, the network load oftentimes

is not uniformly distributed. In this chapter, we propose two algorithms to cope

with the non-uniform load distributions in MANETs:

� a light weight distributed dynamic channel allocation algorithm based on

spectrum sensing, and

� a cooperative load balancing algorithm in which nodes select their channel

access providers based on the availability of the resources.

We incorporate these two algorithms for managing non-uniform load distribu-

tion in MANETs into the MH-TRACE framework. Although MH-TRACE incor-

porates spatial reuse, it does not provide any channel borrowing or load balancing
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mechanisms and thus does not provide optimal support to dynamically changing

conditions and non-uniform loads. Hence, we apply the dynamic channel alloca-

tion and cooperative load balancing algorithms to MH-TRACE, creating the new

protocols of DCA-TRACE, CMH-TRACE and the combined CDCA-TRACE.

CDCA-TRACE is a novel MAC protocol that maintains the same energy effi-

ciency and channel regulation principles of MH-TRACE while enabling dynamic

and scalable channel assignment in addition to cooperative load balancing. Instead

of message exchanges between the channel regulators (CHs), CDCA-TRACE uti-

lizes spectrum sensing to keep track of channel usage in nearby clusters. This fea-

ture minimizes the overhead found in dynamic channel allocation schemes for cel-

lular networks and makes CDCA-TRACE suitable for MANETs. CDCA-TRACE

also incorporates cooperation among the member nodes to improve the distribu-

tion of the load among the CHs and complements dynamic channel allocation to

enhance the service rate.

The contributions of the chapter are: i) we propose a light weight dynamic

channel allocation scheme for cluster-based mobile ad hoc networks; ii) we propose

a cooperative load balancing algorithm; iii) we incorporate these two algorithms

into our the TRACE framework leading to DCA-TRACE and CMH-TRACE; and

iv) we combine both algorithms leading to CDCA-TRACE that provides better

support for non-uniform load distributions. We compare the performance of these

algorithms for varying network loads.

The rest of this chapter is organized as follows. Section 4.2 presents the dy-

namic channel allocation through spectrum sensing and cooperative load balanc-

ing algorithms in detail. Section 4.3 discusses the adaptation of these algorithms

in the TRACE framework. In Section 4.4, the performance of CDCA-TRACE,

DCA-TRACE, CMH-TRACE, MH-TRACE and IEEE 802.11 are compared for

various network topologies. Finally, we summarize the results of the chapter in

Section 4.5.
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4.2 Bandwidth Efficiency Techniques for Coor-

dinated MAC Protocols

In this section we describe the lightweight dynamic channel allocation mechanisms

based on channel sensing and the cooperative load balancing algorithms. We begin

with a discussion of our assumptions:

� Single transceiver: The nodes in the network are equipped with a transceiver

that can operate in one of two modes: transmission or reception. Nodes

cannot simultaneously transmit and receive.

� Channel Sensing: The receiver node is able to detect the presence of a carrier

signal and measure its power even for messages that cannot be decoded into

a valid packet.

� Collisions: In the case of simultaneous transmissions in the system, nei-

ther of the packets can be received unless one of the transmissions captures

the receiver. The receiver can be captured if the power level of one of the

transmissions is significantly larger than the power level of all other simul-

taneous transmissions. Such a capturing mechanism is the driving factor of

the advantages gained through channel reuse.

� Channel Coordinators: The channel resources are managed and distributed

by channel coordinators. These coordinators can be ordinary nodes that

are selected to perform the duty, or they can be specialized nodes. The

channel is provided to the nodes in the network for their transmission needs

by these channel coordinators. The system is also assumed to be a closed

system where all the nodes comply with the channel access rules.

Networks operating under these assumptions and incorporating a channel reuse

scheme can achieve relatively higher bandwidth efficiency under uniform network
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loads. However, the system needs additional mechanisms to tackle the problem

of non uniform distribution of the network load.

4.2.1 Dynamic Channel Allocation Algorithm

The first mechanism that we propose is a dynamic channel allocation (DCA)

algorithm similar to the ones that exist in cellular systems. Under non-uniform

loads, it is crucial for the MAC protocol to be flexible enough to let the unused

bandwidth be allocated to the controllers in the heavily loaded region(s).

Cellular systems usually handle channel allocation through message exchanges

between the cell towers. However, these messages would be too costly for a

MANET system due to the highly dynamic behavior of the network. Instead,

we adopt a dynamic channel borrowing scheme that utilizes spectrum sensing.

In this algorithm, the channel controllers continuously monitor the power level

in all the available channels in the network and assess the availability of the chan-

nels by comparing the measured power levels with a threshold. If local load

increases beyond local capacity, provided that the measured power level is low

enough, the channel coordinator starts using the channel with the lowest power

level measurement. Once the channel coordinator starts using the channel, its

transmission increases the power level measurement of that channel for nearby

controllers, which in turn prevents them from accessing the same channel. Sim-

ilarly, as the local network load decreases, controllers that do not need some

channels stop the transmissions in that channel, making it available for other

controllers.

In this dynamic channel allocation algorithm, channel coordinators react to the

increasing local network load by increasing their share of bandwidth. Although

being effective in providing support for non-uniform network loads, the reactive

response taken by the channel coordinators increases the interference in the entire
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system.

4.2.2 Cooperative Load Balancing

The DCA algorithm approaches the problem of non-uniform load distribution

from the perspective of the channel coordinators. The same problem can also be

approached from the perspective of ordinary nodes in the network. This coopera-

tive behavior smooths out mild non-uniformities in the load distribution without

the need for the adjustments at the channel coordinator side.

The load on the channel coordinators originate from the demands of the or-

dinary nodes. Many nodes in a network have access to more than one channel

coordinator. The underlying idea of the cooperative load balancing algorithm is

that the active nodes can continuously monitor the channel usage and switch from

heavily loaded coordinators to the ones with available resources. These nodes can

detect that the channels available at the channel coordinator are depleted and

shift their load to the channel coordinators with more available resources. The

resources vacated by the nodes that switch can be used for other nodes that do not

have access to any other channel coordinators. This increases the total number of

nodes that access the channel and hence increases the throughput.

4.3 Applying Distributed Channel Allocation and

Cooperative Load Balancing to TRACE

4.3.1 Dynamic Channel Allocation for TRACE

In MH-TRACE, each CH operates in one of the frames in the superframe. Since

the number of data slots is fixed, the CH can only provide channel access to a

limited number of nodes. Due to the dynamic structure of MANETs, one CH
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may be overloaded while others may not be using their data slots. In that case,

although there are unused data slots in the superframe, the overloaded CH would

provide channel access only to a limited number of nodes, which is equal to the

number of data slots per frame, and the CH would deny the channel access requests

of the others. Thus, the system needs a dynamic channel allocation scheme to

provide access to a larger number of nodes.

DCA-TRACE lets CHs operate in more than one frame per superframe, if

they are overloaded. Instead of choosing and operating in the least noisy frame

as in MH-TRACE, in DCA-TRACE, based on the load level, CHs decide on the

number of frames they require and choose that many frames from the least noisy

frames.

DCA-TRACE includes two additional mechanisms on top of MH-TRACE: i) a

mechanism to keep track of the interference level from the other CHs in each frame;

and ii) a mechanism to sense the interference level from the transmitting nodes

in each data slot in each frame. These mechanisms make use of existing messages

and do not add complexity other than slightly increasing memory requirements

to store the interference levels.

The MH-TRACE structure provides CHs the ability to measure the interfer-

ence from other CHs in their own frame and in other frames through listening

to the medium in the CA slot of their own frame and the Beacon slots of other

frames. In MH-TRACE, CHs use this mechanism to choose the minimum in-

terference frame for themselves. DCA-TRACE makes use of the same structure.

However, in order to accommodate temporary changes in the interference levels

that may occur due to CH resignation or unexpected packet drops, an exponential

moving average update mechanism is used to determine the current interference

levels in each frame. At the end of each frame, the interference level of the Beacon

and CA slots are updated with the measured values in that frame using
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Ik,t =

Mk,t if Ik,t−1 < Mk,t;

(1− α) Ik,t−1 + αMk,t o.w.,

(4.1)

where Ik,t and Ik,t−1 are the interference levels of the kth slot in the current and

the previous superframe, respectively. Mk,t is the measured interference level in

that slot, and α is a smoothing factor, which is set to 0.2 in our simulations. The

interference level of the frame is taken as the maximum interference level among

the interference levels of the Beacon and CA slots.

In DCA-TRACE, CHs mark a frame as unavailable if there is another cluster

that uses the frame and resides closer than a certain threshold, Trint, measured

through the high interference value of that frame. Even under high local demand,

CHs refrain from accessing these frames that have high interference measurements,

in order to protect the stability of the clustering structure and the existing data

transmissions. At the end of each superframe, CHs determine the number of

frames that they need to access, m, based on the reservations in the previous

frame. Depending on the interference level of each frame, they choose the least

noisy m frames that have an interference value also below a common threshold,

Thintf . If the number of available frames is less than m, the CHs operate only in

the available frames. In our simulations, Thintf is set to a level that corresponds to

the power of a packet 350m away from the transmitter at the given transmission

power level and propagation model.

Another mechanism that DCA-TRACE adds on top of MH-TRACE is the

dynamic assignment of data slots. In MH-TRACE, data slots are assigned in

a sequential order. On the other hand, since DCA-TRACE introduces channel

borrowing, the CH has to refrain from reallocating a data slot that has been

borrowed by another CH and instead must allocate another data slot that has a

lower interference value. In order to do this, CHs keep track of the interference

levels of each IS slot of each frame in the superframe. In order to accommodate
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temporary changes, the exponential moving average smoothing mechanism of (4.1)

is also used for IS frames.

Knowing the interference values of all IS slots, the CH assigns the available

data slots to the nodes that request channel access beginning with the slot that has

the lowest interference value. In the case of a channel borrower, this mechanism

allows the CHs that operate in a frame to assign slots that are not used by other

CHs as much as possible.

DCA-TRACE is similar to cognitive radio systems. However, since we do not

distinguish between the primary CH of the frame and the CH that borrows a

channel, we treat them equally in having access to the available data slots in any

frame.

4.3.2 Collaborative Load Balancing for TRACE

In the previous section, we described DCA-TRACE, which tackles non-uniform

load distribution by allowing the CHs to access more than one frame in the super-

frame. The same problem can also be tackled from the member nodes’ perspective.

In our previous work [101], we determined that the majority of the nodes in a

TRACE network are in the vicinity of more than one CH (they are in the vicinity

of two, three or four CHs with probabilities of 52%, 19% and 1%). The nodes

that are in the vicinity of more than one CH can ask for channel access from any

of these CHs. Using a cooperative approach and a clever CH selection algorithm

on the nodes, the load can be migrated from heavily loaded CHs to the CHs with

more available resources.

In the TRACE protocols, nodes contend for channel access from one of the

CHs that have available data slots around themselves. After successful contention,

they do not monitor the available data slots of the CHs around them. Due to the

dynamic nature of the network load, a cluster with lots of available data slots may
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Figure 4.1: Demonstration of a scenario for the collaborative load balancing algo-

rithm.

become heavily loaded during a data stream. In order to tackle this issue, nodes

should consider the load of the CH not only when they are first contending for

channel access but also after securing a reserved data slot and throughout their

data stream.

In order to further elaborate this, consider Fig. 4.1. Nodes A-G are source

nodes and need to contend for data slots from one of the CHs. Each CH has 6

available data slots. In MH-TRACE, if their contentions go through in alphabeti-

cal order, node G would mark CH1 as full and would ask for channel access from

CH2. However, if node G secures a data slot from CH1 before any of the nodes

A-F, one of the source nodes would not be able to access to the channel.

In DCA-TRACE, once CH1 allocates all of its available slots, it triggers the

algorithm to select an additional frame. However, accessing one additional frame

might not always be possible, if the interference levels on all the other frames

are too high. Moreover, accessing additional frames increases the interference in



84

the Beacon and Header slots of these frames and may trigger CH resignations

and reselections in the rest of the network that temporarily disturbs ongoing

data streams on the resigned CHs. Finally, accessing additional frames increases

interference on the IS and data slots of the new frame and decreases the potential

extent these packets can reach.

In order to overcome these difficulties, we propose CMH-TRACE and CDCA-

TRACE, which add cooperative CH monitoring and reselection on top of MH-

TRACE and DCA-TRACE, respectively. In CMH-TRACE and CDCA-TRACE,

nodes continuously monitor the available data slots at the CHs around themselves

announced by the Beacon messages. When all the available data slots for a CH are

allocated, with a probabilty p, the active nodes attempt to trigger the cooperative

load balancing algorithm. When the cooperative load balancing is triggered, the

node that is currently using a data slot from the heavily loaded CH contends for

data slots from other nearby CHs while keeping and using its reserved data slot

until it secures a new data slot from another CH.

Cooperative load balancing does not alter the clustering structure, and it is

desirable over selecting an additional frame at the CH. However, cooperative bal-

ancing does not completely solve the hot spot problem. The source nodes may

not be in the vicinity of another CH, and hence their load cannot be transferred

to another CH. In that case, triggering the DCA algorithm is required. Thus,

in CDCA-TRACE, we include the additional frame selection algorithm of DCA-

TRACE with some delay. A fully loaded CH resets a counter, NDCA = 0, and

starts incrementing it at the beginning of each superframe while it remains fully

loaded. The CH attempts to (subject to the interference levels in the frames)

access an additional frame when NDCA >= TDCA. This provides time for the

active member nodes to trigger the cooperative load balancing algorithm and

transfer their load to nearby CHs. In our simulations we used a threshold value

of TDCA = 3.
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4.4 Performance Evaluation

The size of the region over which the nodes are located, the number of nodes in

the network, and their data generation patterns are all important in optimizing

the design parameters [101]. However, due to the dynamic nature of MANETs

this information might not be available a priori, and some of these parameters

may change over the course of the network lifetime. Thus, it is necessary for the

protocols to dynamically adjust to changing conditions.

In uncoordinated MAC protocols such as IEEE 802.11 [102], the common chan-

nel resource is shared among the nodes in the network based on carrier sensing.

This simple behavior is well suited for handling any non-uniformities in the load

distribution. However, these protocols do not scale well as the load in the network

increases, due to the simple carrier sensing mechanism. On the other hand, coor-

dinated MAC protocols such as the TRACE protocols are better suited for heavy

load scenarios. Unlike MH-TRACE, the channel allocation for DCA-TRACE and

CDCA-TRACE can be adjusted on the fly, making them more flexible protocols

compared to their predecessor. By adjusting the channel access scheme, they

are more capable of adapting to: i) shrinking network dimensions, and ii) non-

uniformities in load distribution.

Due to the movement of the nodes in the network, the diameter of the network

may shrink over the course of network operation. At one extreme, when the largest

distance between any two nodes in the network is below the communication radius,

nodes form a single hop connected network. The bandwidth efficiency of MH-

TRACE sharply reduces for such an operation, as MH-TRACE cannot adjust the

number of frames in each superframe dynamically, and each CH can only utilize a

single frame per superframe. However, the dynamic channel allocation mechanism

of DCA-TRACE enables adaptation of the protocol to this environment by letting

the single CH access all the frames and all the data slots. We investigate this
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scenario in Section 4.4.1. Cooperative load balancing is not effective in this simple

scenario since there is only a single CH. Hence, CMH-TRACE and CDCA-TRACE

perform similar to their predecessors, namely MH-TRACE and DCA-TRACE,

respectively. Thus, we omit the CMH-TRACE and CDCA-TRACE results for

this scenario.

Due to the dynamic environment, the network load might not be distributed

uniformly among the clusters. In Section 4.4.2, we study a scenario in which

the network load is localized in a limited portion of the network. We investigate

the effects of cooperative load balancing and dynamic channel allocation and

compare CMH-TRACE and DCA-TRACE with MH-TRACE. We also analyze

the combined improvements of both algorithms through CDCA-TRACE. Finally,

we compare the performance of all of these protocols with a typical uncoordinated

protocol, IEEE 802.11.

We study random load distributions in Section 4.4.3. The performances of

CDCA-TRACE, DCA-TRACE, CMH-TRACE, MH-TRACE and IEEE 802.11

are compared in a scenario with randomly selected source nodes in a multi-hop

network with randomly distributed mobile nodes.

For comparison purposes, we conduct ns-2 simulations of all of the protocols

utilizing simple network and transport layer protocols that provide local broad-

casting. Packets are assumed to be destined to the local neighborhood. All the

nodes in the vicinity of the transmitter receive the packet as long as the power

levels permit successful decoding. Note that the IEEE 802.11 protocol must thus

use the ad hoc DCF mode in which the RTS/CTS and ACK mechanisms are

disabled.

The source application generates real-time traffic in constant bit-rate (CBR)

mode, coded at 32 Kbps. 100 byte long packets are generated from this application

every 25ms. Due to real-time communication constraints, packets become obsolete

and are discarded at the source if they are not sent within 25 ms. The channel
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rate is set to 2 Mbps. The superframe time is matched to the source packet

generation period of 25 ms. Each superframe consists of 6 frames with 6 data

slots each. Starting at ts = 2 s (80th superframe), every 5 superframes one source

node starts generating packets, thereby increasing the number of active sources

and the load in the network.

For node mobility, the random way-point mobility model [99] [100] is used,

where the node speeds are chosen from a uniform random distribution between

0.0 m/s and 5.0 m/s with zero pause time. The energy model discussed in [101]

and the default propagation model that is available in ns-2 [95] are used. We used

a constant transmit power that results in a maximum receiving range of 250 m

under zero interference. In the case of interference, all packets received during the

interference period are dropped unless one of the packets captures the receiver

with a power value at least 10 times larger than the power of any interfering

packet.

Various simulation parameter settings are summarized in Table 4.1.

4.4.1 Single Hop Network

In this section, the performance of DCA-TRACE, MH-TRACE and IEEE 802.11

are compared for a single hop connected network in which 100 nodes, including 40

sources, are stationary and distributed over a 100 m x 100 m region with a uniform

grid formation. Considering a receiving range of 250 m, the nodes form a single

hop network. Fig. 4.2 presents the average number of transmitted packets per

superframe and the average number of received packets per superframe, averaged

over 80 iterations throughout the simulation duration of 20 seconds.

We omitted CDCA-TRACE and CMH-TRACE results for this scenario. Due

to the small size of the network, the TRACE framework operates with a single
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Figure 4.2: (a) Average number of data transmissions per superframe for a single

hop network. (b) Average number of data receptions per superframe for a single

hop network.
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cluster. Thus, collaborative load balancing is ineffective for this scenerio, and

CDCA-TRACE operates similar to DCA-TRACE with the exception of reaction

time. In CDCA-TRACE, CHs wait 3 superframes before accessing to an additional

frame. This duration is smaller than the rate of increase in network load and

hence does not alter the results. Confirming this, we observed same performance

in both protocols and omitted the CDCA-TRACE results. For similar reasons,

the CMH-TRACE results are also omitted.

Due to the CH resignation mechanism in MH-TRACE, only a single CH can

operate in such a scenario. Since each CH only accesses one of the frames in each

superframe and hence has access to only 6 data slots, the number of transmissions

per superframe (TX) saturates at a value of 6. The access time for all the re-

maining frames is not used and is thus wasted. On the other hand, DCA-TRACE

adapts to this situation by letting the single CH access all 6 frames and all the

data slots. Hence, DCA-TRACE saturates at a value of 35.6 providing channel

access to 6 times more nodes. Since channel access is fully coordinated under a

single CH, both MH-TRACE and DCA-TRACE eliminate all the collisions and

a similar gain can be observed also in the number of receptions per superframe

(RX) as shown in Fig. 4.2(b).

Similarly, as the number of source nodes increases, TX increases in IEEE

802.11. However, due to the lack of coordination, additional source nodes in

IEEE 802.11 increase the collisions in the network. Hence, the number of recep-

tions does not increase in the same proportion as the number of transmissions.

Although the collision probability of 802.11 DCF is large as shown in [103], due

to receiver capturing, many successful receptions are possible even under simulta-

neous transmissions. Still, at the maximum load, IEEE 802.11 yields around 30%

fewer receptions compared to DCA-TRACE.
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Figure 4.3: (a) Average number of data transmissions per superframe for localized

load distribution. (b) Average number of data receptions per superframe for

localized load distribution.
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4.4.2 Localized Load Distribution

In this section, the performances of CDCA-TRACE, DCA-TRACE, CMH-TRACE,

MH-TRACE and IEEE 802.11 are compared for a network in which 40 source

nodes are stationary and distributed over a 100m x 100m square centered in the

middle of the 1000m x 1000m region with a uniform grid formation. The remain-

ing 200 nodes are mobile and deployed randomly. Fig. 4.3 presents the average

number of transmitted packets per superframe, TX, and the average number of

received packets per superframe, RX, averaged over 80 iterations throughout the

simulation duration of 20 seconds.

In order to investigate the effect of dynamic channel allocation, we compare

DCA-TRACE and MH-TRACE. In the beginning of the simulation, the number of

active sources in the network is low and there are unused data slots in the frames

of almost all the CHs. Hence, TX increases at the same pace in all four protocols

as the number of sources increases. As the number of sources increases, in MH-

TRACE, CHs allocate available data slots to the source nodes. After all available

data slots are assigned, further channel access requests are denied and hence TX

converges to around 15. This number is greater than the number of data slots

in one frame as multiple CHs can provide access to the source nodes depending

on random selection of the CHs. On the other hand, the average number of

transmissions per superframe in DCA-TRACE converges around a value of 26.

The dynamic channel allocation mechanism of DCA-TRACE adapts the channel

allocation based on the load and enables the protocol to provide channel access to

73% more nodes compared to MH-TRACE at the highest load level of 40 source

nodes.

Compared to MH-TRACE, DCA-TRACE also leads to a gain of similar mag-

nitude in the number of receptions, as CHs choose the frames they access and

the data slots they allocate based on the interference levels in the medium. The
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average number of data receptions in MH-TRACE and DCA-TRACE are around

1300 and 2175, respectively. Thus, DCA-TRACE leads to a gain of 67% in the

number of receptions compared to MH-TRACE.

Next, we focus on the cooperative load balancing algorithm by comparing MH-

TRACE and CMH-TRACE. Both protocols converge as the load in the network

increases. However, at the highest load, TX and RX in CMH-TRACE converge

to values 10% higher than TX and RX in MH-TRACE.

The improvements of cooperative load balancing and dynamic channel alloca-

tion are combined in CDCA-TRACE. Under high load, CDCA-TRACE improves

TX by 3% and 80% compared to DCA-TRACE and MH-TRACE, respectively.

Similarly, RX is improved in CDCA-TRACE by 3% and 77% compared to DCA-

TRACE and MH-TRACE, respectively.

Next, we compare the performance of CDCA-TRACE and IEEE 802.11.Unlike

the TRACE protocols, the overhead for signaling between member nodes and

the CHs, namely Beacon, CA, contention slots, and header, does not exist in

IEEE 802.11. Moreover, IEEE 802.11 does not divide the channel spatially, and

hence it is not affected by the larger region over which the passive nodes are

distributed. The entire bandwidth is shared only among the active nodes in the

smaller localized region through the channel sense mechanism. On the other hand,

TRACE dynamically selects and maintains CHs in the entire network, including

the passive part. Hence, at the maximum load, IEEE 802.11 can provide channel

access to 33 nodes, which is 22% higher than the average number of nodes for which

CDCA-TRACE provides channel access. However, some of the transmissions

cannot be received at the receiver side due to collisions. The lack of coordination

in IEEE 802.11 leads to a larger number of collisions compared to CDCA-TRACE.

Thus, at the load level of 40 source nodes, RX in CDCA-TRACE is 29% higher

compared to 802.11, which has an average RX value of 1750.

As mentioned previously, another key performance measure for the MAC pro-
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tocols serving MANETs is energy consumption. A desirable MANET MAC pro-

tocol should be not only bandwidth efficient but also energy efficient. CDCA-

TRACE consumes 56% less energy compared to IEEE 802.11, as can be observed

from the data in Table 4.2.

Inconsistency in packet delays is not desirable from the real time communi-

cation perspective, since the construction of the stream would be problematic.

A high delay variation would require a large anti-jittering buffer, which would

increase overall latency of a real-time application. In order to measure jitter, we

consider inter packet delay variation (IPDV) for consecutive packets, as described

in [104]. Thanks to the coordinated channel access, CDCA-TRACE provides

smoother operation and leads to 4 orders of magnitude smaller average absolute

IPDV compared to IEEE 802.11, as can be observed from the data in Table 4.3.

The reduction in the IPDV makes CDCA-TRACE more suitable for real time

applications compared to IEEE 802.11.

4.4.3 Random Load Distribution

In this section, the performance of CDCA-TRACE, DCA-TRACE, CMH-TRACE,

MH-TRACE and IEEE 802.11 are compared for a network of 400 nodes includ-

ing 200 source nodes. All the nodes are mobile with randomly distributed initial

locations over a 1000 m x 1000 m region. Fig. 4.4 presents the average number

of transmitted packets per superframe, TX, and the average number of received

packets per superframe, RX, averaged over 80 iterations throughout the simula-

tion duration of 60 seconds.

Similar to the previous scenario, as the network load increases, with a de-

creasing pace, all protocols provide channel access to more nodes, resulting in an
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Figure 4.4: (a) Average number of data transmissions per superframe for random

load distribution. (b) Average number of data receptions per superframe for

random load distribution.
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increase in TX up to a saturation point. Beyond this point, TX saturates and

stays constant as the number of sources increases.

Thanks to the dynamic channel allocation mechanism, DCA-TRACE is not af-

fected from the non-uniformities in the load distribution as much as MH-TRACE.

Hence, the rate of increase of TX is higher for DCA-TRACE compared to MH-

TRACE.

Dynamic channel allocation also helps dynamically adjust the spatial reuse

ratio on the fly based on the channel interference measurements. Under low loads,

it allows the protocol to operate with reduced interference by reducing the level

of spatial reuse used by MH-TRACE. However, under high loads spatial reuse is

increased up to the point limited by the frame availability interference threshold,

Trint
1.

Thanks to the dynamic channel allocation, DCA-TRACE can provide chan-

nel access to a larger number of nodes compared to MH-TRACE, as seen by the

higher saturation point in Fig. 4.4(a). At the highest simulated load level of 200

source nodes, DCA-TRACE provides channel access to an average of 139 nodes

while MH-TRACE can only provide channel access to an average of 77.7 nodes.

Hence, DCA-TRACE provides channel access to 79% more nodes under high load

in a multi-hop scenario compared to MH-TRACE. However, due to the increased

interference caused by the higher spatial reuse, the number of collisions also in-

creases. Thus under high load, the improvement in RX is lower than the gain

in TX. At the highest load, RX in DCA-TRACE is 19% higher than that in

MH-TRACE. Due to the same phenomena, under low levels of traffic load, the

number of receptions in DCA-TRACE is slightly lower than the number of recep-

tions in MH-TRACE, although the numbers of transmissions are approximately

equal. However, the maximum difference is around 1% and thus is negligible.

1Note that, this threshold setting can be arbitrated for a tradeoff between fewer collisions

and higher TX
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Next, we focus on the cooperative load balancing by comparing CMH-TRACE

and MH-TRACE. TX increases faster for CMH-TRACE compared to MH-TRACE

since non-uniformities in source distribution caused by the random source selec-

tion are smoothed out in CMH-TRACE. As observed in Fig. 4.4(a), CMH-TRACE

improves TX by as much as 4%. However, for very large network loads, all the

clusters in the network are fully occupied. Nodes cannot use cooperative load

balancing as none of the clusters in their neighborhood have available resources.

Thus, both protocols converge to the same value under very high network loads.

Looking at the combined performance of dynamic channel allocation and coop-

erative load balancing, we compare CDCA-TRACE and DCA-TRACE. In terms

of TX, the effect of the addition of cooperative load balancing is only marginal.

Both methods are effective in tackling the problem of non-uniform load distribu-

tion for medium load levels, however, cooperative load balancing is not effective

when the network load is very high. Nonetheless, cooperative load balancing does

not alter spatial reuse and hence does not increase the interference and the col-

lisions. Thus, in Fig. 4.4(b), an improvement of 2% can be observed in RX for

CDCA-TRACE compared to the RX for DCA-TRACE.

Furthermore, we also compare the performances of CDCA-TRACE and IEEE

802.11. Despite the clustering constraints and the signaling overhead of TRACE,

CDCA-TRACE outperforms IEEE 802.11. In Fig. 4.4(a), under heavy load, TX

in CDCA-TRACE is 14% higher than that of IEEE 802.11, which provides chan-

nel access to only 122 nodes at a load of 200 source nodes. In addition to this,

IEEE 802.11 suffers from packet collisions due to the lack of coordination. Packet

collisions increase with increasing network load, and an increased number of trans-

missions does not necessarily correspond to an increased number of receptions. As

observed in Fig. 4.4(b), for IEEE 802.11, RX starts to decrease as TX increases

above 50 (400th superframe) and reduces to 1700 at the maximum number of

sources.
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Furthermore, being a coordinated protocol, CDCA-TRACE keeps the advan-

tages of low energy consumption and very low jitter. The average energy con-

sumption per node per second for all three protocols are presented in Table 4.2.

DCA-TRACE consumes only 54% of the energy consumed by IEEE 802.11, even

though the number of receptions is significantly larger. The 16% increase in the

average energy consumption in DCA-TRACE compared to MH-TRACE is the

result of the increased number of transmissions and receptions.

Table 4.3 presents the average absolute IPDV for all three protocols averaged

over all transmitter and receiver pairs and over the simulation set. DCA-TRACE

leads to a 3 orders of magnitude smaller average absolute IPDV compared to

802.11, thanks to the channel reservation scheme in TRACE. Compared to MH-

TRACE, DCA-TRACE has a larger average absolute IPDV due to the CHs ac-

tively monitoring IS slots for minimum interference and changing slot reservations

accordingly with changing conditions. However, the trade-off between minimum

interference point of operation and minimum packet delay variation can be re-

solved according to the requirements of the application by modifying the slot

reservation mechanism at the CHs. For instance, CHs could preserve the trans-

mission schedule unless the interference of the slot is above a threshold in order

to decrease the variation in the packet delays.

To sum up, under heavy and randomly distributed loads, CDCA-TRACE not

only increases the number of source nodes that can get channel access compared

to an uncoordinated protocol, IEEE 802.11, but it also reduces the number of

collisions, average energy consumption, and average absolute IPDV drastically,

leading to a higher number of receptions and significant energy savings, thanks to

the coordination mechanisms.
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4.5 Summary

In this chapter, we studied the problem of non-uniform load distribution in mo-

bile ad hoc networks. We proposed a light weight dynamic channel allocation

algorithm and a cooperative load balancing algorithm. The dynamic channel al-

location works through carrier sensing and does not increase the overhead. It

has been shown to be very effective in increasing the service levels as well as the

throughput in the system with minimal effect on energy consumption and packet

delay variation. The cooperative load balancing algorithm has less impact on the

performance compared to the dynamic channel allocation algorithm. We showed

that these two algorithms can be used simultaneously, maximizing the improve-

ments in the system. The combined system has been shown to perform at least

as well as the systems with each algorithm alone and perform better for many

scenarios.

We proposed a novel MAC protocol, CDCA-TRACE, that combines dynamic

channel allocation and cooperative load balancing algorithms into the TRACE

framework. CDCA-TRACE, which controls channel utilization through the dy-

namically selected distributed channel coordinators, is compared to IEEE 802.11,

which controls channel utilization in a fully distributed manner. Having channel

coordinators, CDCA-TRACE is shown to require about 60% less energy con-

sumption and 3 orders of magnitude lower packet delay variation compared to

IEEE 802.11. Moreover, thanks to the dynamic channel allocation algorithm and

the cooperative load balancing algorithm, in a network with randomly distributed

sources, CDCA-TRACE provides channel access to 14% more nodes and improves

the number of receptions 3.5x compared to IEEE 802.11.

CDCA-TRACE does not implement any packet routing functionality. In the

TRACE family of protocols, NB-TRACE and MC-TRACE implement network-

wide broadcasting and multicasting, respectively. These protocols can be easily
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adjusted to work with CDCA-TRACE since the basic MAC functionality of both

of these protocols is based on MH-TRACE. Hence CDCA-TRACE adds the dy-

namic channel allocation and cooperative load balancing functionality to the entire

TRACE family, resulting in a complete suite of protocols.

CDCA-TRACE ensures dynamic and efficient resource utilization in the MAC

layer. Having studied dynamic and efficient resource utilization in the MAC layer,

we turn our attention to the routing layer. Improper designs in data dissemina-

tion schemes can also cause inefficient resource utilization. In the next chapter,

we focus on one-to-many group communications and investigate efficient data

dissemination under varying conditions. Then, we combine various one-to-many

group communications into a unified framework that picks the data dissemination

method leading to efficient resource utilization.
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Table 4.1: Simulation Parameters

Parameter Value

Channel rate 2 Mbps

Transmission Power 282 mW

Propagation Model Two way ground

Reception power threshold 3.652 × 10−10 (∼ 250 m)

Carrier sensing power threshold 1.4 × 10−12 (∼ 1000 m)

Receiver capture threshold (Thcap) 10

Traffic type CBR

Data packet payload size 100 bytes

Inter packet generation period 25 ms

Mobility model Random way-point

Range of node speeds 0.0 m/s - 5.0 m/s

Superframe length 25 ms

Number of frames per superframe 6

Number of data slots per frame 6

Number of contention slots per frame 9

Exponential smoothing factor (α) 0.1

Frame availability threshold (Thintf ) 0.951 ×10−10 (Trint ≈ 350 m )

Table 4.2: Average energy consumption per node per second (J/s)

802.11 MH-TRACE DCA-TRACE CDCA-TRACE

Random Load Distribution 0.235 0.109 0.127 0.124

Localized Load Distribution 0.205 0.069 0.090 0.091
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Table 4.3: Average Absolute IPDV (s)

802.11 MH-TRACE DCA-TRACE CDCA-TRACE

Random Load Dist. 9.82× 10−3 8.91× 10−8 4.85× 10−6 2.85× 10−6

Localized Load Dist. 6.29× 10−3 1.34× 10−10 7.98× 10−7 6.42× 10−7
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5 Efficiency in Data

Dissemination Schemes

5.1 Introduction

In Chapter 4, we presented a novel MAC protocol for MANETs that ensures

efficient use of resources through a dynamic channel allocation mechanism. In

this chapter, we focus on the routing layer and develop efficient data dissemination

schemes.

Both network-wide broadcasting and multicasting are among the most fre-

quently used data dissemination schemes in MANETs. Network-wide broadcast-

ing protocols deliver the data to all the nodes in the network whereas in multicas-

ting data is delivered to a selected subset of the nodes, called a multicast group.

By limiting the data dissemination to the multicast group, multicast protocols

prevent redundant retransmissions of the data. On the other hand, the overhead

in multicasting protocols is more than the overhead in network-wide broadcasting

protocols. In this chapter, our objective is to investigate the trade-offs between

multicasting and broadcasting in order to determine the conditions that make one

of them preferable over the other.

Towards the goal of investigating the trade-off between multicasting and broad-

casting, we perform extensive simulation studies on a chosen protocol from each
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class: Network-wide broadcasting through time reservation using adaptive control

for energy efficiency (NB-TRACE) [72] for broadcasting; and Multicasting through

time reservation using adaptive control for energy efficiency (MC-TRACE) [73]

for multicasting. The first reason for choosing these protocols is that they have

been shown to outperform many other protocols in their class. Moreover, those

protocols are built on top of the same MAC structure, and their sensitivity to

MAC layer issues such as mobility and link errors are similar. Finally, the data

maintained by the protocols are very similar to each other, and any additional

burden of multicasting can directly be observed. Consequently, the protocols can

be combined into a unique framework and coexist simultaneously. Ultimately,

this approach yields a unified protocol where the better approach (broadcasting

or multicasting) can be used depending on the situation.

The rest of the chapter is organized as follows. We analyze the efficiency of

the protocols for a sample scenario in Section 5.2. The effect of node density on

the relative efficiency of the protocols is investigated in Section 5.3. Finally, we

summarize the results of the chapter in Section 5.4.

5.2 Comparing Multicast and Broadcast

In general, multicasting protocols eliminate redundant retransmissions by confin-

ing the data dissemination to a limited area. However, this comes with the addi-

tional cost of overhead to keep the data distribution structure alive. Intuitively,

while multicasting is expected to be a more efficient method of data distribution

for small group sizes, broadcasting would be more efficient for large group sizes.

In this section, we show that this is indeed the case by analyzing broadcasting

and multicasting through extensive simulations of a select broadcasting protocol,

NB-TRACE, and a select multicasting protocol, MC-TRACE.

In particular, the number of multicast group members beyond which NB-
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TRACE becomes more efficient for data dissemination, called the cross-over point,

is determined for various scenarios. By comparing the simulation results, we can

analyze the effect of the total number of nodes in the network and the size of the

region in which the nodes are distributed on the value of this cross-over point.

Two performance metrics, energy efficiency and spectrum efficiency, are con-

sidered. Specifically, the average energy spent per node per generated packet and

the total number of transmissions per generated packet are measured for each sce-

nario to compare the energy efficiency and the spectrum efficiency of the protocols,

respectively.

We begin with describing the simulation environment and the parameters se-

lected for the scenarios under concern. Then, for a network of 100 nodes dis-

tributed in a 1× 1 km2 area, the bandwidth efficiency of the protocols and their

energy consumptions are compared. Finally, the analysis is extended by varying

the number of nodes in the network and the size of the area in which nodes are

distributed.

5.2.1 Simulation Environment

We conduct ns-2 simulations of NB-TRACE and MC-TRACE under different

network scenarios. We used the default energy and propagation (two-ray ground)

models in ns-2. Both path loss and interference are taken into account in deter-

mining a successful reception. The receiver can receive only those packets whose

received power is above a certain threshold. For a successful reception, the receiver

has to be within 250m of the transmitter with the given propagation model, re-

ception threshold and transmission power. However, simultaneous transmissions

interfere with each other and prevent successful reception. In the case of simulta-

neous transmissions, a successful reception is only possible if, at the receiver side,

the power of one of the packets is 10 times larger than any other packet. The
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transceivers are fixed at 2 Mbits/sec data rate.

The packet generation model assumes a 16-bit voice coder that generates 100

byte packets every 25ms. The length of an IS slot is 12 bytes long in NB-TRACE,

while it is 15 bytes long in MC-TRACE due to the extra routing information

requirements. The superframe period is fixed to the packet generation period,

and the number of frames per superframe is fixed at 6 for both NB-TRACE and

MC-TRACE. However, due to the extra bits in the IS slots, MC-TRACE has 6

data slots per frame whereas NB-TRACE has 7. Each node transmits or relays

the data packets of the stream using one of the available data slots.

In order to have a fair comparison in terms of energy consumption, the concept

of group members is introduced to NB-TRACE. Nodes that do not belong to the

group do not listen to the data slots of the stream.

The power spent by each node varies according to the operation performed by

the node. During successful reception, collision and carrier sensing periods, the

node consumes power at the rate of the reception power level. There is also an

idle state where only the power needed to run the circuitry is dissipated without

any actual packet receptions. The nodes are assumed to turn off any circuitry

when they go into the sleep state, where the power consumption is minimal.

All the nodes except the source node are initially distributed according to a

uniform random distribution, and during the course of the simulation the nodes

move following the random way-point mobility model [99] [100] with node speeds

chosen from a uniform random distribution between 0.0 m/s and 5.0 m/s with

zero pause time. The source node starts from the center of the region and follows

the same random way-point mobility model.

100 repetitions are performed for each scenario, and the presented results show

the averages and the standard deviations of the results.
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Figure 5.1: Number of transmitted packets per generated packet as the number

of group members is varied from 1 to 99 for a network of 100 nodes distributed

on a 1× 1 km2 area.

5.2.2 Bandwidth Efficiency

In the TRACE frame structure, there are fixed number of data slots per super-

frame. The data slots are used to transmit the payload of both the generated

data and the relayed data. Any redundant use of the data slots wastes the avail-

able network resources and may prevent another stream’s information from being

disseminated over a region. Thus, efficient use of the data slots is one of the goals

of both NB-TRACE and MC-TRACE.

The number of data packet transmissions per generated packet is depicted

in Fig. 5.1 for both NB-TRACE and MC-TRACE. The change in the number

of multicast members does not affect the number of data transmissions in NB-

TRACE significantly since data is broadcasted to the entire network regardless

of the locations and number of multicast members. The slight variation in NB-

TRACE is due to the additional restriction we impose on the algorithm to make

a fair comparison between NB-TRACE and MC-TRACE. We prevent non-group

members from listening to the ongoing stream unless they are relaying the data
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to save energy. However, this reduces the efficiency of the recovery of link failures

through local branch repair mechanisms, since the neighbor nodes that are not in

the multicast tree do not have any data in their transmission queue.

Unlike NB-TRACE, in MC-TRACE, the number of transmissions increases

as the number of group members increases. Nodes are distributed with an inde-

pendent identical random uniform distribution1. Hence, as the number of group

members increases, the size of the multicasting tree increases. Hence, the number

of transmissions per generated packet increases.

It can be observed from Fig. 5.1 that for small group sizes the data dissemi-

nation is more efficient in MC-TRACE compared to NB-TRACE, and vice versa.

NB-TRACE requires 4 times more transmissions compared to MC-TRACE when

there is only one group member. At the other extreme, when all the nodes are

in the multicast group, the number of data transmissions required using NB-

TRACE is half of the transmissions required when using MC-TRACE. The cross-

over point of MC-TRACE and NB-TRACE occurs at a multicast group size of 24

nodes, above which NB-TRACE provides more efficient data dissemination and

vice versa.

5.2.3 Energy Efficiency

In Section 5.2.2, we compared the number of data transmissions for NB-TRACE

and MC-TRACE. The number of transmissions and receptions of other packet

types, namely beacon, CA, contention, and header are expected to be comparable.

Thus, a similar trade-off that exists in Section 5.2.2 is also expected for the energy

consumption metric.

1It is well known that the random way point mobility model alters the uniform node distri-

bution assumption as time elapses [105] [106]. However, this effect is negligible in our case since

the simulation duration of 100 sec is short enough.
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On the other hand, since each IS slot is matched with its corresponding data

slot, the difference in the number of data transmissions between protocols is also

expected to be observed in the number of IS transmissions. Furthermore, since

the length of IS slots in MC-TRACE are longer compared to the ones in NB-

TRACE, the energy consumption of MC-TRACE is expected to be even higher.

This behavior is expected to shift the energy consumption curve of MC-TRACE

in such a way that the cross-over point will occur with fewer multicast group

members.

The energy consumption per node per generated packet is depicted in Fig. 5.2

as the number of group members is varied from 1 to 99. The energy consumption

increases with an increase in the number of multicast members for both protocols.

Although with an increasing number of multicast group members there was a slight

decrease in the number of transmitted data messages for NB-TRACE, shown in

Fig. 5.1, the energy consumption increases. This is due to the fact that the

energy consumption in the reception and transmission states of a node are of the

same order. As the number of multicast group members increases, the number of

receptions increase, which in turn increases the energy consumption.

It can be observed from Fig. 5.2 that for small multicast group sizes MC-

TRACE is more energy efficient while for large group sizes NB-TRACE performs

a more energy efficient operation. NB-TRACE consumes 13% more energy com-

pared to MC-TRACE when there is only one group member. On the other hand,

when all 99 nodes are in the multicast group, the energy consumption of NB-

TRACE is 21% lower than the energy consumption of MC-TRACE.

The energy consumption of MC-TRACE increases faster than the increase in

NB-TRACE and goes above the energy consumption of NB-TRACE at the cross-

over point of 11 multicast group members. The cross-over point in Fig. 5.2 is

lower than the cross-over point observed in Fig. 5.1. This is expected since the
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Figure 5.2: Energy consumption per generated packet per node as the number of

group members is varied from 1 to 99 for a network of 100 nodes distributed on a

1× 1 km2 area.

length of the IS slots in MC-TRACE is higher than the length of the IS slots in

NB-TRACE, which increases the energy consumption of MC-TRACE compared

to NB-TRACE.

5.3 Effect of Node Density

In Section 5.2 we observed that, depending on the number of multicast group

members, NB-TRACE and MC-TRACE can be advantageous over the other one

in terms of bandwidth and energy efficiency. We have identified the cross-over

points for a network consisting of 100 nodes distributed on a 1 × 1 km2 area. In

this section, we extend our analysis to other scenarios to see the effects of node

density on the efficiency of the protocols.

In considering the density, both the number of nodes and the size of the area in

which the nodes are distributed are of concern. The nodes close to the edge of the

target area have fewer neighbors and data dissemination close to the edges follows
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a pattern different than the data dissemination pattern of the nodes residing on the

middle of the region. In order to investigate the edge effects accurately, variation

in the number of nodes and the size of the area are considered separately.

Specifically, we investigate the cross-over points on the number of multicast

group members above which NB-TRACE is more efficient compared to MC-

TRACE and vice versa in terms of the number of data packet transmissions and

energy consumption for a range of total number of nodes and area sizes. The

observed cross-over points are presented in Table 5.1.

The first observation from Table 5.1 is that for a given number of nodes, the

cross-over point for the number of data transmissions increases with an increase

in the size of the area. For larger areas, the separation between the source and the

multicast members is larger. This translates into a larger number of hops between

the source and a destination, and hence a higher number of transmissions in both

NB-TRACE and MC-TRACE. However, the increase in the number of transmis-

sions in NB-TRACE is larger than it is in MC-TRACE since the number of data

transmissions in NB-TRACE is effected not only by an increase in the expected

distance between the source and the multicast members but also by an increase

in the expected separation between the source and non-multicast members. As

a result, the value of the cross-over point for the number of data transmissions

metric increases with an increasing size of the network.

Table 5.1 also shows that, for a fixed network size, the network with more

nodes has a higher cross-over point. Since the node locations are independent,

the separation between the source and the multicast members is independent of

the number of nodes in the network. Hence, the number of transmissions in MC-

TRACE does not deviate significantly as the total number of nodes increases.

On the other hand, as the total number of nodes in the network increases, they

are expected to cover a larger region on the simulation area, and the number of

CHs is expected to increase. As a result of this, the number of transmissions
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Table 5.1: Cross-over points between MC-TRACE and NB-TRACE

Sim Area 1000x1000 1500x1500 2000x2000

Number of Nodes 100 200 200 400 200 400

Number of Data TX 24 30 45 55 55 62

Energy Consumption 11 18 19 29 18 30

in NB-TRACE increases up to a limit where the entire area is covered as the

total number of nodes increases. Thus, the cross-over point also increases for an

increasing number of nodes.

The energy consumption of a node consists of a variable part that is incurred

for data packet transmissions and receptions and a relatively constant part for

the control messages. For a fixed network size and a fixed number of multicast

members, the number of nodes that take part in the data dissemination tree

created in MC-TRACE is independent of the total number of nodes in the network.

Hence the variable energy consumption for data dissemination is also independent

of the number of nodes. When the number of nodes in the network increases, the

energy consumption per node in MC-TRACE decreases. On the other hand, for

a fixed network size and a fixed multicast group size, the energy consumption in

NB-TRACE is independent of the number of nodes in the network since the data

dissemination tree covers the entire network. As a result, the cross-over point

increases with increasing number of nodes in the network, as can be observed

from Table 5.1.

It is interesting to note that, when considering energy-efficiency, the cross-over

point is approximately constant for a fixed number of nodes as the network area

increases. This is because the energy consumption of both NB-TRACE and MC-

TRACE increases as the size of the area increases, mainly due to the increase in

the number of clusters and in turn the additional control messages. Hence the
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increase in the average energy consumption is of the same order in NB-TRACE

and MC-TRACE and does not alter the value of the cross-over point significantly

for a fixed number of nodes.

To sum up, for the goal of minimizing the number of transmissions, both an

increase in the number of nodes and an increase in the size of the network favor

multicasting over network-wide broadcasting, making multicasting the optimal

choice for a larger set of multicast members. Similarly, considering the goal of

minimizing the energy consumption per node, an increase in the number of nodes

in the network makes multicasting a better choice up to a larger number of mul-

ticast members. On the other hand, the relative efficiency of multicasting and

network-wide broadcasting in energy consumption is independent of the size of

the network.

5.4 Summary

In this chapter, we examined the effect of the number of multicast members on the

relative efficiency of multicasting and broadcasting. We consider two performance

metrics: energy efficiency and bandwidth spectrum efficiency. We showed that for

large multicast groups, using broadcasting instead of multicasting leads to 75%

savings in the number of transmitted data packets and up to 21% savings in the

average energy consumption. Similarly, for small multicast groups, multicasting

reduces the number of data transmissions and the average energy consumption by

50% and 13%, respectively.

We also showed that an increase in the total number of nodes in the region

decreases the relative efficiency of broadcasting compared to multicasting for both

performance metrics, and hence the cross-over occurs at a larger number of mul-

ticast members. On the other hand, the increase in the size of the area does not

affect the cross-over point significantly for the energy efficiency metric, while it
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increases the cross-over point for the bandwidth efficiency metric.

Due to the similarity between the protocols, NB-TRACE and MC-TRACE,

they can be combined into a new unified protocol, U-TRACE. Based on the a-

priori information about the number of nodes and the size of the network, the

source node can choose the appropriate type of operation considering the number

of nodes in the multicasting group.

U-TRACE is a complete suite that incorporates the energy saving mechanisms

of MH-TRACE discussed in Chapter 3, dynamic channel allocation capabilities

of DCA-TRACE from Chapter 4, as well as one-to-many communication services

that exist in NB-TRACE and MC-TRACE. Combining the protocols in TRACE

and enhancing the resource utilization in them, U-TRACE becomes the most

advanced protocol in the TRACE family.

An internal optimization on resource utilization may not be sufficient for a

protocol since the performance may also depend on the interactions of the network

with other co-located networks. In the next chapter, we focus our attention on

the interactions of MANETs with other co-located networks.



114

6 Network Symbiosis on Hybrid

Nodes

6.1 Introduction

Although being the most advanced in its family, the U-TRACE protocol presented

in Chapter 5 has its own goal of energy efficient real time data communication

in MANETs. Other networks with different purposes and applications may use

different protocols. The interactions of a network with other networks in its

environment have a significant impact on the resource utilization of a network. In

this chapter, we study the cooperation of networks to optimize individual network

performances by cross-network sharing of resources, information and services.

Nodes that support multiple networks are common and referred to as hybrid

or multi-mode nodes. Such nodes are vital to achieve network symbiosis, i.e., the

full cooperation of the networks. Currently, even if a relay node is a multi-mode

node, it cannot optimally select the network to use for a received packet, e.g., a

packet that originated in a MANET cannot be sent through a ZigBee network, due

to the independent operation of the individual networks. Instead, networks can

exchange information through applications running on application or integration

servers as in [107]. Alternatively, the integration of different networks can be

achieved at any network level by symbiotic networking, which enables the sharing
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Figure 6.1: Comparing independent and symbiotic networking in the presence of multi-

mode (hybrid) nodes.

of network components for more efficient data communication or data processing.

Enabling such sharing through local cross-network interactions achieves much

more efficient network operation in terms of bandwidth, delay and other important

metrics such as energy consumption. Fig. 6.1 presents an illustrative scenario

for the comparison of the two networking types, independent networking and

symbiotic networking. In this scenario, two co-located networks are given where

paths from a network-1 node to different destinations are illustrated. As seen in

the figure, symbiotic networking enables routing paths with fewer hops by relaying

the packet over different networks, and it enables the sharing of local information

and resources by the co-located networks.

In this chapter, we investigate the potential gains achieved by symbiotic net-

working, concentrating on the routing performance. The contributions of the work

presented are threefold. First, the advantages of symbiotic networks are presented

quantitatively to motivate further study on symbiotic networks. Routing perfor-

mance limits of symbiotic networks are also investigated for three different link
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cost types and minimum cost routing. The results are compared with individ-

ual network performance limits where the routing decisions are done using only

the individual network resources. Finally, a mathematical framework is derived

for routing performance limits with and without network symbiosis that allows

investigation of different network parameters on the routing performance.

The remainder of this chapter is organized as follows. Routing benefits of net-

work symbiosis is investigated through simulations in Section 6.2. Mathematical

models for the evaluation of routing costs for each networking type are presented

and validated in Section 6.3. Section 6.4 discusses the effects of network param-

eters on network symbiosis performance gains, and Section 6.5 presents a cost

analysis for the cost range of the hybrid nodes where symbiotic networking is

beneficial. Finally, Section 6.6 concludes the chapter with an overall summary.

6.2 Routing Benefits of Symbiotic

Networking

Routing paths of a network are chosen based on the objectives of the application

and the network topology. Network symbiosis provides alternative paths for the

communication of two nodes and hence may provide better routes than the ones

that exist when only the nodes of an individual network are considered. In this

section, we investigate the possible benefits of using network symbiosis in co-

located networks.

We begin with a quantitative study of the benefits of network symbiosis via

simulations. Specifically, we consider two co-located networks with different net-

work parameter settings. The minimum cost paths are investigated for a range of

link cost metrics for both independent and symbiotic networking, since minimum

cost paths present a limit for routing protocol performances and can be used for
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comparison of both networking types. Moreover, the minimum cost path can be

found using algorithms such as Distributed Bellman-Ford [108] in a distributed

environment.

Let network-i represent the network, where i = 1, 2. In network-i, Ni nodes

are uniformly randomly distributed in a target area. This uniformly random

distribution can correspond to a static random topology as in wireless sensor

networks or an instance of dynamic topology of as in mobile ad hoc networks.

Additionally, there are H hybrid nodes in the same target area, with network

interfaces to both networks, allowing them to communicate with the nodes of

both networks and to other hybrid nodes. In the independent network scenarios,

hybrid nodes are only capable of forwarding packets using the interface on which

they come, i.e., a network cannot relay the other network’s packets. On the other

hand, for the symbiotic network scenarios, switching interfaces on hybrid nodes is

allowed.

Nodes of network-i are assumed to be capable of communicating in a loss-

free manner with any nodes of network-i or with hybrid nodes within a fixed

communication radius, ri. A sample deployment is shown in Fig. 6.2 with the

network parameter settings: N1=80 nodes, r1=1 unit, N2=30 nodes, r2=2 units,

and H=5 nodes. A common destination node, e.g., sink, application server or

internet access point, which can communicate with both node types, is located in

the center of the network area. Hence, the destination node is also a hybrid node.

6.2.1 Evaluation of Minimum Cost Paths

In this section, we investigate a scenario of two co-located networks, whereN1=250

nodes, N2=150 nodes, r1=1 units, and r2 = 2 units, distributed on a 8x8 units2

region. The number of hybrid nodes (excluding the sink node) is varied from

0 to 200. For each parameter set, 100 iterations are performed with random
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Figure 6.2: Two co-existing networks with 5 hybrid nodes.
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deployments. The averages of the 100 runs are shown in the figures along with

the 95% confidence intervals for the population mean. To not have nodes with

infinite costs, each network is redeployed until a connected topology is achieved.

The cases of disconnected networks are studied in Section 6.2.2.

We consider two possibilities for routing from the individual nodes to the sink:

1) routing in symbiotic networks, where data can travel from nodes in network-

i to nodes in network-j; 2) routing in independent networks, where data that

originates in network-i must remain in network-i.

For both types of routing schemes, we consider three link cost metrics. Let ckl

represent the link cost of the link between node k and node l. Then, the metrics

and specific link cost values considered are

1. constant link cost (ckl = 1),

2. network specific link cost (ckl = r2
i ),

3. distance squared link cost (ckl = d2
kl, where dkl is the distance between nodes

k and l).

Minimum cost paths for constant link cost result in the shortest hop distance

between the source and the destination. Especially in networks where the data

load is low, there is a strong correlation between hop count and the delay per

packet. Thus, constant link cost metric corresponds to minimizing the packet

delays.

The second cost metric assumes different constants for each network’s link

cost. Specifically, we choose the cost of links in each network proportional to

the square of the communication radius. Assuming fixed transmission power, the

transmission energy spent by each node in network-i is proportional to the square

of the communication radius, ri, according to free space path loss propagation
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model. Hence, the second cost metric aims to minimize the power consumption

of the entire network.

There are protocols that allow nodes to adjust their transmission power so as to

reach the intended receiver. Assuming perfect power adjustment, the power spent

on each link is proportional to the square of the distance between the transmitter-

receiver pair, which is the third link cost metric that we investigate.

For each network topology, the minimum routing path costs of each node-sink

pair is calculated using the shortest path algorithm1. The minimum node-sink

routing path costs are averaged over all nodes and over all different deployments for

each parameter set. The averages and the corresponding 95% confidence intervals

for the three cost metrics are shown in Fig. 6.3 to 6.5 for varying number of hybrid

nodes. As the number of hybrid nodes in a network increases, the expected number

of candidate relays at each hop increases and as a result, the average cost of the

shortest path decreases for all three cost metrics. However, symbiotic routing

enables more alternative relays for hybrid nodes preserving the ones that already

exist for independent routing. The routing cost values using symbiotic routing

are, therefore, lower than (or equal to) the routing cost values using independent

routing for both networks and for all three cost metrics as seen in the figures.

The minimum cost paths for constant link cost metric corresponds to the

minimum hop count paths. Network-2 has a larger communication radius and

hence has much lower average hop count compared to network-1 for all node

densities for the independent routing case, as can be observed in Fig. 6.3. For

the same reason, network symbiosis improves minimum hop counts of network-1

nodes by allowing them to benefit from the links of network-2. Thus, even for a low

number of hybrid nodes, the average minimum hop count of network-1 decreases

1In this context, shortest path refers to the path with minimum cost. Correspondingly,

shortest path algorithm finds the path with minimum cost among all possible paths between

two nodes.
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Figure 6.3: Average costs for the constant link cost metric for varying number of

hybrid nodes.

significantly. The addition of 20 hybrid nodes in the area decreases the average

minimum hop count of network-1 by 24% when using symbiotic routing, while the

decrease when using independent routing is only 1.6%. On the other hand, for

the minimum hop count metric, network-2 has no incentive to utilize network-1

for transporting its packets. Thus, there is no significant difference between the

average cost of the minimum cost path for network-2 for independent routing and

for symbiotic routing.

For the network specific link cost metric, the distance per unit cost ( ri
r2i

) of

network-1 and network-2 links are 1 and 0.5, respectively. Hence, network-1 links

are potentially advantageous over network-2’s links, and network-1 has a lower

average path cost compared to network-2 for independent routing as shown in

Fig. 6.4. Due to the same reason, network symbiosis helps network-2 by allowing it

to use network-1’s links while it does not help network-1 significantly. The addition
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Figure 6.4: Average costs for the network specific cost metric for varying number

of hybrid nodes.

of 20 hybrid nodes in the area decreases the cost of network-2 by 18.6% when

symbiotic routing is used, whereas the decrease is only 0.5% when independent

routing is used.

For both the constant link cost and the network specific link cost metrics,

the cost of a link is independent of the distance of the node pair of that link.

Thus, it is beneficial to choose the neighbor that makes the maximum possible

advancement towards the sink in both of these cases. On the other hand, with

the distance squared link cost, the cost of each link also depends on the node

distances. Fig. 6.5 shows the average minimum path costs for distance squared

link costs. Since the link cost values grow faster than the distance, and hence

faster than the advancement towards the sink, paths with shorter links have lower

costs. Having a short link is related with the availability of a close neighbor and is

independent of the communication radius. Since, network-1 has a greater number
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Figure 6.5: Average costs for the distance squared cost metric for varying number

of hybrid nodes.

of nodes, it has lower average path costs, as can be observed in Fig. 6.5. Symbiotic

routing allows utilization of the nodes of both networks for hybrid nodes. Thus,

it increases the probability of having a path with shorter links and decreases the

cost of the minimum cost paths of both networks.

To sum up, for all the three cost metrics, symbiotic routing can reduce the

routing costs significantly compared to the independent routing. For a given

scenario, symbiotic routing can improve the delay of one network’s packets while

reducing the other network’s total energy consumption. As a result, both energy-

efficient and delay-sensitive applications can be run on any of the two networks.

Thus, symbiotic routing provides flexibility for the range of applications that could

be run on a network and allows applications that require conflicting objectives to

co-exist.
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Figure 6.6: Ratio of Number of connected nodes to the number of nodes in each

network for symbiotic routing and independent routing

6.2.2 Evaluation of Connectivity

Network symbiosis also plays a drastic role in increasing the connectivity for sparse

networks. To illustrate this advantage, a sample scenario with two sparse networks

with parameters N1 = 50, N2 = 10 nodes, r1 = 1, and r2 = 2 units, on an area of

8x8 units are evaluated. We investigate the number of connected nodes, i.e., the

nodes that has a path to the sink, as number of hybrid nodes are varied from 0

to 200. The ratio of the number of connected nodes to the total number of nodes

for both symbiotic routing and independent routing are shown in Fig. 6.6.

The increase in the number of hybrid nodes corresponds to an increase in

the average number of neighbors in each network and thus the connectivity ratio

increases for both independent routing and symbiotic routing. For symbiotic

routing, however, the nodes of one network can be used in connecting the nodes
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of the other network provided that there is at least one hybrid node within the

communication range. Thus, the connectivity ratio using symbiotic routing is

always greater than or equal to the connectivity ratio using independent routing

for both networks. With independent routing, the ratio of connected nodes in

network-2 is much higher compared to network-1. Since network symbiosis allows

one network to use other’s links, the gain achieved by network symbiosis is much

greater for network-1.

As can be observed in Fig. 6.6, addition of small number of hybrid nodes

increases the connectivity ratio of network-1 drastically in symbiotic routing com-

pared to that of independent routing. Using network symbiosis, an addition of

10 hybrid nodes increases the number of connected nodes in network-1 by 38%,

whereas the increase is only 7% using independent routing.

6.3 Mathematical Model of

Routing Performance

In this section, we mathematically analyze the minimum cost path using indepen-

dent and symbiotic routing. In particular, we develop a mathematical model that

approximates the average cost of the minimum cost path for both constant link

cost and network specific link cost metrics. We also present the lower bound on

the cost of the minimum cost path that is approached when the node density goes

to infinity. Then, the mathematical model is validated by comparing its results

with the simulation results and the lower bounds.

6.3.1 Mathematical Model

We begin the analysis with constant link costs for independent routing. A least

remaining distance (LRD) forwarding approach [109] [110] can be considered as
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Figure 6.7: Graphical representation of advancement to destination.

an approximation for the shortest path for sufficiently dense networks. In LRD,

the next hop is chosen such that the remaining distance to the destination is

minimized. For the case given in Fig. 6.7, consider the neighbors of source node S,

i.e., the nodes within the communication range rc of S. Since, the node locations

are statistically independent, the expected cost of the shortest path from any node

at a given distance to the sink is equal. Thus, among the neighbors of S, the ones

residing on the circle with radius r = L− a and centered at the destination node

D result in an advancement of a towards D [110]. Given that the cost of each link

is constant, it is beneficial to choose the node with the maximum advancement as

the next hop.

Let ζ represent the maximum possible advancement that can be achieved to-

wards D from S in a single hop. For the trivial case of L ≤ rc, Pr(ζ = L) = 1

and the expected value of the maximum advancement is

E[ζ] = L. (6.1)

For L > rc, Pr(ζ ≤ a) is given by the probability of having no nodes in the shaded

area in Fig. 6.7. Assuming node locations are uniformly random and independent,
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and there are N total nodes in the network,

Pr(ζ ≤ a) =

(
1− A(L, rc, L− a)

TotalArea

)N
, (6.2)

where A(L, r1, r2) is the area of the intersection region of the two disks with radii

r1 and r2, whose centers are separated by L. The formula of A(L, r1, r2) can be

found in [111]. The expected value of the maximum advancement for a given

distance L > rc can be written as

E[ζ(L, rc, N)] =

∫ a=rc

a=0

a
dPr(ζ ≤ a)

da
da

= (aPr(ζ ≤ a))
∣∣∣a=rc

a=0

−
∫ a=rc

a=0

Pr(ζ ≤ a)da. (6.3)

The expected advancement at the next hop is a function of remaining dis-

tance to the destination, which is defined by the advancement at the current hop.

Therefore, beginning from the source, an iterative algorithm can approximate the

expected number of hops for a given distance L between source and destination,

which is given in Algorithm 1.

Algorithm 1 Find the expected number of hops for network-i for independent

routing with constant link cost metric
Require: L, ri, Ni, H, TotalArea

1: CT = 0

2: while L > 0 do

3: Calculate E[ζ(L, ri, Ni +H)] using (6.1), (6.2), and (6.3)

4: L = L - E[ζ(L, ri, Ni +H)]

5: CT = CT + 1

6: end while

Next, we extend this analysis to the case of symbiotic routing. Let the proba-

bility of being on a network-i node be pi at a hop and the probability of being on

a hybrid node be ph, where
∑

i=1,2(pi) + ph = 1.
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For two networks case, one of the networks’ links are preferable since they

provide greater advancement per unit cost. We refer this advantageous network

as superior network, and the other network as inferior network2. For the hop

count metric, network-j is superior if E[ζ(L, ri, Ni + H)] < E[ζ(L, rj, Nj + H)],

since the cost is 1. In that case, the tendency of the routing algorithm will be

toward switching to network-2.

The forwarding algorithm is assumed to hop from the nodes of the inferior

network to the hybrid nodes whenever there is a hybrid node that makes positive

advancement. Thus, the probability of switching from the inferior (i.e., condi-

tioned on being on an inferior node) to the superior network can be calculated

as

psw = 1−
(

1− A(L, rinf , L)

TotalArea

)H
. (6.4)

At each hop, the expected advancement toward the destination can have 3

different values corresponding to 3 different cases: the expected advancement

from a node of the inferior network to a node of the inferior network, E[ζinf ];

from a node of the inferior network to a hybrid node, E[ζsw]; from a node of

the superior network or hybrid node to a hybrid node or to a superior network,

E[ζsup]. The probabilities of the three cases are pinf (1− psw), pinf psw, (1− pinf )

where inf and sup corresponds to the indices of inferior and superior networks,

respectively. The expected value of the maximum advancement is the weighted

average of E[ζinf ], E[ζsw] and, E[ζsup], where the weights are the probabilities of

the corresponding cases.

An iterative algorithm to calculate the expected minimum number of hops for

2For networks with significant difference in node densities, the definition of inferior and supe-

rior networks may not be fixed. The required minimum difference between the node densities of

the two networks increase with increasing difference in the communication radii of the networks.

Our evaluations show that for TotalArea = 100, ri=1, rj = 2, Ni = 1000, in order to have a

change in between the superior and inferior networks, Nj should be less than 13.
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a given distance L using symbiotic routing is provided in Algorithm 2.

Algorithm 2 Find the expected number of hops for network-i for symbiotic

routing with constant cost metric
Require: L, ri, rj , Ni, Nj , H, TotalArea

1: CT = 0, pi = 1, pj = 0, ph = 0

2: while L > 0 do

3: if E[ζ(L, ri, Ni +H)] < E[ζ(L, rj , Nj +H)] then

4: inf ← i, sup← j

5: else

6: inf ← j, sup← i

7: end if

8: E[ζinf ] = E[ζ(L, rinf , Ninf )]

9: E[ζsw] = E[ζ(L, rinf , H)]

10: E[ζsup] = E[ζ(L, rsup, Nsup +H)]

11: Calculate psw using (6.4)

12: L = L− E[ζinf ] pinf (1− psw) −E[ζsw] pinf psw −E[ζsup] (1− pinf )

13: pinf = pinf (1− psw)

14: ph = pinf psw

15: psup = 1− pinf − ph
16: CT = CT + 1

17: end while

Averaging results of Algorithms 1 and 2 numerically for all possible points

on the target area yields an approximation to the average minimum hop count

between a node and the sink for independent and symbiotic routing, respectively.

The same algorithms can be used with minor modifications also for the network

specific link cost metric which considers different link cost constants for each

network 3. The only modification in Algorithm 1 is to increment CT by Ci (the

cost of the links in network-i) instead of by 1 in Line 5. Similarly, Line 16 of

Algorithm 2 has to be CT = CT + pinf Cinf+ psup Csup. Also, the inferior and

superior networks have to be chosen for symbiotic routing with respect to the

3These algorithms are not applicable for distance based link cost metric since the node with

maximum advancement may not result in minimum cost path in that case. The extension of

the analysis for distance squared cost metric is left as a future work.
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expected advancement per unit cost incurred. Thus, the condition to be checked

in Line 3 of Algorithm 2 has to be E[ζ(L,ri,Ni+H)]
Ci

<
E[ζ(L,rj ,Nj+H)]

Cj
.

For comparison purposes, we present the lower bounds that can be achieved

with infinite node density, where the probability of having a neighbor that makes

an advancement of ri goes to 1. Therefore, a lower bound for the cost of shortest

path to send data to a distance L with independent network routing, LBInd
i (L),

can be found as

LBInd
i (L) =

⌈
L

ri

⌉
Ci. (6.5)

For the case of symbiotic networking, the first hop has to use the links of

the network which source node belongs to. The remaining hops use the superior

network’s links designated

LBSymb
i (L) = Ci +

⌈
L− ri
rsup

⌉
Csup, (6.6)

where sup corresponds to the index of the superior network.

For a given network, the lower bound for the average cost of a shortest path

can be found by averaging lower bounds for all source-sink pairs. These lower

bounds are only approached for very large numbers of nodes in the networks and

are practically very hard to reach, as observed in the following section.

6.3.2 Validation of the Model

In this section, the results of the mathematical model for a sample scenario are

compared to their simulated counterparts. For each deployment, Algorithms 1

and 2 are used to calculate the expected cost of the shortest path of each node.

The same scenario that is evaluated in Section 6.2.1 (N1 = 250, N2 = 150, r1 =

1, r2 = 2, Area = 8x8) is used for validation of the model.

The average minimum hop counts between the nodes and the sink are plotted

with respect to the number of hybrid nodes in Fig. 6.8. Mathematical model
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Figure 6.8: Average cost of the shortest path using constant link costs

results follow the simulation counterparts closely for both networks and for all

data points. All the mathematical model results are within the 95% confidence

intervals, validating the mathematical model presented in Section 6.3.1. Moreover,

as seen in Fig. 6.8, symbiotic routing can achieve much lower hop counts than the

lower bound of independent routing for network-1, which only can be achieved

with infinite node density.

For the validation of analyses of average path costs for network specific fixed

linked costs, Algorithms 1 and 2 are used with link costs of r2
i . Simulation results

are shown along with the results found by the analyses in Fig. 6.9. As seen in

the figure, the mathematical models presented in Section 6.3.1 approximate the

simulation results successfully for the network specific link cost metric as well.
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Figure 6.9: Average cost of the shortest path using network specific link costs

6.4 Effects of Network Parameters

In Sections 6.2 and 6.3, it is observed that for a given link cost metric, the cost

improvement in one network achieved by the network symbiosis is much higher

than the one in the other network. The parameters of the networks under concern

determine the magnitude of the improvement. In this section, using the mathe-

matical model developed, we investigate the variation in the cost improvements

achieved by network symbiosis as the network parameters vary.

Specifically, we vary the settings of network-2 (i.e., r2 and N2) together with

H, and observe the changes in the ratio of the average path cost of symbiotic

routing to that of independent routing. The parameter settings of Section 6.2.1

are used as the default values (N1=250, N2=150, r1=1, r2=2).

The ratio of the average path costs using the constant link cost metric is

presented in Fig. 6.10(a) for a range of r2 and H values. Network symbiosis

reduces the cost of network-1 when r2 > r1 = 1 and vice versa. As r2 is increased
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from 1 to 3, the expected advancement per hop on network-2’s links increases and

thus the path costs of network-1 with symbiotic routing decreases.

The ratio of costs for the network specific link cost metric is presented in

Fig. 6.10(b) for different r2 and H values. Network symbiosis reduces the path

costs of network-2 when r2 > r1 and vice versa. As r2 is increased from 1 to 3,

the expected cost of the network-2’s links increases faster than the increase in

advancement per hop, since the cost of each network is taken as the square of the

communication radius. Thus, using network-1 links becomes more advantageous

for network-2 and the gain achieved by symbiosis increases.

Next, we fix r2 at 2 and vary N2 from 100 to 400. The variation in the

ratio of costs for constant link cost metric and network specific link cost metrics

are presented in Fig. 6.11(a) and 6.11(b), respectively. The superior network

is determined based on the expected advancement, which depends on both the

communication radius and the node density in each network. As N2 increases,

the expected advancement in network-2’s links increases and the gain by network

symbiosis increases. However, the dependency on the communication radius is

much larger since the networks under concern have similar density values. As a

result, the effect of the node density on the ratio of costs is much weaker compared

to the effect of the communication radius.

6.5 Cost Analysis

In Sections 6.2 and 6.4, we presented the contributions of symbiotic routing on

various performance metrics. From an engineering point of view, that contribution

can be translated into reduced costs of network deployment and operations. In

this section, the network cost analysis is elaborated through a scenario in which
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Figure 6.10: Ratio of average cost of shortest path for symbiotic routing and

independent routing as number of hybrid nodes and communication radius of the

second network varies
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Figure 6.11: Ratio of average cost of shortest path for symbiotic routing and

independent routing as number of hybrid nodes and number of nodes in the second

network varies
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a performance metric of a given system is improved with the additional node

deployments.

Specifically, we consider the same scenario of Section 6.2.1 (N1 = 250, N2=150,r1=1,

r2=2) and investigate the costs of alternative methods to improve the performance

of network-1. Originally, network-1 has an average hop count of 4.35 as can be

observed from Fig. 6.3. The hop count value can be reduced in two ways: by in-

creasing the number of nodes in network-1 or by adding hybrid nodes and utilize

the network symbiosis.

Using the mathematical model presented in Section 6.3, the average routing

cost of the network can be calculated easily for any given number of hybrid nodes.

The number of network-1 nodes that has to be added to achieve a specific rout-

ing cost value can be calculated using a root-finding algorithm such as bisection

method for the mathematical model.

Using that approach, one can find that, in order to reduce the average hop

count by 10% (i.e., to 3.92 hops) for independent routing, at least 394 more

network-1 nodes should be deployed to the area. On the other hand, network

symbiosis makes use of larger communication radius in network-2 and reaches the

same target average hop count value by only 8 additional hybrid nodes. Consid-

ering that the cost of a network-1 node is c1 and the cost of a hybrid node is ch,

symbiotic routing achieves the performance requirement with a lower cost as long

as ch
c1
< 394

8
= 49.2.

The cost threshold analysis is extended for a range of percent improvement

values in Fig. 6.12. As the required improvement on hop count increases, network

symbiosis becomes desirable for an even larger cost of hybrid nodes. For a desired

improvement of 18%, using hybrid nodes with network symbiosis is the cost-

effective method of achieving this improvement as long as the cost of each hybrid

node is less than or equal to 618 times the cost of an individual network node.



137

Figure 6.12: The highest cost ratio of hybrid and network-1 node that makes sym-

biotic routing the cost efficient routing method for a given hop count improvement

requirement.
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Another important observation is that, using independent routing, the average

cost can only be reduced up to 18.3% considering the analytical lower bound of

independent routing for network-1. Any improvement beyond that value can only

be achieved using network symbiosis irrespective of the relative cost of a hybrid

node.

To sum up, the cost of hybrid nodes should be below a certain value for network

symbiosis to be a cost efficient method in improving system performance. Using

the mathematical model presented, the maximum cost of a hybrid node for the

cost efficiency can be found for any given scenario.

6.6 Summary

In this chapter, the advantages of symbiotic networking for co-located wireless

networks are presented by simulations and through a mathematical model. To the

best of our knowledge, this is the first study to analyze the benefits of symbiotic

networking quantitatively. The results are promising: by introducing a small

number of hybrid nodes, i.e., a node that can switch packets between networks,

the average cost of the shortest path can be decreased significantly. Increasing

the total number of nodes by only 5% by adding hybrid nodes into the network

decreases the average cost of the shortest path by up to 24%, 18.6%, and 13% for

the constant link cost, network specific link cost and distance squared link cost

metrics, respectively.

We have also presented a mathematical framework that can be used to investi-

gate the potential gains of symbiotic networking for different network parameters.

The model has been shown to follow simulations for a varying number of hy-

brid nodes and for both the constant link cost and the network specific link cost

metrics. The mathematical framework can be used to investigate the effects of

different network parameters on the potential gains achieved by symbiotic rout-



139

ing. It is shown that the addition of a hybrid node, i.e., a node that can switch

packets between networks, leads to a greater performance improvement for a low

numbers of hybrid nodes.

Finally, a cost analysis is presented for analyzing the benefit of hybrid nodes

and symbiotic networking. Even though additional hardware on hybrid nodes

increases the production costs, the hybrid nodes make the overall deployment

more cost efficient. For the scenario investigated, symbiotic routing is found to

be beneficial if the cost ratio of hybrid nodes and network nodes is less than 49

to achieve 10% hop count improvement, which is a realizable threshold for many

recent multi-network devices.
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7 Implementation on a

Software-defined Radio

Platform and Practical Issues

Encountered

7.1 Introduction

Throughout this thesis we have investigated node cooperation in various parts

of communication systems. Through comparative simulation studies, we have

shown that the TRACE family of protocols, which implement cooperation in both

the MAC and network layers of the protocol stack, perform better in MANETs

compared to uncoordinated protocols for heavily loaded networks for both uniform

and non-uniform load distributions.

Although simulations are efficient tools to comparatively evaluate the efficiency

of protocols, they cannot reflect many of the challenges for real implementation

of these protocols, such as clock-drift, synchronization, imperfect physical layers,

and interference from devices out of the system. Such issues may cripple a pro-

tocol that otherwise performs very well in software simulations. Thus, hardware

implementation is essential for testing a protocol before any practical deployment.
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In this chapter we use Microsoft Research’s software radio (SORA) to imple-

ment the TRACE protocol and determine the challenges in implementing this

protocol in a real world communication system.

In the original TRACE protocol design, node synchronization was assumed to

be provided by external mechanisms such as global positioning system (GPS). We

address the issue of synchronization by proposing two synchronization algorithms

for TRACE that are based on packet receptions. We show that the algorithms

work well in both single and multi-hop networks.

Finally, we address the issue of packet losses due to imperfect physical lay-

ers and interference. By adding missing packet compensation mechanisms, we

increase the systems resilience against packet losses. We show that the TRACE

system maintains its stability even with very low transmission power and cross-

band interference.

7.2 Development Platform

The physical (PHY) and the medium access control (MAC) layers of conventional

wireless communication systems are typically implemented in Application Specific

Integrated Circuits (ASICs) due to their intensive computational requirements.

The algorithms controlling these layers are embedded and thus cannot be changed

or upgraded. On the other hand, Software Defined Radios (SDRs) implement

these functions on special re-programmable hardware that allows flexibility for

design changes and hence is more suitable for research. SORA (Software Radio)

[112], developed by Microsoft Research Asia in Beijing, is an SDR platform that

satisfies the throughput and timing requirements of modern wireless protocols

while utilizing the rich general purpose processor development environment. Thus,

we choose SORA radios to implement the TRACE protocol.

The SORA system consists of a radio controller board (RCB) that uses a PCI
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Figure 7.1: The interaction of TRACE software with the SORA architecture.

express slot to communicate with the PC’s memory using direct memory access

(DMA). The RCB connects to a SORA compatible RF front-end board. We

utilize RF2450 type RF front-ends, designed by V3 Technology Ltd. in Beijing,

attached to the SORA SDR. These front-ends work on the 2.4GHz band and are

compatible with 802.11 PHY implementations.

Both the RCB and the RF front-end hardware resources are managed by the

RCB driver that provides API’s to send/receive digital waveform samples. SORA

systems also include a Sora User-Mode Extension API (UMX API) that allows

interaction of user-mode programs with the RCB/RF hardware. We choose the

UMX Mode for our implementation since it eliminates the need for kernel level

programming and greatly reduces the programming efforts. The interaction of the

TRACE software with the SORA architecture is depicted in Fig. 7.1.

The processing time of the programs interacting with the radio hardware is of
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extreme importance. The real-time behavior of SORA is supported via exclusive

threading. An exclusive thread (ethread) is a non-interruptible thread running on

a dedicated CPU core on a multi-core system. The SORA software development

kit includes libraries that provide APIs to create and manage exclusive threads.

We use SORA ethreads in the TRACE implementation. Details of the ethreads

of the TRACE program are discussed in Section 7.4.

The TRACE protocol family covers MAC and network layer functionalities of

the OSI protocol stack. In our TRACE implementation, we use 802.11b as the

PHY layer since the UMX extension has a library, UMXDot11 that implements a

simple 802.11 decoder and encoder. At the receiver side, UMXDot11 implements

a simple software power detection algorithm that measures the channel power

and returns a value that indicate whether a transmission is detected. Once a

transmission is detected, UMXDot11 goes into reception mode where the 802.11

frames are demodulated. Similarly at the transmitter side, UMXDot11 extension

provides a library that can generate (modulate) and send 802.11 PHY frames.

The radio resources are initialized and the transfer buffers are allocated using the

“Dot11BRxInit” and “Dot11BTxInit” functions of the UMXDot11. Packets are

embedded into the 802.11b PLCP layer packet type using “Dot11BPreparePacket”

function. The “BB11BPMDPacketGenSignal” function adds a preamble and em-

beds the PLCP layer packet into a PMD layer packet and modulates the frame

with the chosen modulation method. The modulated complex samples are trans-

ferred to the RCB’s memory using the “SoraURadioTransfer” function. The RCB

memory resources are locked using “Dot11AcquireTxBufLock” function before the

transfer, and the lock is released using the “Dot11ReleaseTxBufLock” function.

These functions provide PHY layer transmitter functionality to the UMXDot11.

Table 7.1 lists these functions and shows the average duration to complete each

function, measured over 10,000 executions.
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Table 7.1: PHY layer transmitter functions and average execution durations.

Duration (µs)

Dot11BRxInit 3366.128

Dot11BTxInit 1336.667

Dot11BPreparePacket 39.333

Dot11AcquireTxBufLock 7.512

BB11BPMDPacketGenSignal 922.021

SoraURadioTransfer 138.521

Dot11ReleaseTxBufLock 8.514

7.3 Modules of the TRACE System

TRACE is implemented as an independent layer in the communication stack, and

its operation is decoupled from system dependent functions. The interaction of

TRACE with the other layers in the system is handled through adapter modules.

Fig. 7.2 depicts the TRACE Manager and its interactions with other layers.

Being a TDMA based protocol, the operation of TRACE is tightly linked to

time measurements. The time dependent services in the TRACE MAC Manager

are handled by the TRACE Timer module. The TRACE Timer module is re-

sponsible for measuring the time using system counters and reporting the time in

a format usable by the TRACE system.

The implementation of the TRACE Manager is independent of the underlying

PHY layer. The information to be sent over the wireless channel is converted into

PHY layer packets by the TRACE Packet Converter module.

The interaction of the TRACE Manager and the application layer is handled

by the Data Manager module. The Data Manager module provides an inter-

face between the TRACE Manager and the application layer. It is responsible
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Figure 7.2: The interaction of the TRACE layers with other layers.

for organizing the generated data to be sent and storing the data from received

streams.

The network layer services in the TRACE Manager are controlled by the

Stream Controller. The Stream Controller maintains the information about the

ongoing voice streams. The TRACE Manager decides whether to take part in

relaying a particular stream or not based on the information stored by the Stream

Controller.

7.3.1 TRACE Timer

The timing services within the TRACE system are handled by the TRACETimer

implemented in “trace timer.h” available in Appendix A.

For the proper operation of the TRACE protocol, an accurate representation of

time is needed. Regular Windows Time services library only provides an accuracy
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of 10ms. This accuracy is not sufficient for TRACE since the lengths of TRACE

system slots are much smaller, as shown in Table 7.2.

In order to provide a higher accuracy, TRACETimer is implemented to be

based on the lower level system counters. Windows APIs, namely QueryPerfor-

manceCounter and QueryPerformanceFrequency [113], expose methods to obtain

the number of CPU cycles that enable high resolution timing. On our testbed sys-

tem that is equipped with an INTEL CoreTM i7-970 processor running at a maxi-

mum of 3.2GHz, these APIs provide a maximum resolution of 1/(3.2∗109) ' 0.3ηs.

Moreover, these APIs are only called in a single thread to prevent the frequency

variations on threads running on different cores.

TRACETimer is responsible for converting the counter readings to time read-

ings based on the frequency of the counter. TRACETimer keeps the counter value

at the time of initialization as a reference point and reports time readings in sub

micro second accuracy compared to this reference point.

For synchronization purposes, TRACETimer also maintains an offset value

that is initialized to zero. The offset value is added to the measured time when

reporting time readings to the TRACE Manager. By adjusting this offset value,

the TRACE system is able to synchronize itself to other nodes in the network.

The details of the synchronization process are available in Section 7.5.

7.3.2 TRACE Packet Converter

In addition to the data packets, TRACE uses various control packets, namely

Beacon, CA, Contention, Header and IS packets. These packet carry a variety of

information fields generated by the TRACE Manager. The information carried

by these fields can be grouped under 4 types of variables:

� Flags: Embeds single bit information. Examples include start up flag, con-
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Table 7.2: Packet sizes and slot lengths for the TRACE system.

Packet Type Size (bytes) Tx Duration (µs) Slot Length (µs)

BEACON 4 102.545 232.5455

CA 4 102.545 232.5455

CONTENTION 4 102.545 232.5455

HEADER 10 106.909 236.9091

IS 10 106.909 236.9091

DATA 109 178.909 308.9091

tinuing stream flag, multi-cast member node flag, etc.

� Short Variables: Consists of multiple bits of information. These variables

can take more than 2 values. Examples include packet type, slot number,

packet priority, DataDisseminationMode.

� Long Variables: Consists of a few bytes of information. Examples include,

node ID and data packet ID.

� Data Payload: Consists of multiple bytes of information.

In a wireless communication system, transmitting each additional bit consumes

valuable resources such as energy and bandwidth. The variables in the transmit-

ted packets should be represented as concisely as possible in order to reduce the

duration of the transmission.

In order to efficiently set and retrieve data for each variable type, different

operations should be performed depending on the data type. For instance, while

bit-wise operations are required for flags, memory copy operations using multiple

bytes long registers are preferred for faster operation on the data payload. In

addition to this, many variables are represented by a few bits taking into account
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Figure 7.3: TRACE Packet Hierarchy.

the possible range of them. Variables shorter than one byte should be combined

with each other using bitwise manipulators for efficient data representation.

On the other hand, the operation of the TRACE manager is independent of the

representation of these variables in the transmitted packet and only depends on

their value. For the purposes of faster access and easy processing of the variables

at the TRACE Manager, it is preferred for these variables to be stored in more

common data types such as Boolean, integers and integer arrays.

In order to simplify the retrieval and usage of the variable at each layer without

sacrificing efficiency, the TRACE system uses a packet hierarchy as depicted in

Fig. 7.3. The packet types above the PLCP layer packets are TRACE specific

types and are implemented as C++ classes with conversion functions from and

to the packet class above themselves. The details of the implementation of each

packet type class are available in Appendix B.
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For easier access to variables and compatibility issues, the TRACE layer oper-

ates using a single packet type TRACE Manager Layer Packet implemented in the

TRACEAllInOnePacketType class. This is an inclusive class that has variables

to store all the variables of all packet types along with additional fields for time

of reception and received power level. At the receiver side, the TRACE Packet

converter populates these additional fields after the conversion before passing the

packet to the TRACE Manager. A single packet class in the TRACE Manager

enables easier implementation of various functions.

The variables for each packet type are represented in the most compact form

in the TRACE Compact Packet. There are 2 subclasses of the TRACE Compact

Packet: type dependent and type independent. Each packet type in the TRACE

system is implemented as a separate class in the type dependent TRACE Packet

level together with a specific conversion process from TRACEAllInOnePacketType

depending on the packet type. The variables are converted to bit-wise representa-

tion considering their range and combined with each other at this level. Depend-

ing on the packet type, packets in TRACEAllInOnePacketType are first converted

into the corresponding type dependent TRACE Compact Packet type and then

embedded into a type independent TRACE Compact Packet type. At this level,

the contents of the variables are not accessible and the packet is represented with

a stream of bits of a given length. Type independent TRACE Compact Packet

type also adds a one byte encryption header in the beginning of the packet. Op-

tionally, the packet contents of type dependent TRACE Compact packet type

are encrypted in the type independent TRACE Compact packet type using the

parameters in the encryption header.

The resulting packets of TRACE Compact Packet Type are further encapsu-

lated into an 802.11 PLCP packet with a PLCP Header and a 4 byte long CRC

field.
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Finally, a preamble is added to the PLCP layer packet before it is modulated

and converted into an 802.11 PMD layer packet type. At this level, the packet

is represented by complex samples related to the in phase and quadrature com-

ponents of the waveform to be transmitted by the RF front-end. The generated

complex samples are transferred to the radio controller board (RCB) and stored

in the RCB’s memory. The actual transmission of the packets is controlled by the

TRACE Manager and triggered using a separate mechanism.

Similarly, on the receiver side, after PHY layer headers are removed, the packet

contents are saved into a type independent TRACE Compact Packet. At this

layer, packet contents are decrypted using the encryption header, and the packet

type is determined using the common packet type bits. The received packet is

then converted into the corresponding type dependent TRACE Compact Packet

and eventually to TRACEAllInOnePacketType before it is passed to the TRACE

Manager.

7.3.3 TRACE Data Manager

The Data Manager module of the TRACE system provides an interface to the

application layer. Its responsibilities include the responsibilities of the layers above

and including the transport layer.

The target application of the TRACE system is real time voice communication.

Voice communication has been shown to be relatively resilient to packet losses, and

the main concern is the timely delivery of the data. Thus, a UDP like service is

targeted at the Data Manager module. The Data Manager is responsible for data

segmentation and reassembly. Unlike TCP, neither flow control nor congestion

control is implemented since the main concern is the timely delivery of the data.

At the transmitter side, the Data Manager closely monitors the data generated

by the application layer. The generated data is segmented into packets of fixed
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length. Each packet is marked with a unique identifier that consists of a 2 byte

data source node ID and a 2 byte data sequence number.

At the receiver side, the Data Manager sorts the packets according to the

data source node identifier. Received data payload of each stream associated with

each data source node identifier is saved to a separate file. The Data Manager

reassembles the segmented packets. Segments corresponding to missing data pack-

ets detected by data sequence numbers are marked and potentially used for error

correction services at the application layer.

For each stream identified by the source node ID, the last received packet se-

quence number is stored in the TRACE Stream Controller. The sequence number

of each received packet is compared with the sequence number of the last received

packet. For missing packets, to preserve the file size of the stream at the receiving

end, the Data Manager adds a fixed payload with a length equal to the length of

the missing data.

7.3.4 TRACE Stream Controller

The protocols in the TRACE family are mixed layer protocols covering the data

link layer as well as network layer services. Our implementation combines the

data link layer services of CDCA-TRACE with the network layer services of U-

TRACE for the most comprehensive operations. The network layer in U-TRACE

combines the network wide broadcasting and the multicasting services in a single

framework and allows their coexistence.

The routing decisions of the TRACE Manager are combined under a separate

module and are handled by the Stream Controller. The Stream Controller module

stores the states of each detected ongoing stream in a dynamic list implemented

in the “StreamRegister” class. Each entry in the dynamic list stores information

about a stream and is stored as a “Stream” class object.
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The information about the ongoing streams are received by the IS and Data

packets. A new entry is created if the stream is not found in the StreamRegister.

For each received IS and data packet, the corresponding entry is updated together

with the last update time. Streams that are not updated for a given amount of

time are marked as obsolete and are removed from the StreamRegister.

In our implementation, source nodes can transmit a single stream using a

single routing strategy. Hence, streams are identified by the data source node ID

in the StreamRegister. For each stream, in addition to the type of routing service

requested by the stream and the time of the last update, a variety of variables are

kept depending on the routing strategy requested by the stream.

For local broadcasting services, only the last received packet ID is kept. New

packets are identified by comparing the packet ID in the IS packets with the packet

ID stored in the Stream Controller. The receiver sleeps in the corresponding

data slots for packets that have been received before. For streams requesting

network-wide broadcasting services, the ID of the immediate upstream node and

the last received downstream ACK time are stored in addition to the variables

kept for local broadcast routing. For streams requesting multicasting services,

the downstream node ID and the last upstream ACK time are also stored in

addition to the variables stored for streams requesting network-wide broadcasting

services. The relaying decisions are calculated based on the stored data following

the rules of the NB-TRACE and the MC-TRACE protocols for network-wide

broadcast and multicast routing, respectively. These rules are implemented in the

Stream Register. The TRACE Manager decides whether to relay the messages of

a particular stream by querying the Stream Register.
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Figure 7.4: Sub-modules of the TRACE program.

7.3.5 TRACE Manager

The TRACE Manager Module is responsible for the data link layer services of

TRACE. This is the main module that keeps a collection of variables deter-

mining the state of the TRACE system and a number of subroutines deter-

mining the processing methods of the available data. This module is imple-

mented in “traceextension.h” and “traceextension.c” files as a C++ class, namely

“MAC CDCAUTRACE”. The implementation is available in Appendix C.

The TRACE Manager is a collection of variables and the methods that cal-

culate the behavior of the TRACE system based on these variables. The func-

tionality of the TRACE manager can be grouped in sub-modules as shown in

Fig. 7.4.

CH Modules

The submodules are grouped as CH specific modules that are used by the nodes

that take the CH role in the network and common modules that are used by all

the nodes. The submodules used by the CHs are as follows.
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Frame Selection Implemented in the SelectGTDMASlot function. This module

is used by the CHs to select the frame operation. If the dynamic channel

allocation algorithm is enabled, instead of a single frame, a number of frames

that is calculated based on the local load of the CH are selected. The frame

selection is based on the interference of each frame that is measured by

the interference levels in the Beacon and the CA slots. When a previously

selected frame is not selected in a subsequent superframe, existing data slot

reservations of that frame are moved to the other selected frames. This

enables continuous operation for the nodes with ongoing reservations in the

case of a change in the selected frames at the CH.

Contention Receiver Implemented in the CheckTransmissionSchedule, Insert-

TransmissionSchedule functions. CHs reserve the data slots for nodes re-

questing resources using this submodule. For successfully received con-

tention packets, data slots are assigned opportunistically starting from the

slot with the least interference based on the interference levels in the cor-

responding IS slots. When all data slots are already reserved, a priority

scheme is used to selectively assign the slots. The priorities of the streams

are announced and updated through contention and IS packets. If the prior-

ity of the contending stream is higher than the priority of one of the reserved

streams, the reservation of the stream with the lowest priority is replaced

with the contending stream.

Schedule Controller CHs cancel the reservations of a stream under two con-

ditions: i) if “end of the stream” is indicated by the stream through IS

packets, or ii) if the reserved IS slot is not used. The status of the stream

obtained through the IS packets is recorded in a variable array in Sched-

uleControlTable. The transmission schedule is updated at the beginning of

each frame based on the ScheduleControlTable.
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Common Modules

The rest of the submodules of the TRACE Manager are used by all the nodes in

the network regardless of the CH role and are described as follows.

Synchronizer Implemented in the BeaconSyncronize and ContentionSyncronize

functions. The time reference of the transmitter node is calculated based on

the received beacon and contention packets. The time reference calculated

by the packet is compared with the time reference of the TRACE Man-

ager for synchronization. The offset value of the TRACE Timer module is

adjusted to synchronize the receiver.

State Updater Implemented in the UpdateTraceTime function. The current

time reading obtained through the TRACE Timer module is used to update

the state of the TRACE protocol. The time reading is further used to calcu-

late and update the state of the TRACE Manager. The TRACE Manager

states are based on the slot type within the frame. The state transitions are

depicted in Fig. 7.5.

PHY Controller Implemented in the DoIListenThisSlot and DoITXThisSlot

functions. The operation mode of the PHY layer is calculated based on

the state of the TRACE Manager and time spent in that state, CH role and

the time in the state of operation.

Frame Preparer Implemented in the SetSST function. In the beginning of each

frame, this function is called to update a number of variables that will

be used throughout the frame. For CHs, whether the upcoming frame is

selected for the operation of the cluster is determined. The CHs operate only

on selected frames and follow the role of a non-CH node in other frames.

Finally, the contention and the SYNC packets used in the synchronization

algorithm are scheduled in this submodule.
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Packet Preparer Implemented in the preparePacket function. This function

prepares a packet of a given type and embeds information required into the

packet.

Packet State Manager The status of each packet type is kept in the corre-

sponding variables, namely BeaconPacketState, CAPacketState, Contention-

PacketState, HeaderPacketState, ISPacketState, and DataPacketState. The

state of the packet indicates the existence of a copy of the given packet type

in the RCB’s memory and whether the copy needs to be updated.

Packet Transmitter Implemented in the HandleOutgoing function. The TRACE

Manager is notified about transmissions at the time of transmission using

this function. Depending on the type of the packet, the packet states and

corresponding TRACE Manager variables are updated.

Packet Receiver Implemented in the HandleIncoming function. Provides the

interface of the TRACE manager with the underlying PHY layer. Incoming

packets are directed to corresponding subroutines based on the packet type.

Reservation Manager The transmission schedule of the entire superframe is

stored in matrix form in the TrSchSrcPrio variable. The transmission sched-

ule of each frame is prepared and announced by the CH in the Header packet,

which in turn are used to update the transmission schedule of non-CH nodes.

Cluster Manager Implemented through the CHTableStructure type variable.

The information about the existing CHs are recorded in this table and up-

dated through the Beacon and Header packets. The entries that are not

updated for a given amount of time are marked as obsolete and are deleted.

Interference Recorder Implemented in the RecordChannelPower, ResetNumIntf,

and ResetNumIntf2 functions. For Beacon, CA and IS slots, maximum



157

Figure 7.5: The states of the TRACE Manager.

channel power measurements are recorded in every frame. These measure-

ments have a high variance due to noise and cross system interference. In

order to smooth out the variance of the interference, we use an exponential

smoothing algorithm to calculate perceived interference levels for each slot.

The exponential smoothing algorithm combines the historical value of the

interference level and the current measurement. We have a conservative im-

plementation that has a very low smoothing factor for the cases where the

measurement is higher than the previous perceived interference level.

The perceived interference levels for the IS slots are updated at the end of

each frame. On the other hand, the perceived interference levels for the

Beacon and CA slots are updated immediately at the end of the CA slot in

every frame. By using the most recent values before the transmission of the

Header, CHs prevent further collisions in the case of high co-frame interfer-

ence. For non-CH nodes, global interference levels are used for selecting a

CH among the accessible ones for channel access.

7.4 Multi-threaded TRACE Implementation

Our TRACE implementation uses the parallel processing capabilities of the Win-

dows programming environment and the exclusive threading APIs provided by the

SORA development libraries.
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Figure 7.6: Functional subsystems of the TRACE Program.

The TRACE system is required to respond to other nodes in the network

in a timely manner. This imposes strict timing requirements for various tasks.

In order to meet these timing requirements, the implementation of the TRACE

system is divided into functional programming subsystems that simultaneously

run on parallel threads. As shown in Fig. 7.6, the functional subsystems of the

TRACE system are:

� Transceiver Subsystem

� Packet Preparation Subsystem

� State Machine Subsystem

� Debugger Subsystem

The TRACE program drives the SORA Radio Controller Board using the

TRACE Radio Controller Subsystem. The TRACE layer and the underlying PHY

layer are decoupled and only interface with each other through the TRACE Radio

Controller Subsystem that consists of two subsystems: the Transceiver Subsystem

and the Packet Preparation Subsystem. The Transceiver Subsystem controls the

PHY layer RX/TX operations, and the Packet Preparation Subsystem is respon-

sible for managing the packets on the SORA Radio Controller Board’s memory.
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In our TRACE system, we have chosen to use the 802.11b PHY layer imple-

mented through the UMXDot11 extension of the SORA SDR system as the main

PHY layer. Our TRACE implementation can easily be adopted for different PHY

layers by changing the instructions for packet preparation and reception modes in

the TRACE Radio Controller Subsystem.

The operation of the TRACE protocol depends on the its state, which changes

with time. The State Machine Subsystem is dedicated for polling the system time

and changing the state of the TRACE protocol on time.

While the TRACE system is running, the user is periodically notified about

the states of various variables. This task is performed by the TRACE Debugger

Subsystem. This subsystem queries the system timer and periodically displays the

system information on screen.

Each of the subsystems depicted in Fig. 7.6 runs on a separate exclusive

thread. The SORA thread manager allocates dedicated CPU cores to each of

these threads. Since ethreads are non-interruptible, the non critical subsystems,

namely the Packet Preparation Subsystem and the Debugger Subsystem, periodi-

cally return back to the system to be reassigned to a proper core by the SORA core

library for best core allocation. On the other hand, the Transceiver Subsystem

and the State Machine Subsystem depicted with shaded boxes in Fig. 7.6 operate

within an infinite loop since the performances of these subsystems are negatively

affected by the dynamic ethread scheduling overhead. The TRACE system needs

at least 2 dedicated and one shared CPU cores in addition to the computation re-

sources used by the Operating System (OS). Hence, the TRACE system requires

a minimum of quad-core system while a hexa-core system is recommended.
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Figure 7.7: The states of the TRACE Transceiver Subsystem.

7.4.1 Transceiver Subsystem

The TRACE system runs the Transceiver subsystem in an ethread that is cre-

ated by TRACE11TxApp at the beginning of the application. This ethread runs

the TRACE11BTRX function that implements the transceiver subsystem’s oper-

ations in an infinite while loop. Since the operation of the ethread is critical, this

subsystem does not return the resources dedicated to the ethread unless a flag

signaling the end of operation is set, namely ISShutDown.

Inside the loop, the Transceiver Subsystem constantly polls the TRACE Man-

ager variables, DoITransferinThisSlot and DoIListentoThisSlot, to determine the

type of operation. The positive value returned by the TRACE manager starts

the transmission or listening modes of operation at the PHY layer, as shown in

Fig. 7.7.
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Transmission Mode

A positive DoITransferinThisSlot value switches the Transceiver Subsystem into

transmission mode. In the transmission mode, Transceiver Subsystem starts a loop

that constantly polls for the TraceTimeInSlot value reported by the TRACE Man-

ager for the exact transmission time. For synchronization purposes, the physical

transmission of a packet is delayed by a guard band period, namely GBBeforeTX.

Once the time in slot condition is met, the type of the packet to be sent is

determined by querying the mode of operation from the TRACE manager. This

value is stored in order to prevent multiple transmissions of the same packet

within the same slot. In order to transmit the packet, the packet type to be

sent should have been prepared and transferred to the SORA radio controller

board in advance. The availability of the packet in the SORA Radio Controller

Board is checked by querying the corresponding packet state flag from the TRACE

Manager. If the packet on the radio controller board is outdated or does not exist,

Transceiver Subsystem skips the transmission of the current packet and goes out

of the transmission mode.

Provided that the packet to be sent is ready, the transmission is initiated

using the pointer of the corresponding packet on the SORA Radio Controller

Board. If the PHY transmission function returns a value indicating a successful

transmission, the TRACE Manager is notified about the type of the packet that

has just been transmitted. The required variables are updated in the TRACE

manager and packet state is marked as sent. In addition to that, the debug

monitor subsystem is also notified and the number of packets transmitted and the

number of bytes transmitted statistics are updated.

An optional debugging mode is also implemented by the transmission mode

of the Transceiver Subsystem. In this mode, Transceiver Subsystem saves the

values of the appropriate TRACE variables and the TRACE Time reading in the
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beginning and end of the transmission mode as well as the time reading at the

beginning and end of the physical transmission.

Listening Mode

A positive DoIListentoThisSlot value takes the Transceiver Subsystem into the

listening mode, and any change in DoIListentoThisSlot takes the Transceiver Sub-

system out of the listening mode. In the listening mode, Transceiver Subsystem

repeatedly calls the software power detection subsystem of the SORA UMXDot11

extension, namely BB11BSpd, in a loop. BB11BSpd not only returns a flag in-

dicating the presence of a packet but also calculates and stores the measured

channel power value in the BlockEnergySum variable of the pSpdContext object.

The measured channel power is reported to the TRACE manager. If the TRACE

Manager is in the Beacon, CA, or IS state, it compares the reported value with the

InFrameIntfLevels corresponding to the slot and updates it if the measured value

is higher. Later, InFrameIntfLevels are used by the State Machine Subsystem to

update InterFrameIntfLevels following an exponential smoothing algorithm. Any

change in DoIListentoThisSlot takes the Transceiver Subsystem out of the listen-

ing mode. Once the presence of the packet is detected, Transceiver Subsystem

switches to the packet reception mode by calling the BB11BRx subsystem of the

SORA UMXDot11 extension. BB11BRx returns a variable indicating the success

or failure of packet reception. The time reading is recorded right after BB11BRx

and used for synchronization purposes. In the case of a failure, the Transceiver

Subsystem switches back to listening mode.

If the packet is successfully received, the first thing that Transceiver Subsystem

does is to determine whether the received packet belongs to the TRACE network

or not. Since we are operating on a commercial and commonly used PHY layer,

there is a good chance that the received packet could belong to some other system

transmitting with the same PHY parameters. These packets are eliminated from
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the system using a TRACE specific encryption header. Each over the air packet

includes a one byte long encryption header. Each received packet’s first byte is

compared to the predefined encryption header value, and the packet is discarded

in the case of a mismatch. Next, the packet is converted into the TRACEAllI-

nOnePacketType using the next 3 bit packet type field that is common to all over

the air TRACE packet types. In the case of an unknown packet field type or

any mismatch in the packet length with the length of the corresponding packet

type, the packet is marked as an out of the system packet and is discarded. After

a successful conversion, the recorded time stamps and packet power reading are

added to the packet, and the converted packet of TRACEAllInOnePacketType is

sent to the TRACE Manager.

Similar to the transmission mode, an optional debugging mode is also im-

plemented by the reception mode of the Transceiver Subsystem. In this mode,

Transceiver Subsystem saves the values of the appropriate TRACE variables and

the TRACE Time reading at the beginning and end of successful packet receptions

into a receiver debugging file.

7.4.2 Packet Preparation Subsystem

Another PHY layer dependent subsystem is the Packet Preparation Subsystem

that is responsible for the preparation of packets. For synchronization purposes,

the TRACE system must tightly control the time of the physical transmission

of the packets. In order to accomplish this, packets have to be prepared and

transferred to the SORA Radio controller board in advance. The Packet Prepara-

tion Subsystem performs this operation through the DoTRACE11BPreparePacket

function running on a separate ethread.

In the initialization phase, the TRACE system allocates dedicated memory on

the Radio Controller Board (RCB) large enough to store one TRACE packet of
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each type: Beacon, CA, Contention, Header, IS and Data Packets.

Complex samples of packets are stored on the RCB’s memory. At any time, the

Packet Preparation Subsystem allows storing one packet of each TRACE packet

type; namely beacon, CA, contention, header, IS, or DATA. A pointer variable

is maintained to store the locations of the packets within the RCB’s memory.

When a packet is transferred to the RCB’s memory, the corresponding pointer is

updated to point to the packet.

The responsibility of the Packet Preparation Subsystem is to create these pack-

ets, transfer them to the RCB before their transmission and update them as nec-

essary. For each packet type, a state variable in the TRACE Manager keeps the

status of the packets in the RCB’s memory. The state of the packet indicates: i)

the existence of the packet in the RCB; and ii) whether it needs to be updated.

The state of the packets on the RCB is stored in the TRACE Manager. The

Packet Preparation Subsystem checks these states one by one to find a packet

type that needs to be prepared. In order to be reassigned to a proper core,

DoTRACE11BPreparePacket returns a positive value after cycling through all

packet types.

Once the Packet Preparation Subsystem finds a packet type that needs to be

prepared, the previous instance of the same packet type is removed from the

RCB memory if it already exists. Then, the packet is retrieved from the TRACE

Manager, converted into complex samples to be transmitted and transferred into

the RCB. If the transfer is successful, the Packet Preparation Subsystem updates

the corresponding packet state variable of the TRACE Manager.

For easier access to packet contents and decoupled PHY layer operation, the

TRACE Manager accepts and outputs packets in TRACEAllInOnePacketType.

The packet is converted into an over the air packet type for the most compact

representation of the data, as discussed in Section 7.3.2. A one byte encryption

header is added to the packet before it is embedded into an 802.11b PHY layer
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Figure 7.8: The OSI model representation of the layers under TRACE.

PSDU together with a 4 byte CRC for error detection.

Complex samples are prepared using the BB11BPMDPacketGenSignal func-

tion of the UMXDot11 library. The operations of the 802.11 PHY layer are divided

into Physical Layer Convergence Procedure (PLCP) layer and Physical Medium

Dependent (PMD) layer as seen in Fig. 7.8. Within the transmission chain,

BB11BPMDPacketGenSignal performs the operations of the PLCP sublayer and

the PMD sublayer other than the actual data transmission. Based on the chosen

PHY layer parameters such as the data rate, preamble type, BB11BPMDPacketGenSignal

adds a PLCP Preamble and a PLCP Header to the PSDU forming the PLCP Layer

Packet. BB11BPMDPacketGenSignal also calls the corresponding functions from

the SORA library for scrambling, modulation, and spreading blocks of the 802.11

PMD sublayer transmission chain.

The complex samples then are transferred to the RCB, and the corresponding

pointer is set at its location on the RCB’s memory using the SoraURadioTransfer
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Figure 7.9: TRACE frame and slots.

function of the SORA UMXDot11 library. The Packet Preparation Subsystem

locks the buffer at the RCB’s memory before the transfer in order to prevent any

memory access clashes and releases the lock as soon as the transfer is completed.

Finally, the corresponding packet state variable is updated if the transfer is

successful.

7.4.3 State Machine Subsystem

Being a TDMA based protocol, in TRACE, time is divided into equal length

Frames. As depicted in Fig. 7.9, each frame consists of a number of slots and

a number of frames are grouped together forming a superframe (SF). There are

different tasks that are required to be performed by the TRACE system in each

slot. The responsibility of the State Machine Subsystem is to update the TRACE

Clock based on the system counter, determine the slot that the system is in and

update necessary variables that form the TRACE Manager’s state.

The operation of the TRACE protocol depends on its state, which changes

with time. The State Machine Subsystem is dedicated for polling the system time

and changing the state of the TRACE protocol on time.



167

It is critical for the TRACE system to detect the beginning of slots and react

in a timely manner. This makes the operation of the State Machine Subsystem

an essential task for the operation of the TRACE system. Our implementation

dedicates a CPU core for the operations of the State Machine Subsystem through

an ethread that starts at the beginning of operation and does not return the

resources until the system is shut down.

After initialization, TRACE11TxApp creates a thread with a handle of hThread-

TraceManager and running the DoTRACEManager function. DoTRACEMan-

ager implements the operations of the State Machine Subsystem.

DoTRACEManager updates the TRACE Manager by calling its UpdateTrace-

Time method in a while loop. DoTRACEManager also implements an optional

debugging routine that records a debug line if the time difference between two

consecutive updates is larger than a certain threshold.

The operation of the UpdateTraceTime function begins with updating the

TRACE time based on the system counters. The frame number is updated along

with the TimeinFrame variable that indicates the time since the beginning of the

frame. The mode of operation and time in slot is calculated based on TimeinFrame

and updated in the TRACE Manager. In the case of a change in the mode of

operation, depending on the previous state and the upcoming state, additional

operations are performed. These additional operations are:

Beginning of a New Frame The TRACE Manager prepares the internal vari-

ables for the upcoming frame through the setSST function. The main op-

erations of setSST are: updating the transmission schedule and the CH

table; updating perceived interference levels of the IS slots of the previous

frame; resetting the schedule control table, interference recording registers

and data slot source list; updating SF number and the cyclic frame num-

ber; selecting the frames of operation (FOO) based on updated interference
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measurements and scheduling CA for CHs; for non-CH nodes checking for

restart-up conditions in the case of no access to CHs.

End of CA Slot The perceived channel power variables are updated based on

the channel power measurements during the Beacon Slot and the CA Slot.

This update enables the CHs to immediately stop the header transmission

in the case of large interference.

End of Beacon Slot The packet states of contention and header packets are

updated. These packets are marked as obsolete if they exist in the RCB

memory in order to trigger their update by the Packet Preparation Subsys-

tem. The Packet Preparation Subsystem is also triggered to update the IS

packet, if the node has new data to be sent.

End of the last IS slot In order to reflect the up-to-date information of the

current frame in the Beacon and CA packets, these packets are marked as

obsolete, triggering their update by the Packet Preparation Subsystem.

End of the last data slot If the node has new data to be sent, the data packet

status is updated to trigger the update of the data packet by the Packet

Preparation Subsystem.

Finally, based on the calculated slot of operation and time in slot, the intended

operation of the PHY layer is determined and Transceiver Subsystem is triggered

by setting the appropriate flags.

7.4.4 Debugging Subsystem

Although each subsystem implements recording of optional debugging messages

at critical points, during the course of normal operation, the state of the TRACE

Manager is hidden from the user. In order to monitor the operation of the TRACE
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Manager, a separate thread is devoted to periodically notify the user about the

status of the operation.

Debugging Subsystem is implemented in the DoTRACEQuery function and

is executed in a SORA thread with the hThreadTraceQuery handle. There are

2 types of queries performed by the DoTRACEQuery function, namely TRACE

Manager Query and PHY Layer Query.

TRACE Manager Query is responsible for periodically reporting the state of

the TRACE Manager. A reporting period of 1s is chosen. This query stores the

last reporting time and compares it with the TRACE Manager’s time. If the dif-

ference between the TRACE Manager’s time and the last reporting time is larger

than the reporting period, a new report is generated by calling the PrintTRACES-

tate function. The report includes variables that indicate:

� TRACE Manager’s mode of operation,

� the states of the packets within the RCB’s memory,

� the number of tx/rx packet counters of the TRACE Manager,

� the IDs of the last received data packets from each source,

� whether the TRACE Manager is in source mode,

� whether the node is a CH and its chosen frame(s) of operation,

� transmission schedule of the superframe as observed by the node,

� interference level measurements,

� the CH Table that stores the existing CHs as observed by the node, and

� the list of entries in the Stream Controller that stores the states of the

ongoing streams as observed by the node.
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The PHY layer query is responsible for periodically reporting variables related

to the operation of the PHY layer. These variables are updated by the Transceiver

Subsystem. The printed variables indicate:

� the number of times the power detection algorithm detects the presence of

a packet

� the number of successful PHY layer receptions and the reception rate, and

� the number of PHY layer packets sent, and the tx rate.

The operation of the Debugging Subsystem has a lower priority compared to

the operation of the Transceiver Subsystem and the State Machine Subsystem.

Hence, after calling each of TRACE Manager Query and PHY layer query, it

returns the resources back to the SORA thread manager with a positive return

value. The SORA thread manager recalculates the optimal core assignment and

reassigns the Debugging Subsystem to a proper core.

7.5 Synchronization

Since TRACE is a TDMA based system, the nodes in the system must be synchro-

nized. In the original TRACE protocol, the synchronization was not considered,

as synchronization was assumed to be provided by external mechanisms such as

GPS. In our TRACE prototype implementation, we added an algorithm to the

TRACE protocol that provides synchronization using message exchanges between

the nodes in the network.

The TRACE Manager is responsible for the MAC layer operations and tightly

controls the radio resources. The TRACE Manager sets the radio in listening,

transmission and sleep states based on the state of operation, which in turn is

based on the TRACE Timer module.
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In TRACE, the nodes should be synchronized up to one frame duration. In

other words, although absolute frame number or the cyclic prefix of the frame

in a superframe may differ between nodes, the start time of each slot should

be synchronized. To achieve this level of synchronization, we have created a

synchronization subsystem based on packet receptions.

The latency of a packet is caused by:

� Sender Side Delay: This delay includes the creation of the PHY layer packet,

the creation of the complex samples, transferring the samples to the radio

controller, and the time to transmit the packet.

� Propagation Delay: This delay includes the travel time of the electromag-

netic waves over the air.

� Reception Delay: This delay is associated with the processing time of the

packet at the receiver side. It includes the time between the reception of

the complex samples at the RCB and the reception of the packet by the

UMXDot11 API.

At the sender side, the information coming from upper layers are embedded

into a PHY layer packet that includes a PHY layer header. Up to that point, the

information in the packet is stored as bits. Then complex samples are created

following the chosen modulation scheme. In SORA systems, these operations

take place on the GPP processor, and the samples are stored in the PC’s memory,

which drives the SORA card. This data is transferred to the onboard memory

on the SORA card before over the air transmission. Although the transfer takes

place on the relatively fast PCI x8 bus, due to the transfer initiation latency,

the transfer operation takes a considerable amount of time, as shown Table 7.1.

Moreover, the measured latency values to transfer the packet to the RCB at the

sender side are found to have a high variance. These variations alter the physical
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transmission time of the packet and disrupt the synchronization at the receiver

side.

In order to overcome this, we created a packet preparation subsystem that

runs on a separate thread and is responsible for preparing the packets in advance.

The packet preparation subsystem creates over the air packets, prepares complex

samples representing the packets, transfers them to the SORA RCB and stores a

pointer for each packet type on the RCB’s memory. The packets stay on the mem-

ory of the RCB until they are transmitted by the RadioTransiever thread. The

RadioTransiever subsystem is controlled by the TRACE Manager and initiates

the transmissions at the corresponding slot based on the TRACE timer.

For debugging purposes, the transceiver thread records the value of the TRACE

timer right before the transmission API is initiated and right after the transmission

API returns. For various packet sizes, the averages and the standard deviations

of transmission time calculated over 10,000 sample transmissions together with

the theoretical time to transmit are listed in Table 7.3. It has been observed that

the duration of the transmission measured by the difference in time recordings

follow the theoretical time to transmit the packet. This verifies two facts: i) the

transmission function is an inline function that returns after the operation is com-

plete, and ii) the time to initiate the transmission for samples stored in the RCB’s

memory is independent of the packet size.

Propagation delay is related to the physical traveling of the communication

carrier over the communication medium. For certain environments this delay is

quite large and plays a significant role. For instance, in acoustic communication,

propagation delay constitutes a significant portion of the packet delay due to the

slow propagating properties of acoustic waves compared to electromagnetic waves.

Another example is satellite communication in which the electromagnetic waves

take a long time to reach the destination due to the large distance between the



173

Table 7.3: Comparison of the theoretical and observed time to transmit packets

of various sizes.

Packet Theoretical Measured (Mean - Theoretical)

Size (bytes) (µs) Mean (µs) Std (µs) (µs)

150 298.534 310.380 1.650 11.845

100 263.023 275.507 1.708 12.485

50 227.511 237.824 1.760 10.313

20 206.205 217.367 1.647 11.163

10 199.102 208.812 1.700 9.709

transmitter and the receiver. On the other hand, practical MANET applications

operate over relatively shorter ranges varying from 250m to 2km. In the 802.11

systems, the typical operational range of the 802.11b packets, drange, is 250m for

line of sight transmissions. Considering the propagation speed of electromagnetic

waves in air, SProp, the maximum propagation time, DPropmax, is calculated by

DPropmax =
drange
SProp

= 0.83µs. (7.1)

Since the DPropmax is small, the dependence of the propagation delay on the

receiver’s location is negligible.

A sample 802.11 frame is shown in Fig. 7.10. At the receiver side, the presence

of the packet is detected using the preamble. However, the moment at which the

packet is detected cannot be used for synchronization purposes since the receiver

does not necessarily have to start at the beginning of the preamble for a successful

packet reception. The purpose of the preamble is to lock the phase of the internal

oscillator at the receiver side to the phase of the transmitter. After that, the re-

ceiver waits for the start of the frame delimiter (SFD), which marks the beginning

of the PHY header of the 802.11 packet. This is another useful point that can be

used for synchronization purposes. However, the internal clock is neither recorded
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Figure 7.10: 802.11b PHY frame format used in the TRACE system.

nor reported by the 802.11 PHY block and hence cannot be used by the TRACE

layer.

Our aim is to have a generic implementation of the TRACE layer, which would

allow interoperability with other PHY layers. TRACE, being an upper layer, only

is notified at the end of the packet reception. There is no packet buffer between the

PHY layer and the TRACE layer. The TRACE layer is notified of the reception

of the packet as soon as it is demodulated. The small delay between the physical

reception of the last constellation and the notification of the TRACE layer consists

of the demodulation, despreading and the data transfer delay. The time for these

operations depends on the packet size. Since the size of a given TRACE packet is

constant, the delay between physical reception of the packet and the notification

of the TRACE layer is also approximately constant.

The reception time of the packet at the receiver depends on the transmission

time on the transmitter side, T̃tx, the difference between the receiver and the

transmitter clocks, C̃rx−tx, the propagation delay, ˜Dprop, and the reception delay,

D̃rx, as in Eq. (7.2).

T̃rx = T̃tx + C̃rx−tx + D̃prop + D̃rx. (7.2)
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T̃tx can further divided into an intended start time, Tintent, delay on the start

of transmission, D̃tx, and transmission duration, TTxT ime.

T̃tx = Tintent + TTxT ime + D̃tx (7.3)

Tintent and TTxT ime are known at the receiver, and the rest of the delays can

be modeled with a random variable D̃ which can be divided into its mean µD and

another random variable Z̃ = D̃ - µD as in Eq. (7.4).

T̃rx = Tintent + TTxT ime + D̃. (7.4)

7.5.1 Packet Based Synchronization

In order to explore the variance of D̃, we perform an experiment with two asyn-

chronous systems. We set one system to periodically send fixed length packets

with increasing sequence numbers. The intended period in between two trans-

missions is set to SFT = 25 ms. We set the other system to always be in listen

mode. Both the transmitter and the receiver systems keep a log of packet trans-

missions/receptions. Each log entry records the time stamps marking the end of

transmission/reception, packet type, packet source ID, and packet sequence num-

ber. We analyzed the time difference between consecutive packets within each

log containing 10,000 entries. Note that the consecutive packets are detected via

packet sequence numbers.

We first investigate the time difference between consecutive packets at the

transmitter side. We expect a packet to be sent at regular intervals equal to the

super frame duration, SFT. Hence, using Eq. (7.3),

∆T̃tx = Ttx2 − Ttx1 (7.5a)

∆T̃tx = (Tintent2 − Tintent1) + (TTxT ime2 − TTxT ime1) + (D̃tx2 − D̃tx1) (7.5b)

∆T̃tx = SFT + X̃ (7.5c)
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Figure 7.11: Histogram of inter packet transmission duration recorded at the

transmitter.

where X̃ is a random variable with V ar(X̃) = 2 ∗ V ar(D̃tx) assuming the delays

on two consecutive transmissions are independent. From the data analysis, we

find that the mean, µX < 10−3µs and the standard deviation, σX = 5.873 µs. A

histogram of the data ∆Ttx − SFT is shown in Fig. 7.11. The data is centered

around µX = 0 and 97% of the data lies within 2.5 µs of the mean.

Next, we investigate the time difference between consecutive packets at the

receiver side. We expect packets to be received at regular intervals equal to the

super frame duration, SFT. Hence, using Eq. (7.4),

∆Trx = Trx2 − Trx1 (7.6a)

∆Trx = ∆Ttx + ∆Crx−tx + ∆Dprop + ∆Drx (7.6b)

The experiments are conducted in a closed office environment, and the nodes
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Figure 7.12: Histogram of ∆Trx − SFT recorded at the receiver for a transmitter

transmitting periodic packets with a period of SFT.

were stationary, so we expect ∆Dprop to be zero. Hence,

∆Trx = ∆Ttx + ∆Crx−tx + ∆Drx (7.7a)

∆Trx = SFT + X̃ + Ỹ + Z̃ (7.7b)

∆Trx = SFT + ∆D = SFT + θ̃ (7.7c)

where Ỹ and Z̃ represent random variables associated with the clock drift in

one SFT and the difference in the reception delay of two consecutive receptions,

respectively. θ̃ is associated with the combined effect of X̃, Ỹ , and Z̃. From the

measured data, we find that the mean, µθ = 0.225 µs and the standard deviation,

σθ = 5.594 µs. A histogram of the data ∆Trx − SFT is shown in Fig. 7.12. The

data is centered around µX = 0 and 95% of the data lies within 3 µs of the mean.

The main cause of Drx is the load on the receiver system. We can assume the

time difference between two receptions (' SFT ) is large, making the samples of

Drx independent, and, in turn, the mean value of Z̃, µZ = 0. Since µX is small,
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the mean value of the clock drift in a SFT, µθ , is calculated as

µθ = µX + µY + µZ (7.8a)

µθ ' µY (7.8b)

Assuming the delays on two consecutive receptions are independent, V ar(θ̃) =

2 ∗ V ar(D̃) or σD = σθ/2 = 2.739µs.

These observations show the possibility of creating a synchronization subsys-

tem at the TRACE layer that is independent of the underlying PHY layer. The

internal clock reading is recorded immediately at the end of reception by the

TRACE Convergence Sublayer. This value is stored along with the packet and

later used in the synchronizer subsystem in the TRACE Manager. The TRACE

Convergence Sublayer then determines the packet type and converts the over the

air received packets to TRACE layer packets. For each received packet, the next

operation is to determine the packet type and to convert the received over the air

packet to TRACEAllInOnePacketType. TRACEAllInOnePacketType is embed-

ded into TRACEMACPacketType together with a timestamp of recorded time

and packet energy. At the input point of the TRACE layer, packets of chosen

types are sent to the synchronization subsystem.

7.5.2 Single-Hop Synchronization

In this section, we study synchronization in the TRACE Systems focusing on

a single-hop network where the nodes in the network are close to one another

such that each node can directly communicate with any other node. In order to

address the synchronization problem, we present a new algorithm, namely Single

Side Synchronization Algorithm. First we are going to present the algorithm and

then test its performance in a two-terminal system in a single hop arrangement.

In a single hop connected network, every node can directly receive packets

transmitted by every other node unless there is a collision. For such networks,
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TRACE creates a single cluster that is managed by a single dynamically selected

clusterhead (CH). In the beginning of each frame, the CH transmits a beacon

packet signaling the start of a new frame. We use the Beacon packet as the

primary source of synchronization. The nodes in the network synchronize their

internal clocks to the Beacon packet and hence synchronize to the CH.

The initial synchronization is handled by the StartUpRoutine. The nodes start

their operation in this mode in which they listen to the channel for a random dura-

tion longer than the duration of a superframe before transmitting a beacon packet

and assuming the role of the CH. This mechanism provides proper operation for

nodes starting at different time instances and reduces the collision probability of

the first beacon packets. The collision of the first beacon packets creates a po-

tential synchronization problem for the transmitters of the collided packets that

assume a CH role and further assume that all the other nodes would be synchro-

nized to themselves. However, since their packets are not received by other nodes

in the network, another CH will be selected and all the other nodes would be

following its schedule. Potentially, the beacon packet of the selected CH will not

align with the listening periods of the transmitters of the collided packets and

they will not be synchronized with the rest of the network. In order to solve this

problem, the CHs alter their sleeping schedule and instead listen to the channel

for the duration of an entire superframe with a probability, pl. This mechanism

ensures the reception of the beacon of the selected CH by the out of synch CHs

and that, in turn, triggers the resignation mechanism.

For received Beacon packets, TRACE sends the reception time in TRACEAllI-

nOnePacketType to the synchronization subsystem. The synchronization subsys-

tem calculates the transmission duration of a packet using the packet type along

with the selected PHY layer parameters such as the Data transmission rate of the

PSDU and the size of the physical header, HPHY , as in Eq. (7.9).
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TTxT ime(PacketType) = HPHY +
Packet Size(Packet Type)

Data Rate
(7.9)

Then the start time of the TRACE frame based on the packet, FSTP , is

calculated using the recorded reception time, Trx, the guard band before sending

packets, GBTX , and the mean processing delay, Tproc using Eq. (7.10). Tproc is

used to compensate for the mean value of the packet delay, D̃.

FSTP = Trx − TTxT ime(PacketType)−GBTX − Tproc (7.10)

Finally, the FSTP is compared with the frame start time calculated based on

the internal clock, FST . The internal clock is advanced by increasing the offset

value of the TRACE timer by Ta, which is calculated as in Eq. (7.11).

Ta = FST − FSTP (7.11)

Under ideal conditions, the subsequent calculations of Ta are expected to be

zero once the node is synchronized to a CH. However, due to clock drifts and

the delays at the transmitter and the receiver side, Ta is modeled as a random

variable with mean µΦ = 0 as shown in Eq. (7.12).

Ta = Φ̃ (7.12)

In order to verify this algorithm, we ran experiments using a single hop con-

nected network of 2 nodes. A debugging option that prints out the adjustment

amount and the time of adjustment in a debugging file, TRACETimerDebug-

ger.txt, is implemented in TRACETimer and enabled. We analyze a record of

10,000 adjustments on the member node.

Although the data is mostly centered around µΦ = 0, there are a small num-

ber of outlier points with large deviation from the mean. These outlier points
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Figure 7.13: Histogram of timer adjustments data for a node pair running the

single side synchronization algorithm.

correspond to the time instances in which the receiver system cannot get the

required CPU resources due to operating system restrictions. The experiment

systems have an IFS allowance of 100µs evenly distributed before and after the

slot times. Hence the packets with |Ta| > 100µs leak on an adjacent slot, mak-

ing their receptions dependent on the state of the TRACE Protocol. Hence, the

outliers are defined as the values |Ta| > 100µs. We eliminate the outlier sam-

ples with Tai > 100 µs that constitute a negligible 0.08% of the data set. The

resulting histogram of the time adjustments with the eliminated data is available

in Fig. 7.13.

The data in Fig. 7.13 has a sample mean of −0.021µs = µΦ ' 0µs and 97% of

the data lies within 7.5 µs of µΦ. Estimating standard deviation of Φ̃, σΦ, with the

sample standard deviation leads to σΦ = 4.730µs. This result is in line with our

previous results of Section 7.5.1. The slight increase in the standard deviation,

σΦ > σD/2 = 2.739µs, is due to the additional processing stages of the TRACE

system that take a random amount of time to be executed and the frame selection

algorithm of the CH of the TRACE system.
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A high majority (99%) of the observations lie in a tight interval around the

median, CovΦ, calculated as in Eq. (7.13).

CovΦ = [0.05% percentile of Φ̃, 99.5% percentile of Φ̃] = [−26.155µs, 19.664µs]

(7.13)

This verifies that the synchronization algorithm works up to a constant value,

Tproc. The proper value of Tproc is optimized in Section 7.5.3.

7.5.3 Multi Hop Synchronization

For a multi-hop network, the TRACE algorithm creates clusters such that the

CHs form a dominating set. The nodes that are out of the reach of a CH form a

new cluster through the CH arbitration phase of the TRACE algorithm. However,

the selected CHs are out of direct communication range of one another, and the

beacon packet of a CH can only be received by its immediate neighbors and cannot

reach all the nodes in the network. As a result, the Single Side Synchronization

Algorithm presented in Section 7.5.2 is ineffective in a multi-hop setting.

In order to address this problem, in this section, we present a new algorithm,

namely Dual Side Synchronization Algorithm, which is an extension of the Single

Side Synchronization Algorithm. First we will present the algorithm and test

its performance in a two-terminal system in a single hop arrangement and then

present the experimental results with a network consisting of multiple terminals

in a single cluster followed by multiple terminals with multiple clusters.

Since the Beacon packet cannot reach other CHs, the packets transmitted

by member nodes should be used for synchronization purposes. The contention

packets are selected as dual purpose multi-hop synchronization messages. The

utilization of the contention slots is independent of the network load and is very

low, as observed in Chapter 3. Hence extra transmissions in the contention slots
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will not alter the proper operation of the system and will have minimum impact

on the system performance.

At the end of the Beacon slot, nodes pick a random contention slot and de-

termine whether to send a contention packet based on the CH table and the ex-

istence of data packets. The decision to send a contention packet is stored in the

boolean variable DoINeedToSendContention, and the chosen random contention

slot is stored in the integer variable MyContentionSlotNumber. We have added

a new decision for nodes that decide not to send a contention in the current

frame. With a probability of pdc, these nodes set a boolean variable DoINeed-

ToSendDummyContention and send a dummy contention packet in the chosen

MyContentionSlotNumber.

In order to prevent dummy contentions making CHs reserve a data packet and

to facilitate the synchronization algorithm, DoINeedToSendDummyContention

and MyContentionSlotNumber are embedded into the over the air contention

packet. In order to have the correct variables in the contention packet saved

on the SORA radio controller board’s memory, the packet preparation subsystem

is triggered to update the packets by resetting the packet status flags.

Both dummy and regular contention receptions go through the synchroniza-

tion subsystem. The synchronization subsystem calculates the time to transmit

the packet using the packet type along with the selected PHY layer parameters

using Eq. (7.9). Using the recorded reception time of the contention packet and

MyContentionSlotNumber value in the packet, the frame start time based on the

packet, FSTP , is calculated as in Eq. (7.14).

FSTP =Trx − TTxT ime(PacketType)−GBTX − Tproc

− (MyContentionSlotNumber− 1) ∗ ContentionSlotLength

−BeaconSlotLength− CASlotLength (7.14)
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Finally, similar to the Single Side Synchronization Algorithm, the FSTP is

compared with the frame start time calculated based on the internal clock, FST .

The internal clock is advanced by increasing the offset value of the TRACE timer

by Ta, which is calculated as in Eq. (7.11).

Terminal Pair in Single Hop

In a system with a single transmitter, the selection of Tproc is independent of the

timer adjustments. On the other hand, in a system with multiple transmitters,

Tproc must be optimized. In order to set the optimum value of Tproc, we per-

form an experiment with 2 TRACE systems following the dual synchronization

algorithm. The debugging option of the TRACETimer that prints out the adjust-

ment amount and the time of adjustment in a debugging file, TRACETimerDe-

bugger.txt, is enabled. In order to test the dual mode of synchronization, we set

pdc = 1 to ensure the node sends SYNC packets for each Beacon reception. We

collect 1000 samples of time adjustments, Ta, for each Tproc value and observe the

sample mean of absolute value of adjustments, µ|Ta|, as Tproc is varied in the set

{−20µs, 0µs, 20µs, 30µs, 35µs, 40µs, 45µs}. The smallest µ|Ta| is observed with

Tproc = 40µs. Thus, we set Tproc = 40µs and repeat the experiment, collecting

10,000 sample points of Ta on each device (i.e., the CH and the regular node) for

the rest of the analysis.

The experiment systems have an IFS allowance of 100µs evenly distributed

before and after the slot times. Hence, the packets with |Ta| > 100µs leak on

an adjacent slot, making their receptions dependent on the state of the TRACE

Protocol. Hence, the outliers are defined as the values |Ta| > 100µs and consti-

tute a negligible 0.10% and 0.20% of the sample set for the node and the CH,

respectively. The histogram of the collected Ta samples after the elimination of

the outliers is depicted in Fig. 7.15.
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Figure 7.14: The layout of the nodes for the experiment with a pair of nodes in

single cluster formation. The node that takes the CH role is represented with a

filled diamond, and the member node is represented with a filled square.

Although the sample sets at both the CH and the member node have similar

variations, they are slightly biased with sample means at µTan = −0.594 and

µTaCH = −0.635 for the member node and the CH, respectively. This bias is due

to a slight mismatch of the Tproc value from its optimum. The sample standard

deviations are also very similar, σTan = 9.668µs , σTaCH = 11.255µs, for the

member node and the CH, respectively.

The standard deviation of Ta for the dual synchronization algorithm is larger

than the single synchronization algorithm. This is due to:

� the increased complexity of the reception and the transmission;

� the variability of the relative clock drifts on the SYNC packets due to the

random slot selection; and

� the synchronization loop that increases the variance, making the consecutive

samples dependent.

Still, a high majority (99%) of the observations lie in a tight interval around

the median, Cov, calculated as in Eq. (7.15).

CovTa = [0.05% percentile of Ta, 99.5% percentile of Ta] (7.15)



186

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Bins (µs)

%
O

b
s
e

rv
a

ti
o

n
s

(a)

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Bins (µs)

%
O

b
s
e

rv
a

ti
o

n
s

(b)

Figure 7.15: Histogram of timer adjustments data for the dual side synchroniza-

tion algorithm in an experiment with a node pair in a single hop network (a) for

the CH and (b) for the member node.
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The calculated intervals for the member node and the CH are CovTan =

[−8.123µs , 48.443µs], and CovTaCH = [−57.821µs, 55µs]. The rest of the packets

could be considered as lost packets along with other packet losses due to chan-

nel noise and cross system interference. Thus, the synchronization system with a

properly set IFS value works with reasonable accuracy.

Multiple Terminals with a Single Cluster

In this section, the performance of the dual synchronization algorithm is studied

with multiple nodes. In a multi node environment, the nodes are synchronized to

the CH, and with a probability ps = 0.5, they send a SYNC packet in a randomly

selected contention slot. The CH is synchronized to each sync packet. In the next

superframe, the CH sends a new Beacon that in turn is used to synchronize the

member nodes.

The experiment setup is depicted in Fig. 7.16. The member nodes on the left

and on the right are depicted with filled squares, and the node that takes the

CH role is depicted with a filled diamond. The nodes’ transmission and reception

gains are adjusted so that the CH is able to receive the packets transmitted by

the nodes and vice versa. However, the member nodes cannot receive the packets

that are transmitted by each other. All the nodes follow the dual synchronization

algorithm.

The synchronization algorithm records the amount it is adjusting its internal

clock, Ta with time stamps. We take 10,000 sample points for each node. The

histogram of Ta samples for the CH (N2) and node 3 (N3) are depicted in Fig. 7.17.

Note that, since node 1 (N1) and node 3 (N3) have similar conditions, we only

collect statistics on N3. The majority of the samples are centered around the

origin, and the sample means and standard deviations are: µTaCH = −1.636µs

and σTaCH = 12.793µs for the CH; and µTanode = −1.809µs and σTanode = 9.792µs
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Figure 7.16: The layout of the nodes for the experiment with multiple nodes in

single cluster formation. The node that takes the CH role is represented with a

filled diamond, and the member nodes are represented with filled squares.

for the member nodes.

These values are similar to each other and the previous results for the experi-

ment with a node pair. Hence, the dual synchronization algorithm works equally

well for both the CH and the nodes. Moreover, the number of nodes in a cluster

does not decrease the accuracy of the dual synchronization algorithm.

A high majority (99%) of the observations lie in a tight interval around the

median CovTa = [−45.221µs, 50.223µs] and Covnode = [−16.511µs, 36.332µs] for

the CH and the member nodes. Following a conservative approach, we keep the

interframe spacing of 100µs.

Multiple Terminals with Multiple Clusters

In this section, the performance of the dual synchronization algorithm is studied in

a multi cluster setting. In a multi cluster setting, the member nodes are listening to

the Beacon and the contention slots of all the frames in the superframe. The CHs

listen to the Beacon slots of the frames other than their chosen frames of operation

and listen to all the contention slots of all the frames. Any received Beacon and

SYNC packet provides synchronization for all the nodes regardless of their role
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Figure 7.17: Histogram of timer adjustments data for the dual side synchroniza-

tion algorithm in the experiment with a multiple nodes in a single cluster (a) for

the CH (b) for the member node.
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Figure 7.18: The layout of the nodes for the experiment with multiple nodes

in multi-cluster formation. The CHs are represented by the diamonds and the

member nodes are represented by the squares. The circles around the nodes

represent the reception ranges.

in the network. However, since CHs cannot be in the range of one another, they

only use SYNC packets for synchronization that distribute the synchronization

information from one cluster to another.

The experiment setup is depicted in Fig. 7.18. The member nodes are depicted

with filled squares and the CHs are depicted with filled diamonds. The nodes’

transmission and reception gains are adjusted so that each node is able to receive

only the packets transmitted by the adjacent nodes. We investigate the perfor-

mance of the dual synchronization algorithm on the node that is in between the

two clusters (N2) and the CH with 2 member nodes (N3).

The synchronization algorithm records the adjustments, Ta, with time stamps.

We take 10,000 sample points for each node. The histograms of Ta samples

for the member node (N2), and the CH (N3) are depicted in Fig. 7.19. The

majority of the samples are centered around the origin, and the sample means
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and standard deviations are: µTaCH = 0.0094µs and σTaCH = 14.831µs for the

CH; and µTanode = −0.495µs and σTanode = 15.844µs for the member node. These

values are similar to each other and the previous results for the single cluster

experiments. Hence, we conclude that the dual synchronization algorithm works

equally well: (1) for both the CHs and the member nodes; and (2) for both a

single cluster and a multi cluster network.

In order to account for the imperfect synchronization and to provide allowance

for the radio to switch between transmission and reception modes, we utilize an

interframe spacing (IFS) of 100µs. This IFS value is added to the length of each

slot. This IFS value is divided between the beginning and the end of the slot by

scheduling the actual transmission of the packets GBBeforeTX = 50µs. A high

majority (99%) of the Ta observations lie in a tight interval around the median

CovTa = [−49.366µs, 42.980µs] and Covnode = [−51.327µs, 46.564µs] for the CH

and the member node, respectively. Considering CovTa and Covnode, we reduced

the IFS value to 60µs and observed a stable operation of the system. The resulting

slot lengths are listed in table Table 7.4. The experiments performed in the rest

of this chapter use the dual synchronization algorithm and the slot lengths listed

in Table 7.4.

7.6 System Performance

The TRACE system has algorithms to minimize the interference from other

TRACE nodes that are based on channel power measurements. These algorithms

are designed assuming operation on a special frequency band that belongs only to

the TRACE system. This dedicated band provides relatively stable channel con-

ditions in which the channel noise is time-independent or has a large coherence

time.
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Figure 7.19: Histogram of timer adjustments data for the dual side synchroniza-

tion algorithm in the experiment with a multi cluster network (a) for the CH, and

(b) for the member node.
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Table 7.4: TRACE packet sizes and corresponding slot lengths.

Type
Packet Size Slot Length

(Bytes) (µs)

Beacon 4 202.545

CA 4 202.545

Contention 4 202.545

Header 10 206.909

IS 17 212.000

Data 111 280.364

Frame 3504.364

SuperFrame 21026.182

In addition to this, TRACE is designed to operate on a closed system in which

all the nodes in the network cooperate. The operation of the system depends on:

� CH selection and maintenance through Beacon and CA packets,

� contention for channel resources through contention packets,

� transmission schedule determination through Header packets, and

� channel reservation through IS packets.

All of these algorithms suffer from packet losses that, in turn, affect the transmis-

sion and the reception of the data payload.

On the other hand, our implementation of TRACE operates on the commonly

used 2.4GHz band, sharing the channel with commonly used 802.11 systems.

802.11 systems are competition based and do not cooperate with the TRACE

system for interference minimization. Hence, the interference from out of the



194

system devices causes random packet losses in the TRACE system, which degrades

the performance.

In order to increase the robustness of the implementation against packet losses,

we add redundancy to all of the TRACE algorithms. These algorithms compen-

sating for the missing packets can be summarized as:

Missing Beacon The nodes do not send a contention but keep the CH in the

CH list. The CH entries are marked as obsolete and deleted only after not

receiving any packets from the CH for CHOBSOLETETIME = 2 SF

durations.

Missing CA The received power level is decreased gradually following the ex-

ponential smoothing algorithm with a high smoothing factor. On the other

hand, in the case of successfully detected CA, the perceived power level is

increased sharply using a small smoothing factor.

Missing Contention In the case of a missing contention packet, the node at-

tempts to access the channel resources by sending a contention in the next

available superframe.

Missing Header In the case of a missing header packet, the node follows the

existing transmission schedule of the previous frame and deletes the reser-

vation at the end of the frame. Since the reservation is dropped, the node

starts contending for channel resources starting from the next frame. The

CH ignores the extra contention that it receives from an existing node in

its transmission list and sends the header as scheduled. The node notes

the slot as reserved with the next Header reception. On the other hand, if

subsequent Header packets are also missed, the node does not send an IS,

as the reservation has already been deleted.
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Missing IS Our implementation distinguishes the missing IS packets and the IS

packets indicating the slot is not required. In the case of a missing IS packet,

the existing transmission schedule is not immediately altered, but a missing

IS counter is incremented. The transmission schedule is only changed after

3 sequential missing IS packets, and any successful IS reception resets the

counter. The CH deletes the reservation after 3 missing packets. Nodes

listening to the stream also continue listening for the data packets for the

upcoming 3 SFs unless another IS packet is received or the transmission

schedule of the frame is changed with a Header.

Missing DATA The missing data packets do not affect the TRACE algorithm.

However, the data packet IDs are tracked, and the missing packets are

marked. This information can used by the application layer for error cor-

rection purposes.

Next we test the performance of our TRACE implementation under packet

losses. The network topology used in the rest of this section is shown in Fig. 7.14.

Although the CH selection algorithm is dynamic, the node that is started first

quickly takes the CH role. However, the CH selection is dynamic and follows

the TRACE CH selection rules. Packet losses may trigger CH selection and can

change the roles of the nodes in the network. The system that is started later is a

source node generating packets throughput the experiment. The experiments are

continued until the source node transmits 10,000 packets.

Performance of Packet Loss Compensation Systems

Although both of the nodes are in the range of each other, they cannot receive

all the packets sent by their neighbors. The success of packet receptions depends

on the transmission power, propagation and the channel conditions at the time of

reception.
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In order to test the performance of the system under packet losses, we keep

track of the number of transmitted and the number of received packets on each

node for each packet type. Table 7.5 shows the number of transmitted/received

packets for a node pair that are separated by 2m and use a transmission power

of 12dBm. The reception gain parameters are set to rxgain = 16dB and rxpa =

16dB. It is observed that for a high transmission power, packet loss rate is low.

The TRACE system is working as expected with a high data packet delivery rate.

Table 7.5: The number of transmitted/received packets and the packet loss rate

(%) for a transmission power of 12dbm for the topology depicted in Fig. 7.14.

Packet Receptions Transmissions Packet Loss (%)

Type N1 N2 N1 N2 N1 N2

Beacon 0 10129 10241 0 - 1

CA 0 4828 5148 0 - 6

Contention 871 0 0 944 8 -

Header 0 9362 10173 0 - 8

IS 10006 0 0 10171 2 -

Data 10084 0 0 10171 1 -

SYNC 4225 0 0 4464 5 -

Thanks to the missing beacon compensation algorithm, the clustering structure

is very robust. Although there are 112 missing Beacon packets, the member node

starts the CH selection algorithm only once and receives a beacon packet before

assuming a CH role and transmitting its Beacon packet.

Another point that can be observed is that the number of contention packets

sent is low compared to the number of transmitted IS and data packets. After the

successful reception of a contention, the CH allocates one of the available data
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slots to the contender node and keeps the reservation in subsequent SFs until it

is not used anymore by the node.

The TRACE system provides continuous channel resources to the source nodes,

which makes TRACE ideal for real time communication. In Table 7.5 it can be

observed that the number of transmitted IS and the number of transmitted data

packets are very high and are close to the number of transmitted beacon packets.

Although, 1.62% of the IS packets are lost at the CH side, the CH keeps the

reservations, providing continuous channel access to the node 99.31% of the 286 s

experiment duration thanks to the missing IS packet compensation algorithm.

Performance with Varying Transmission Power

Successful packet receptions are strongly correlated with the channel conditions

around the receiver at the time of the transmission. The power of the packet

should be strong enough to yield a high enough signal to interference ratio. Trans-

missions with a higher transmission power have a higher chance of receptions.

In order to test the performance of the system, we track the number of all

transmitted and received packets on each node as we vary the transmission power.

The same experiment setup depicted in Fig. 7.14 is used. Based on this, we

calculate the packet loss rate, ploss, that is defined as

ploss =

(
1− Number of received packets

Number of transmitted packets

)
∗ 100 (7.16)

We test the performance of the system for a variety of transmission power

settings. The nodes are separated by 2m. The reception gain parameters are

kept constant at rxgain = 16dB and rxpa = 16dB. For each transmission power

setting, at least 10,000 data transmissions are recorded.

Table 7.6 shows the packet loss rate of each packet type together with the

average packet loss rate for each transmission power setting. It is observed that
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for a high transmission power, packet loss rates are low. The TRACE system is

working as expected with a high data packet delivery rate.

Table 7.6: Packet loss rates (%) of each packet type with varying transmission

power for the topology depicted in Fig. 7.14.

Packet 12 dBm 10 dBm 6 dBm 2 dBm 0.5 dBm

Type N1 N2 N1 N2 N1 N2 N1 N2 N1 N2

Beacon - 1 - 3 2 4 - 23 50 30

CA - 6 - 9 29 11 - 27 59 36

Contention 8 - 9 - 7 - 11 - 18 -

Header - 8 - 10 8 11 - 35 56 41

IS 2 - 3 - 5 - 24 - 30 -

Data 1 - 3 - 2 - 29 - 32 -

SYNC 5 - 5 - 6 4 8 - 12 84

Average 3 5 6 23 28

The average packet loss rate increases as the transmission power decreases, as

expected.

The missing entries of Table 7.6 correspond to the cases in which no packets

of that kind are transmitted. Since node 1 is not a source node, it does not

transmit the contention, IS or data packets. For a transmission power of 12 dBm,

the clustering structure is preserved throughout the experiment. Since node 2 is

never elected as a CH, the beacon CA and header entries of node 1 and SYNC

entry of node 2 are omitted. On the other hand, as the transmission power is

reduced, the CH role can change between the nodes due to the higher packet loss

rate of the Beacon packets.

In addition to the number of transmitted/received packets, we keep track of
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the number of times each node goes through the CH selection algorithm. A high

packet loss rate in the Beacon packets can potentially destabilize the clustering

structure and trigger the CH selection algorithm. However, thanks to the missing

beacon compensation algorithm, even for a transmission power of 0.5dBm, the se-

lection of the CHs have changed only 3 times throughout the experiment duration

of 450s, while node 1 went through the CH selection algorithm 2 times and node

2 went through the CH selection algorithm 52 times. In 50 instances out of the

52 times that node 2 went through the CH selection algorithm, node 2 went out

of the algorithm by receiving a Beacon packet before it sends its first Beacon and

takes over the CH role.

The TRACE system is designed to allocate continuous channel access for voice

streams under ideal conditions. The TRACE system has a total of 18 data slots.

Each data slot accommodates data packets that can carry up to 100 bytes of a

voice stream’s payload. Every SF duration of SFT = 21.026 ms, one data slot

is reserved for each transmitting node. Hence, under ideal conditions, a TRACE

system can carry 100∗8
21.026∗10−3 = 38.048 kbps for each stream. In our experiments,

for a 12 dBm transmission power, our implementation leads to an average data

transmission rate of 37.78 kbps and an average data reception rate of 37.46 kbps.

The experiments clearly show that the TRACE system keeps its overall stability

also under unfavorable channel conditions. The TRACE system with a transmis-

sion power of 0.5 dBm leads to an average data transmission rate of 25.12 kbps

and average data reception rate of 18.01 kbps.

7.7 Summary

In this chapter, the details of the implementation of the TRACE protocol are pre-

sented. This is the first implementation of the TRACE protocol on real hardware.

Our implementation solves various problems that are not fully reflected in sim-
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ulation studies, such as synchronization, unpredictable interference patterns and

limited computational and memory resources. The working prototype proves the

concept of the TRACE protocol for practical wireless communication in MANETs.

In addition to this, we also presented two synchronization algorithms that are

based on packet receptions. The unpredictability of packet delays that occur due

to the limitations of working on real time hardware is analyzed at each stage. The

algorithms are used within the TRACE implementation to provide synchroniza-

tion services. The algorithms achieve a synchronization accuracy of 60µs for a

multi-hop and multi-cluster network. This synchronization accuracy is sufficient

for the operation of the TRACE system.

Finally, we have tested the performance of TRACE under packet losses. The

TRACE system is shown to maintain its stability and provide uninterrupted ser-

vices to the source nodes in the system, even under unfavorable channel conditions.
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8 Conclusions and Future Work

8.1 Conclusions

In this dissertation, we have explored the efficient use of resources in MANETs

at the MAC and the routing layers. The cooperation and information sharing

between the nodes both in the MAC and Network layers of the protocol stack leads

to more efficient use of resources in MANETs compared to competition based

architectures. The techniques described in this dissertation lead to substantial

savings in energy consumption and spectrum usage. The contributions of the

research are summarized below.

1. We proposed a mathematical model that estimates the performance of soft-

clustering MAC protocols. This model is used to estimate the performance

of the MH-TRACE protocol under various conditions and for various sets

of protocol parameters. The number of frames per superframe, which is the

protocol parameter that determines the degree of spatial reuse, is optimized

for various conditions and for both spectral efficiency and energy efficiency.

2. We proposed CDCA-TRACE, a MAC protocol for MANETs that enables co-

operative load balancing, and dynamic channel allocation through spectrum
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sensing. CDCA-TRACE is built on top of MH-TRACE and replaces the ba-

sic MAC functionality in other TRACE protocols. By allowing dynamic al-

location of channels among clusterheads, CDCA-TRACE outperforms MH-

TRACE in handling non-uniform traffic loads. Unlike MH-TRACE, CDCA-

TRACE also dynamically adapts to shrinking network sizes and can effec-

tively utilize the entire superframe duration even for single hop connected

networks.

3. We proposed U-TRACE, a cross-layer protocol for MANETs that chooses

the most efficient data dissemination scheme according to the network con-

ditions. U-TRACE is based on CDCA-TRACE and includes the dynamic

channel allocation features of CDCA-TRACE. It further implements multi-

casting and network-wide broadcasting services and includes a mechanism

that chooses the most efficient data dissemination scheme.

4. We showed the benefits of network symbiosis at the network layer. The

differences in the characteristics of various networks, such as node density

and communication radius, are exploited through hybrid nodes in decreasing

the hop count or energy consumption for the communication between two

nodes. A mathematical model that estimates the length of the shortest path

is constructed and used to extend the analysis of hybrid nodes to various

node densities and communication radii.

5. We showed the practicality of the solutions investigated in this thesis by

implementing U-TRACE on software defined radios. We investigated prac-

tical issues encountered in a real implementation of radio protocols, such

as synchronization and cross band interference, and provided solutions to

these problems. We showed that our implementation compensates packet

losses and performs successfully even with very low transmission powers in

the presence of cross-band interference.
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8.2 Future Work

The demand for bandwidth intensive applications increases the importance of

bandwidth management in MANETs. To meet this growing need, additional

research is needed as follows:

� The TRACE family of protocols is designed as TDMA-based protocols. The

underlying waveform is designed to work on the entire frequency band avail-

able. Using a large frequency band, the packets are transmitted faster,

which contributes to a low latency. However, due to the limitations on the

hardware, the efficiency decreases as the size of the frequency band increases.

The TRACE implementation can be extended to work on multiple frequency

bands. By keeping the signaling portion of the frame in a common band

and moving the data portion to assigned bands, it is possible to extend the

operation to work on multiple channels.

� In the TRACE protocol, nodes cooperate with the other nodes in their local

neighborhood. This cooperation can allow implementation of cooperative

concurrent transmissions to take advantage of the constructive interference.

Using spatial diversity similar to MIMO systems, it is possible to increase

the range and the reliability of the communication between nodes.

� Distributed computing is another application of increasing importance for

mobile ad hoc networks. CPU intensive computing jobs are split into multi-

ple independent tasks and are distributed to multiple clients. The coopera-

tion among the nodes is crucial for distributing the tasks among the nodes.

The TRACE communication infrastructure can be used to distribute the

tasks efficiently. Depending on the requirements of the job, the clusterheads

can take the responsibility for distributing the tasks to the nodes within

their clusters and requesting support from other clusters.
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A TRACE Timer

1 #include <windows . h>

2 #include <iostream>

3

4 #define ABRUBTCHANGE (4 0 . 0E−06)

5 #define ABRUBTCHANGELIMIT (3)

6

7 struct reference_point {

8 double offset ;

9 LARGE_INTEGER counter ;

10 bool sync_ready ;

11 } ;

12

13 class TRACETimer {

14 private :

15 reference_point ref_point ;

16 LARGE_INTEGER frequency ;

17

18 //Dummy Var iab l e s

19 LARGE_INTEGER li ;
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20

21 // Monitoring

22 FILE *foutputp ;

23

24 int NumofAbrubtChange ;

25

26 public :

27 TRACETimer ( ) {

28 ref_point . sync_ready=false ;

29 QueryPerformanceFrequency(&frequency ) ;

30 QueryPerformanceCounter(&ref_point . counter ) ;

31 ref_point . offset = 0 . 0 ;

32 NumofAbrubtChange = 0 ;

33 ref_point . sync_ready=true ;

34 char foutputn [ ] = "TRACETimerAdjustments.txt" ;

35 if ( ( foutputp=fopen ( foutputn , "w" ) )==NULL ) {

36 printf ("I can't open the file for writing Receptions\n←↩

" ) ;

37 exit (1 ) ;

38 }

39 } ;

40

41 // GetCurrentSeconds : Ca l cu l a t e s the time and pas s e s to ←↩

TRACEMANAGER

42 void GetCurrentSeconds ( TRACETimeType &NOW ) {

43 : : QueryPerformanceCounter(&li ) ;

44 NOW = ( ( ( ( double ) (li . QuadPart − ref_point . counter .←↩

QuadPart ) ) /( double ) frequency . QuadPart ) ) ;

45 NOW = NOW + ref_point . offset ;

46 } ;
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47

48 // S i m p l i s t i c S y n c r o n i z e : The i s used to change the o f f s e t ←↩

value .

49 void SimplisticSyncronize ( const TRACETimeType &ooffsetin ) ←↩

{

50 if ( ooffsetin>ABRUBTCHANGE ) {

51 NumofAbrubtChange++;

52 if ( NumofAbrubtChange > ABRUBTCHANGELIMIT ) {

53 NumofAbrubtChange = 0 ;

54 ref_point . offset −= ooffsetin ;

55 QueryPerformanceCounter(&li ) ;

56 TRACETimeType NOW = ( ( ( ( double ) (li . QuadPart − ←↩

ref_point . counter . QuadPart ) ) /( double ) frequency .←↩

QuadPart ) ) ;

57 NOW = NOW + ref_point . offset ;

58 fprintf ( foutputp ,

59 "TimeAdjust: NOW = %.9f \t ooffsetin = %.3f *E-06 \t←↩

ref_point.offset = %.9f \n"

60 , NOW , ooffsetin *1 .0 E06 , ref_point . offset

61 ) ;

62 }

63

64 }

65 else {

66 ref_point . offset −= ooffsetin ;

67 QueryPerformanceCounter(&li ) ;

68 double NOW = ( ( ( ( double ) (li . QuadPart − ref_point .←↩

counter . QuadPart ) ) /( double ) frequency . QuadPart ) ) ;

69 NOW = NOW + ref_point . offset ;

70 fprintf ( foutputp ,
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71 "TimeAdjust: NOW = %.9f \t ooffsetin = %.3f *E-06 \t ←↩

ref_point.offset = %.9f \n"

72 , NOW , ooffsetin *1 .0 E06 , ref_point . offset

73 ) ;

74 }

75 } ;

76 } ;
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B TRACE Packet Types

1 #include <s t d i o . h>

2 #include <iostream>

3 #include <s t r i ng>

4

5

6

7 #include "tracetypes.h" //BK: This has to be the l a s t ←↩

d e f i n i t i o n l i n e

8

9 #define NumberofPacketTypes (7 )

10 enum TRACEPACKETType_Enum {

11 BEACONPACKETSeq = 0 ,

12 CAPACKETSeq = 1 ,

13 CONTENTIONPACKETSeq = 2 ,

14 HEADERPACKETSeq = 3 ,

15 ISPACKETSeq = 4 ,

16 DATAPACKETSeq = 5 ,

17 SYNCPACKETSeq = 6

18 } ;
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19

20 class TRACEAllInOnePacketType {

21 public :

22 int packet_type ;

23 TRACENodeIDType MAC_src ;

24 int seq_number ;

25 TRACENodeIDType TrSchSrcPrio_ [ NDS_ ] ;

26 int ActiveDataSlots_ ;

27 int Start_Up_Flag ;

28 TRACENodeIDType NextController_ ; // C o n t r o l l e r that t h i s ←↩

packet i s addressed to

29 TRACENodeIDType LastHop_ ;

30 TRACENodeIDType NextHop_ ;

31 int MoreData_ ;

32 int NoData_ ;

33 int IsNBTRACEPacket_ ;

34 int IsMCTRACEPacket_ ;

35 int IsMHTRACEPacket_ ;

36 int MCastMemberNode_ ; // I n d i c a t e i f the packet sender i s←↩

a mcast member o f MC t ra c e

37 int MCastRelayNode_ ; // I n d i c a t e i f the packet sender ←↩

i s a mcast r e l a y o f MC t rac e

38 int AssociatedDataSourceID ;

39 int AssociatedDataPacketID ;

40 int SearchForData ;

41

42 int lengthofpayload ;

43 char payload [ PAYLOADSIZE ] ;

44 //Beacon+NCAS +NCS +Header+IS+Data

45 int ContSlotNumberinPckt_ ;
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46 int DummyCont_Flag ;

47 int HDTS_ ;

48 int mcastID_ ;

49

50

51 TRACEAllInOnePacketType ( ) {

52 packet_type = 99 ;

53 MAC_src = 5 ;

54 seq_number = 12 ;

55 for ( int i = 0 ; i < PAYLOADSIZE ; i++){

56 payload [ i ] = 'A' ;

57 }

58 MCastMemberNode_ = 0 ;

59 MCastRelayNode_ = 0 ;

60 } ;

61

62 void PrintMembers ( ) {

63 printf ("**********\n" ) ;

64 printf ("packet_type is %d " , packet_type ) ;

65 printf ("MAC_src is %d " , MAC_src ) ;

66 printf ("seq_number is %d " , seq_number ) ;

67 printf ("payload is %s " , payload ) ;

68 printf ("**********\n" ) ;

69 } ;

70

71 void PrintMembers2File ( ) {

72 FILE *foutputp ;

73 char foutputn [ ] = "RXPacketContents.txt" ;

74 if ( ( foutputp=fopen ( foutputn , "a" ) )==NULL ) {
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75 printf ("I can't open the file for writing Receptions\n←↩

" ) ;

76 exit (1 ) ;

77 }

78 fprintf ( foutputp , "******\n" ) ;

79 fprintf ( foutputp , "packet_type=%d " , packet_type ) ;

80 fprintf ( foutputp , "MAC_src=%d " , MAC_src ) ;

81 fprintf ( foutputp , "seq_number=%d " , seq_number ) ;

82 for ( int i = 0 ; i < NDS_ ; i++){

83 fprintf ( foutputp , "TrSchSrcPrio_[%d]=%d " ,i ,←↩

TrSchSrcPrio_ [ i ] ) ;

84 }

85 fprintf ( foutputp , "ActiveDataSlots_ = %d " ,←↩

ActiveDataSlots_ ) ;

86 fprintf ( foutputp , "NextController_ = %d " ,←↩

NextController_ ) ;

87 fprintf ( foutputp , "LastHop_ = %d " , LastHop_ ) ;

88 fprintf ( foutputp , "NextHop_ = %d " , NextHop_ ) ;

89 fprintf ( foutputp , "MoreData_ = %d " , MoreData_ ) ;

90 fprintf ( foutputp , "IsNBTRACEPacket_ = %d " ,←↩

IsNBTRACEPacket_ ) ;

91 fprintf ( foutputp , "AssociatedDataSourceID = %d " ,←↩

AssociatedDataSourceID ) ;

92 fprintf ( foutputp , "AssociatedDataPacketID = %d " ,←↩

AssociatedDataPacketID ) ;

93 fprintf ( foutputp , "lengthofpayload = %d " ,←↩

lengthofpayload ) ;

94 fprintf ( foutputp , "payload is " ) ;

95 for ( int i=0; i<lengthofpayload ; i++) {

96 fprintf ( foutputp , "%c" , payload [ i ] ) ;
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97 }

98

99 fprintf ( foutputp , "\n******\n" ) ;

100 fclose ( foutputp ) ;

101 } ;

102

103 int GetAssociatedDataSourceID ( ) {

104 return ( AssociatedDataSourceID ) ;

105 } ;

106 int GetAssociatedDataPacketID ( ) {

107 return ( AssociatedDataPacketID ) ;

108 } ;

109 int GetMCastID ( ) {

110 return ( mcastID_ ) ;

111 } ;

112 } ;

113

114 class TRACEMACPacketType {

115 public :

116 TRACEAllInOnePacketType *RxPckt ;

117 TRACETimeType TimeStamp ;

118 TRACETimeType TimeStamp_detection ;

119 TRACEPowerType PacketEnergy ;

120 TRACEPacketIdentifierType packet_type ;

121 bool isSuccessfullyRx ;

122 TRACEMACPacketType ( ) {

123 packet_type = −99;

124 TimeStamp = −99.0;

125 isSuccessfullyRx = true ;

126 } ;
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127 void PrintMembers2File ( ) {

128 FILE *foutputp ;

129 char foutputn [ ] = "RXPacketContents.txt" ;

130 if ( ( foutputp=fopen ( foutputn , "a" ) )==NULL ) {

131 printf ("I can't open the file for writing Receptions\n←↩

" ) ;

132 exit (1 ) ;

133 }

134 fprintf ( foutputp , "**************************\n" ) ;

135 fprintf ( foutputp , "TimeStamp = %.7f " , TimeStamp ) ;

136 fprintf ( foutputp , "packet_type = %d " , packet_type ) ;

137 fclose ( foutputp ) ;

138 RxPckt−>PrintMembers2File ( ) ;

139 } ;

140 } ;

141

142 /* ******** Over the Air Packet s t r u c t u r e s ********** */

143

144

145 struct Beacon_OA {

146 unsigned char contents [ BEACONPACKETSIZE ] ;

147 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

148 // contents [ 0 ] // Reserved f o r encrypt ion 8 b i t s

149 // contents [ 1 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

150 // Start Up Flag 1 b i t f l a g (4 )

151 // N o o f o c c u p i e d d a t a s l o t s 3 b i t s ←↩

( 3 , 2 , 1 )

152 // contents [ 2 ] // seq number 8 b i t s

153 // contents [ 3 ] //MAC src
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154 // contents [ 4 ]

155

156 Beacon_OA ( ) {

157 for ( int i=0;i<BEACONPACKETSIZE ; i++) {

158 contents [ i ]= 0x00 ;

159 }

160 // set Mac Frame Type ( ) ;

161 } ;

162 void set_Mac_Frame_Type ( ) {

163 contents [ 0 ] = PACKET_TYPE_Beacon<<5 ;

164 } ;

165 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

166 // set Mac Frame Type ( ) ;

167 contents [ 0 ] = char ( (tp . packet_type & 0x0007 ) << 5) ;

168 contents [ 0 ] = contents [ 0 ] | ( (tp . Start_Up_Flag & 0x01←↩

) << 4) ;

169 contents [ 0 ] = contents [ 0 ] | ( (tp . ActiveDataSlots_ & 0←↩

x07 ) << 1) ;

170

171 contents [ 1 ] = tp . seq_number & 0xFF ;

172

173 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

174 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s

175

176 } ;

177 void ConvertToPacketType2 ( TRACEAllInOnePacketType * tp ) {
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178 tp−>packet_type = ( ( int ( contents [ 0 ] ) >> 5) & 0x07 )←↩

;

179 tp−>Start_Up_Flag = ( ( int ( contents [ 0 ] ) >> 4) & 0x01 )←↩

;

180 tp−>ActiveDataSlots_ = ( ( int ( contents [ 0 ] ) >> 1) & 0x07←↩

) ;

181

182 tp−>seq_number = ( ( int ( contents [ 1 ] ) ) & 0xFF )←↩

;

183

184 tp−>MAC_src = TRACENodeIDType ( ( int ( contents [ 2 ] ) ←↩

<< 8) | contents [ 3 ] ) ;

185

186 } ;

187 void PrintMembers2File ( FILE * foutputp2 ) {

188 int dummy = 0 ;

189 fprintf ( foutputp2 , "packettype = %d, length = %d, GP ←↩

CONTENTS: " , PACKET_TYPE_Beacon , BEACONPACKETSIZE ) ;

190 for ( int i=0; i<BEACONPACKETSIZE ; i++) {

191 dummy=0;

192 memcpy(&dummy , &(contents [ i ] ) , 1) ;

193 fprintf ( foutputp2 , " [%d]%02X" , i , dummy ) ;

194 }

195 fprintf ( foutputp2 , " \n" ) ;

196 } ;

197 } ;

198

199 struct CA_OA {

200 unsigned char contents [ CAPACKETSIZE ] ;

201 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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202

203 // contents [ 0 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

204 // Start Up Flag 1 b i t f l a g (4 )

205 // N o o f o c c u p i e d d a t a s l o t s 3 b i t s ←↩

( 3 , 2 , 1 )

206 //Not used 9 b i t s (0 )

207 // contents [ 1 ] // seq number 8 b i t s

208 // contents [ 3 ] //MAC src

209 // contents [ 4 ]

210

211 CA_OA ( ) {

212 for ( int i=0;i<CAPACKETSIZE ; i++) {

213 contents [ i ]= 0x00 ;

214 }

215 // set Mac Frame Type ( ) ;

216 } ;

217

218 void set_Mac_Frame_Type ( ) {

219 contents [ 0 ] = PACKET_TYPE_CA<<5 ;

220 } ;

221

222 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

223 contents [ 0 ] = ( (tp . packet_type & 0x0007 ) << 5) ;

224 contents [ 0 ] = contents [ 0 ] | ( (tp . Start_Up_Flag & 0x01←↩

) << 4) ;

225 contents [ 0 ] = contents [ 0 ] | ( (tp . ActiveDataSlots_ & 0←↩

x07 ) << 1) ;

226
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227 contents [ 1 ] = tp . seq_number & 0xFF ;

228

229 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

230 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s

231

232 } ;

233 void ConvertToPacketType2 ( TRACEAllInOnePacketType *tp ) {

234 tp−>packet_type = ( contents [ 0 ] >> 5) & 0x0007 ;

235 tp−>Start_Up_Flag = ( contents [ 0 ] >> 4) & 0x0001 ;

236 tp−>ActiveDataSlots_ = ( contents [ 0 ] >> 1) & 0x0007 ;

237

238 tp−>seq_number = contents [ 1 ] & 0x00FF ;

239

240 tp−>MAC_src = ( contents [ 2 ] << 8) | contents [ 3 ] ;

241

242 } ;

243

244 } ;

245

246 struct Contention_OA {

247 unsigned char contents [ CONTENTIONPACKETSIZE ] ;

248 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

249

250 // contents [ 1 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

251 // Start Up Flag 1 b i t f l a g (4 )

252 // N o o f o c c u p i e d d a t a s l o t s 3 b i t s ←↩

( 3 , 2 , 1 )
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253 //Not used 9 b i t s (0 )

254 // contents [ 2 ] // seq number 8 b i t s

255 // contents [ 3 ] //MAC src

256 // contents [ 4 ]

257

258 Contention_OA ( ) {

259 for ( int i=0;i<CONTENTIONPACKETSIZE ; i++) {

260 contents [ i ]= 0x00 ;

261 }

262 // set Mac Frame Type ( ) ;

263 } ;

264

265 void set_Mac_Frame_Type ( ) {

266 contents [ 0 ] = PACKET_TYPE_Contention<<5 ;

267 } ;

268

269 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

270 contents [ 0 ] = ( (tp . packet_type & 0x0007 ) << 5) ;

271 contents [ 0 ] = contents [ 0 ] | ( (tp . DummyCont_Flag & 0←↩

x01 ) << 4) ;

272 contents [ 0 ] = contents [ 0 ] | ( (tp . ContSlotNumberinPckt_ ←↩

& 0x07 ) << 1) ;

273

274 contents [ 1 ] = tp . seq_number & 0xFF ;

275

276 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

277 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s
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278

279 } ;

280 void ConvertToPacketType2 ( TRACEAllInOnePacketType * tp ) {

281 tp−>packet_type = ( contents [ 0 ] >> 5) & 0x0007 ;

282 tp−>DummyCont_Flag = ( contents [ 0 ] >> 4) & 0x0001 ;

283 tp−>ContSlotNumberinPckt_ = ( contents [ 0 ] >> 1) & 0x0007 ;

284

285 tp−>seq_number = contents [ 1 ] & 0x00FF ;

286

287 tp−>MAC_src = ( contents [ 2 ] << 8) | contents [ 3 ] ;

288

289 } ;

290 } ;

291

292 struct Header_OA {

293 unsigned char contents [ HEADERPACKETSIZE ] ;

294 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

295

296 // contents [ 1 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

297 // Start Up Flag 1 b i t f l a g (4 )

298 // N o o f o c c u p i e d d a t a s l o t s 3 b i t s ←↩

( 3 , 2 , 1 )

299 //Not used 9 b i t s (0 )

300 // contents [ 2 ] // seq number 8 b i t s

301 // contents [ 3 ] //MAC src

302 // contents [ 4 ]

303

304 Header_OA ( ) {

305 for ( int i=0;i<HEADERPACKETSIZE ; i++) {



221

306 contents [ i ]= 0x00 ;

307 }

308 // set Mac Frame Type ( ) ;

309 } ;

310

311 void set_Mac_Frame_Type ( ) {

312 contents [ 0 ] = PACKET_TYPE_Header<<5 ;

313 } ;

314

315 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

316 contents [ 0 ] = ( (tp . packet_type & 0x0007 ) << 5) ;

317 contents [ 1 ] = contents [ 1 ] | ( (tp . Start_Up_Flag & 0x01←↩

) << 4) ;

318 contents [ 1 ] = contents [ 1 ] | ( (tp . ActiveDataSlots_ & 0←↩

x07 ) << 1) ;

319

320 contents [ 1 ] = tp . seq_number & 0xFF ;

321

322 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

323 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s

324

325 for ( int i=0; i<NDS_ ; i++){

326 contents [4+2*i ] = contents [4+2*i ] | ( tp . TrSchSrcPrio_←↩

[ i ] >> 8 & 0xFF ) ; // High 8 b i t s

327 contents [5+2*i ] = contents [5+2*i ] | ( tp . TrSchSrcPrio_←↩

[ i ] & 0xFF ) ; // Low 8 b i t s

328 }



222

329

330 } ;

331 void ConvertToPacketType2 ( TRACEAllInOnePacketType * tp ) {

332 tp−>packet_type = ( contents [ 0 ] >> 5) & 0x0007 ;

333 tp−>Start_Up_Flag = ( contents [ 0 ] >> 4) & 0x0001 ;

334 tp−>ActiveDataSlots_ = ( contents [ 0 ] >> 1) & 0x0007 ;

335

336 tp−>seq_number = contents [ 1 ] & 0x00FF ;

337

338 tp−>MAC_src = ( contents [ 2 ] << 8) | contents [ 3 ] ;

339

340

341 for ( int i=0; i<NDS_ ; i++){

342

343 tp−>TrSchSrcPrio_ [ i ] = ( contents [4+2*i ] << 8) |←↩

contents [5+2*i ] ;

344 if ( tp−>TrSchSrcPrio_ [ i ] > 32768 ) tp−>TrSchSrcPrio_←↩

[ i ] = tp−>TrSchSrcPrio_ [ i ] − 65536 ;

345 }

346 } ;

347 } ;

348

349 struct IS_OA {

350 unsigned char contents [ ISPACKETSIZE ] ;

351 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

352

353 // contents [ 0 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

354 //MoreData 1 b i t f l a g (4 )

355 // S e r v i c e type 3 b i t s ( 3 , 2 , 1 )
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356 //IsNBTRACEPacket 100 (3 )

357 //IsMCTRACEPacket 010 (2 )

358 //IsMHTRACEPacket 001 (1 )

359

360

361

362 // contents [ 1 ] // seq number 8 b i t s

363 // contents [ 2 ] //MAC src 16 b i t s

364 // contents [ 3 ]

365 // contents [ 4 ] // AssociatedDataSourceID 16 ←↩

b i t s

366 // contents [ 5 ]

367 // contents [ 6 ] // AssociatedDataPacketID 16 ←↩

b i t s

368 // contents [ 7 ]

369 // contents [ 8 ] // NextContro l l e r 16 b i t s

370 // contents [ 9 ]

371 // contents [ 1 0 ] //HDTS 8 b i t s

372 // comtents [ 1 1 ] //mcastID 8 b i t s

373 // contents [ 1 2 ] // LastHop 16 b i t s

374 // contents [ 1 3 ]

375 // contents [ 1 4 ] //NextHop 16 b i t s

376 // contents [ 1 5 ]

377 // contents [ 1 6 ] // Search FOr Data 1 b i t ←↩

(0 )

378 //MCastMemberNode 1 b i t s (2 )

379 //MCastRelayNode 1 b i t s (1 )

380

381

382 IS_OA ( ) {
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383 for ( int i=0;i<ISPACKETSIZE ; i++) {

384 contents [ i ]= 0x00 ;

385 }

386 // set Mac Frame Type ( ) ;

387 } ;

388

389 void set_Mac_Frame_Type ( ) {

390 contents [ 0 ] = PACKET_TYPE_IS<<5 ;

391 } ;

392

393 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

394 contents [ 0 ] = 0 ;

395 contents [ 0 ] = ( (tp . packet_type & 0x0007 ) << 5) ;

396 contents [ 0 ] = contents [ 0 ] | ( (tp . MoreData_ & 0x01 ) <<←↩

4) ;

397

398 contents [ 0 ] = contents [ 0 ] | ( (tp . IsNBTRACEPacket_ & 0←↩

x01 ) << 3) ;

399 contents [ 0 ] = contents [ 0 ] | ( (tp . IsMCTRACEPacket_ & 0←↩

x01 ) << 2) ;

400 contents [ 0 ] = contents [ 0 ] | ( (tp . IsMHTRACEPacket_ & 0←↩

x01 ) << 1) ; // l e t MHTRACE be the d e f a u l t

401

402

403 // contents [ 1 ] = contents [ 1 ] | ( ( tp . Start Up Flag & 0←↩

x01 ) << 4) ;

404 // contents [ 1 ] = contents [ 1 ] | ( ( tp . Act iveDataS lot s & 0←↩

x07 ) << 1) ;

405
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406 contents [ 1 ] = tp . seq_number & 0xFF ;

407

408 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

409 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s

410

411 contents [ 4 ] = contents [ 4 ] | ( tp . AssociatedDataSourceID ←↩

>> 8 & 0xFF ) ; // High 8 b i t s

412 contents [ 5 ] = contents [ 5 ] | ( tp . AssociatedDataSourceID ←↩

& 0xFF ) ; // Low 8 b i t s

413

414 contents [ 6 ] = contents [ 6 ] | ( tp . AssociatedDataPacketID ←↩

>> 8 & 0xFF ) ; // High 8 b i t s

415 contents [ 7 ] = contents [ 7 ] | ( tp . AssociatedDataPacketID ←↩

& 0xFF ) ; // Low 8 b i t s

416

417 contents [ 8 ] = contents [ 8 ] | ( tp . NextController_ >> 8 &←↩

0xFF ) ; // High 8 b i t s

418 contents [ 9 ] = contents [ 9 ] | ( tp . NextController_ &←↩

0xFF ) ; // Low 8 b i t s

419 contents [ 1 0 ] = tp . HDTS_ & 0xFF ;

420 contents [ 1 1 ] = tp . mcastID_ & 0xFF ;

421

422 contents [ 1 2 ] = contents [ 6 ] | ( tp . LastHop_ >> 8 & 0xFF )←↩

; // High 8 b i t s

423 contents [ 1 3 ] = contents [ 7 ] | ( tp . LastHop_ & 0xFF )←↩

; // Low 8 b i t s

424
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425 contents [ 1 4 ] = contents [ 6 ] | ( tp . NextHop_ >> 8 & 0xFF )←↩

; // High 8 b i t s

426 contents [ 1 5 ] = contents [ 7 ] | ( tp . NextHop_ & 0xFF )←↩

; // Low 8 b i t s

427

428 contents [ 1 6 ] = 0 ;

429 contents [ 1 6 ] = contents [ 1 6 ] | ( (tp . SearchForData & 0←↩

x01 ) ) ;

430

431 contents [ 1 6 ] = contents [ 1 6 ] | ( (tp . MCastMemberNode_ & 0←↩

x01 ) << 2) ;

432 contents [ 1 6 ] = contents [ 1 6 ] | ( (tp . MCastRelayNode_ & 0←↩

x01 ) << 1 ) ;

433

434 } ;

435

436 void ConvertToPacketType2 ( TRACEAllInOnePacketType * tp ) {

437 tp−>packet_type = ( contents [ 0 ] >> 5) & 0x0007 ;

438 tp−>MoreData_ = ( contents [ 0 ] >> 4) & 0x0001 ;

439

440 tp−>IsNBTRACEPacket_ = ( contents [ 0 ] >> 3) & 0x0001 ;

441 tp−>IsMCTRACEPacket_ = ( contents [ 0 ] >> 2) & 0x0001 ;

442 tp−>IsMHTRACEPacket_ = ( contents [ 0 ] >> 1) & 0x0001 ;

443

444

445

446

447

448 tp−>seq_number = contents [ 1 ] & 0x00FF ;

449
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450 tp−>MAC_src = ( contents [ 2 ] << 8) | contents [ 3 ] ;

451

452 tp−>AssociatedDataSourceID = ( contents [ 4 ] << 8) |←↩

contents [ 5 ] ;

453

454 tp−>AssociatedDataPacketID = ( contents [ 6 ] << 8) |←↩

contents [ 7 ] ;

455

456 tp−>NextController_ = ( contents [ 8 ] << 8) | ←↩

contents [ 9 ] ;

457

458 tp−>HDTS_ = 0 ;

459 tp−>HDTS_ = contents [ 1 0 ] ;

460 tp−>mcastID_ = 0 ;

461 tp−>mcastID_ = contents [ 1 1 ] ;

462

463 tp−>LastHop_ = ( contents [ 1 2 ] << 8) | contents [ 1 3 ]←↩

;

464 tp−>NextHop_ = ( contents [ 1 4 ] << 8) | contents [ 1 5 ]←↩

;

465

466 tp−>SearchForData = ( contents [ 1 6 ] ) & 0x0001 ;

467

468 tp−>MCastMemberNode_ = ( contents [ 1 ] >>2 ) & 0x0001 ;

469 tp−>MCastRelayNode_ = ( contents [ 1 6 ] >>1 ) & 0←↩

x0001 ;

470 } ;

471

472 } ;

473
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474 struct Data_OA {

475 unsigned char contents [ DATAPACKETSIZE ] ;

476 // Flags−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

477

478 // contents [ 0 ] //Mac Frame Type 3 b i t s ←↩

( 7 , 6 , 5 )

479 //Not used 5 b i t s ( 5 , 4 , 3 , 2 , 1 )

480

481 // contents [ 1 ] // seq number 8 b i t s

482 // contents [ 2 ] //MAC src 16 b i t s

483 // contents [ 3 ]

484 // contents [ 4 ] // AssociatedDataSourceID 16 ←↩

b i t s

485 // contents [ 5 ]

486 // contents [ 6 ] // AssociatedDataPacketID 16 ←↩

b i t s

487 // contents [ 7 ]

488 // contents [ 8 ] // l engtho fpay load 8 b i t s

489 // contents [ 9 ] //PAYLOAD DATAPACKETSIZE ←↩

b i t s

490 // . . .

491 //

492 //

493 //

494

495 Data_OA ( ) {

496 for ( int i=0;i<DATAPACKETSIZE ; i++) {

497 contents [ i ]= 0x00 ;

498 }

499 } ;
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500

501 void set_Mac_Frame_Type ( ) {

502 contents [ 0 ] = PACKET_TYPE_DATA<<5 ;

503 } ;

504

505 void ConvertFromPacketType2 ( const TRACEAllInOnePacketType ←↩

&tp ) {

506 contents [ 0 ] = ( (tp . packet_type & 0x0007 ) << 5) ;

507

508 // contents [ 1 ] = contents [ 1 ] | ( ( tp . Start Up Flag & 0←↩

x01 ) << 4) ;

509 // contents [ 1 ] = contents [ 1 ] | ( ( tp . Act iveDataS lot s & 0←↩

x07 ) << 1) ;

510

511 contents [ 1 ] = tp . seq_number & 0xFF ;

512

513 contents [ 2 ] = contents [ 2 ] | ( tp . MAC_src >> 8 & 0xFF ) ; ←↩

// High 8 b i t s

514 contents [ 3 ] = contents [ 3 ] | ( tp . MAC_src & 0xFF ) ; ←↩

// Low 8 b i t s

515

516 contents [ 4 ] = contents [ 4 ] | ( tp . AssociatedDataSourceID ←↩

>> 8 & 0xFF ) ; // High 8 b i t s

517 contents [ 5 ] = contents [ 5 ] | ( tp . AssociatedDataSourceID ←↩

& 0xFF ) ; // Low 8 b i t s

518

519 contents [ 6 ] = contents [ 6 ] | ( tp . AssociatedDataPacketID ←↩

>> 8 & 0xFF ) ; // High 8 b i t s

520 contents [ 7 ] = contents [ 7 ] | ( tp . AssociatedDataPacketID ←↩

& 0xFF ) ; // Low 8 b i t s
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521

522

523 if (tp . lengthofpayload>PAYLOADSIZE ) {

524 printf ("ERROR!! Larger than expected data packet" ) ;

525 }

526 contents [ 8 ] = tp . lengthofpayload & 0xFF ;

527

528 contents [ 9 ] = 0 ;

529

530 contents [ 1 0 ] = tp . HDTS_ & 0xFF ;

531 contents [ 1 1 ] = tp . mcastID_ & 0xFF ;

532

533 int ul = tp . lengthofpayload ;

534 if (ul>DATAPACKETSIZE − 9 ) ul = DATAPACKETSIZE − 9 ;

535 memcpy ( contents+9, tp . payload , tp . lengthofpayload ) ;

536 } ;

537 void ConvertToPacketType2 ( TRACEAllInOnePacketType * tp ) {

538 tp−>packet_type = ( contents [ 0 ] >> 5) & 0x0007 ;

539

540 tp−>seq_number = contents [ 1 ] & 0x00FF ;

541

542 tp−>MAC_src = ( contents [ 2 ] << 8) | contents [ 3 ] ;

543

544 tp−>AssociatedDataSourceID = ( contents [ 4 ] << 8) |←↩

contents [ 5 ] ;

545 tp−>AssociatedDataPacketID = ( contents [ 6 ] << 8) |←↩

contents [ 7 ] ;

546

547 tp−>lengthofpayload = contents [ 8 ] & 0x00FF ;

548
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549 tp−>HDTS_ = 0 ;

550 tp−>HDTS_ = contents [ 1 0 ] ;

551 tp−>mcastID_ = 0 ;

552 tp−>mcastID_ = contents [ 1 1 ] ;

553

554 memcpy (tp−>payload , contents+(DATAPACKETSIZE − ←↩

PAYLOADSIZE ) , tp−>lengthofpayload ) ;

555 } ;

556

557

558 } ;

559

560 struct GenericPacket_OA {

561 unsigned char encryption [ ENCRYPTIONFLAGSSIZE ] ;

562 unsigned char contents [ 1 0 0 0 0 ] ;

563 int length ;

564 TRACEPacketIdentifierType packettype ;

565 GenericPacket_OA ( ) {

566 encryption [ 0 ] = 0x00 ;

567 for ( int i=0;i<1000;i++) {

568 contents [ i ]= 0x00 ;

569 }

570 length = 0 ;

571 packettype = −1;

572 // set Mac Frame Type ( ) ;

573 } ;

574

575 bool Unencrypt ( ) {

576 unsigned char dummy = ENCRYPTIONFLAGS ;

577 if ( encryption [ 0 ] == dummy ) return ( true ) ;
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578 else return ( false ) ;

579 } ;

580 void Encrpty ( ) {

581 encryption [ 0 ] = ENCRYPTIONFLAGS ;

582 } ;

583 void DeterminePacketType ( ) {

584 if ( Unencrypt ( ) )

585 packettype = TRACEPacketIdentifierType ( ( contents [ 0 ] >>←↩

5) & 0x0007 ) ;

586 else

587 packettype = UNSUCCESSFULPACKETRXType ; // This i s not a←↩

TRACE r e l a t e d f i l e

588 } ;

589

590 void PrintMembers2File ( FILE * foutputp2 ) {

591 int dummy = 0 ;

592 fprintf ( foutputp2 , "packettype = %d, length = %d," , ←↩

packettype , length ) ;

593 fprintf ( foutputp2 , "GP encryption:" ) ;

594 for ( int i=0; i<ENCRYPTIONFLAGSSIZE ; i++) {

595 dummy=0;

596 memcpy(&dummy , &(encryption [ i ] ) , 1) ;

597 fprintf ( foutputp2 , " [%d]%02X" , i , dummy ) ;

598 }

599 fprintf ( foutputp2 , ", GP CONTENTS:" ) ;

600 for ( int i=0; i<length ; i++) {

601 dummy=0;

602 memcpy(&dummy , &(contents [ i ] ) , 1) ;

603 fprintf ( foutputp2 , " [%d]%02X" , i , dummy ) ;

604 }
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605 fprintf ( foutputp2 , " \n" ) ;

606 } ;

607

608 void ConvertfromTRACEMACPacketType ( const ←↩

TRACEMACPacketType *tmp ) {

609 Encrpty ( ) ;

610

611 switch (tmp−>packet_type ) {

612 case PACKET_TYPE_Beacon : {

613 length = BEACONPACKETSIZE ;

614 packettype = tmp−>packet_type ;

615

616 Beacon_OA OAPckt ;

617 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

618 memcpy ( contents , OAPckt . contents , length ) ;

619 }

620 break ;

621 case PACKET_TYPE_CA : {

622 CA_OA OAPckt ;

623 length = CAPACKETSIZE ;

624

625 encryption [ 0 ] = ENCRYPTIONFLAGS ;

626 packettype = tmp−>packet_type ;

627 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

628 memcpy ( contents , OAPckt . contents , length ) ;

629 }

630 break ;

631 case PACKET_TYPE_Contention : {

632 Contention_OA OAPckt ;

633 length = CONTENTIONPACKETSIZE ;
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634

635 encryption [ 0 ] = ENCRYPTIONFLAGS ;

636 packettype = tmp−>packet_type ;

637 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

638 memcpy ( contents , OAPckt . contents , length ) ;

639 }

640 break ;

641 case PACKET_TYPE_Header : {

642 Header_OA OAPckt ;

643 length = HEADERPACKETSIZE ;

644

645 encryption [ 0 ] = ENCRYPTIONFLAGS ;

646 packettype = tmp−>packet_type ;

647 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

648 memcpy ( contents , OAPckt . contents , length ) ;

649 }

650 break ;

651 case PACKET_TYPE_IS : {

652 IS_OA OAPckt ;

653 length = ISPACKETSIZE ;

654

655 encryption [ 0 ] = ENCRYPTIONFLAGS ;

656 packettype = tmp−>packet_type ;

657 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

658 memcpy ( contents , OAPckt . contents , length ) ;

659 }

660 break ;

661 case PACKET_TYPE_DATA : {

662 Data_OA OAPckt ;

663 length = DATAPACKETSIZE ;
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664

665 encryption [ 0 ] = ENCRYPTIONFLAGS ;

666 packettype = tmp−>packet_type ;

667 OAPckt . ConvertFromPacketType2 (* ( tmp−>RxPckt ) ) ;

668 memcpy ( contents , OAPckt . contents , length ) ;

669 }

670 break ;

671

672 default :

673 printf ("!!! INVALID CONVERSION @ ←↩

ConvertfromTRACEMACPacketType typ = %d!!! \n" , tmp←↩

−>packet_type ) ;

674 break ;

675 }

676 }

677

678 void ConvertToTRACEMACPacketType ( TRACEMACPacketType *tmp ) ←↩

{

679 tmp−>RxPckt−>packet_type = packettype ;

680 tmp−>packet_type = packettype ;

681 if ( packettype == UNSUCCESSFULPACKETRXType ) {

682 tmp−>isSuccessfullyRx = false ;

683 }

684 else {

685 switch ( packettype ) {

686 case PACKET_TYPE_Beacon : {

687 Beacon_OA OAPckt ;

688 length = BEACONPACKETSIZE ;

689 tmp−>packet_type = packettype ;

690 memcpy ( OAPckt . contents , contents , length ) ;
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691 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

692 }

693 break ;

694 case PACKET_TYPE_CA : {

695 CA_OA OAPckt ;

696 length = CAPACKETSIZE ;

697 tmp−>packet_type = packettype ;

698 memcpy ( OAPckt . contents , contents , length ) ;

699 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

700 }

701 break ;

702 case PACKET_TYPE_Contention : {

703 Contention_OA OAPckt ;

704 length = CAPACKETSIZE ;

705 tmp−>packet_type = packettype ;

706 memcpy ( OAPckt . contents , contents , length ) ;

707 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

708 }

709 break ;

710 case PACKET_TYPE_Header : {

711 Header_OA OAPckt ;

712 length = HEADERPACKETSIZE ;

713 tmp−>packet_type = packettype ;

714 memcpy ( OAPckt . contents , contents , length ) ;

715 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

716 }

717 break ;

718 case PACKET_TYPE_IS : {

719 IS_OA OAPckt ;

720 length = ISPACKETSIZE ;
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721 tmp−>packet_type = packettype ;

722 memcpy ( OAPckt . contents , contents , length ) ;

723 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

724 }

725 break ;

726 case PACKET_TYPE_DATA : {

727 Data_OA OAPckt ;

728 length = DATAPACKETSIZE ;

729 tmp−>packet_type = packettype ;

730 memcpy ( OAPckt . contents , contents , length ) ;

731 OAPckt . ConvertToPacketType2 (tmp−>RxPckt ) ;

732 }

733 break ;

734

735 default :

736 printf ("!!! INVALID CONVERSION @ ←↩

ConvertToTRACEMACPacketType !!! typ = %d \n" ,←↩

packettype ) ;

737 break ;

738 }

739 }

740 } ;

741 } ;
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C TRACE Extension

1 #include <s t d i o . h>

2 #include <Windows . h>

3 #include <math . h>

4 #include <s t d l i b . h>

5

6

7

8 #include "tracepackettypes.h"

9 #include "trace_timer.h"

10 #include "sora.h"

11 #include "DataPacketUIDControlRegister.h"

12

13 #define MAX NF p CH (1)

14 #define LimitNumTimesCHFullObserved (3 )

15 #define IS DCA ON (0)

16 #define IS P ON (0)

17

18 #define INTERFERENCETHRESHOLD (ULONG MAX)

19
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20 #define MONITOR PRINT TRACEMANUPDATES (0)

21 #define MONITOR PRINT TRACEDEBUGGER (1)

22

23 #define FirstContentionSYNC (200)

24

25 #define NumberofDest inations (4 )

26

27

28 class MAC_CDCAUTRACE {

29

30 public :

31

32 int GlobalStartUpSwitch ;

33 void SetGlobalStartUpSwitch ( ) {

34 GlobalStartUpSwitch = 1 ;

35 } ;

36 int GlobalListenSwitch ;

37

38 int BeaconPacketState ; // Sta t e s f o r packets : l a s t one sent←↩

−1; not ready = 0 ; ready =1

39 int CAPacketState ;

40 int ContentionPacketState ;

41 int HeaderPacketState ;

42 int ISPacketState ;

43 int DataPacketState ;

44

45 int IDBeaconPacketState ; // Sta t e s f o r packets : l a s t one ←↩

sent −1; not ready = 0 ; ready =1

46 int IDCAPacketState ;

47 int IDContentionPacketState ;
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48 int IDHeaderPacketState ;

49 int IDISPacketState ;

50 int IDDataPacketState ;

51

52 int BeaconPacketState2 ; // Sta t e s f o r packets : l a s t one ←↩

sent −1; not ready = 0 ; ready =1

53 int CAPacketState2 ;

54 int ContentionPacketState2 ;

55 int HeaderPacketState2 ;

56 int ISPacketState2 ;

57 int DataPacketState2 ;

58

59 int ISLostLimit ;

60 int numoftimesInputfileisread ;

61

62 int IsAutoGTDMASelection ;

63 int presetGTDMA ;

64

65 bool TimeUpdateLock ;

66 TRACETimeType LastTimeUpdateLockTime ;

67

68

69 int t_mode_operation ;

70 TRACETimeType Timein_t_mode_Operation ;

71 TRACETimeType Timein_slot ;

72 TRACETimeType NOW ;

73 TRACETimeType TimeinFrame ;

74 int FNumber ;

75 int SFNumber ;

76 FILE *foutputpState ;
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77 FILE *foutputp ;

78 FILE *foutputp2 ;

79 FILE *fout_ChannelPower ;

80 FILE *fprx ;

81 FILE *fp_indatafile ;

82

83 FILE *fp_outdatafile ;

84 FILE *fp_outdatafile1 ;

85 FILE *fp_outdatafile2 ;

86 FILE *fp_outdatafile3 ;

87 FILE *fp_outdatafile4 ;

88 int NumberofRxDataPackets [ NumberofDestinations ] ;

89 int TotalNumberofRxPckt ;

90 int TotalNumberofTxPckt ;

91 int TotalNumberofTxDataPckt ;

92 int NumberofRxPckt [ NumberofPacketTypes ] ;

93 int NumberofTxPckt [ NumberofPacketTypes ] ;

94 char dummypayload [ PAYLOADSIZE ] ;

95

96 TRACETimeType LastDataACKTime_ ;

97 TRACETimeType StartUPTimeLimit_ ;

98

99 int LastTx_tmode ;

100 int LastTx_slotnumber ;

101

102 TRACETimeType FrameLimits [1+NCAS_+NCS_+1+NDS_+NDS_ ] ;

103 // i n t Rad ioState InS lot [ ] [ 1 +NCAS +NCS +1+NDS +NDS ] ;

104

105 TRACEMACPacketType * pktTx_ ;

106
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107 // Primary v a r i a b l e s

108 CHTableStructure CHTable_ ; //The in fo rmat ion kept about ←↩

the CH that the node i s aware o f

109 ULONG InFrameIntfLevels [2+2*MAXNDS_ ] ; //The i n t e r f r a n c e ←↩

l e v e l s measured in each s l o t

110 ULONG InterFrameIntfLevels [ MAXNTD_ ] [2+2* MAXNDS_ ] ; //←↩

Global understanding o f the i n t e r f e r e n c e l e v e l s updated ←↩

through measurements

111

112 int OFTNum_ ;

113 int CyclicOFTNum_ ;

114 int MyContentionSlotNumber_ ;

115 int NextController_ ; // After Rece iv ing beacon record the ←↩

c o n t r o l l e r o f the frame to t h i s temporary s to rage .

116 int DoIHaveAReservedSlot_ ;

117 int DoINeedExtraContention_ ;

118 int DoIHaveExtraContention_ ;

119 int ExtraContentionMode_ ;

120 int DoINeed2SendContention_ ;

121 int DoINeed2SendContention ( ) ;

122 int DoIHaveData_ ;

123 int MyGTDMASlot_ ;

124 void SelectGTDMASlot ( ) ;

125 int DoIHaveAReservedSlot ( ) ;

126 bool DoISendCAinThisFrame_ ;

127 bool DoISendSYNCimThisFrame_ ;

128 void DetermineDoISendCAinThisFrame ( ) {

129 if ( GetProbability (2 ) == 1) DoISendCAinThisFrame_= true ;

130 else DoISendCAinThisFrame_= false ;

131 } ;
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132

133

134 int IsStartupSituation_ ;

135

136 void TakeCHRole ( ) ;

137 void ResignfromCHRole ( int newCHid ) ;

138 int TotalNumofCHResigns ;

139

140 bool isThisMyGTDMASlot ( int t=−1) ;

141

142 int AmIASourceNode_ ;

143

144 int ActiveDataSlots_ ;

145 int AllActiveDataSlots_ ;

146

147 ISTableStructure ISTable_ [ StdVecSize ] ;

148

149 int MyDataTransSlot_ ;

150 TRACENodeIDType DataSlotSourceList [ MAXNDS_ ] ;

151

152 void GetActiveDataSlotsFromTrSchSrcPrio ( ) ;

153

154 TRACETimeType LastBeaconTime_ ;

155 TRACETimeType LastDataTime_ ;

156

157 TRACETimeType sstime_ ;

158 int ScheduleControlTable_ [ MAXNTD_ ] [ MAXNDS_ ] ;

159

160 TRACENodeIDType index_ ; //ID o f the cur rent node

161
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162 TRACETimer TRACEClock ;

163 int ISAutoCHSelection_ ; // This determines wheter CHs are ←↩

auto s e l e c t e d or p r e s e t . De fau l t va lue i s 1 ;

164 int AmITheController_ ;

165 int AmITheController ( ) {

166 return ( AmITheController_ ) ;

167 } ;

168 ULONG DoIListenThisSlot_ ;

169 FLAG* PtrRxOperationFlag ;

170 bool PowerDetected ;

171 bool PowerStateChanged ;

172

173 int FL [ NTD_ ] ;

174 int SelectedFrames [ NTD_ ] ;

175

176 int RadioState ;

177 bool isStateChanged ;

178

179 MAC_CDCAUTRACE ( ) ;

180

181

182 MAC_CDCAUTRACE ( FLAG* RxWorkFlag ) ;

183

184 void InitializeVariables ( ) ;

185

186 int Calc_t_mode_Operation ( ) ;

187

188 void BeaconSyncronize ( double &endofbeacon_t ) ;

189
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190 void SimpleSyncronize ( const double &t_rx_end , const int &←↩

pckt_type ) ;

191

192 void ContentionSyncronize ( const double &t_rx_end , const ←↩

int &pckt_type , const int &SlotNumberinPckt_ ) ;

193

194

195 void recv ( TRACEMACPacketType* p ) ; // This i s the g e n e r i c ←↩

entry to the program . Any out s id e func t i on should ←↩

i n t e r a c t by c a l l i n g t h i s func t i on

196 void HandleIncoming ( TRACEMACPacketType* p ) ; // This i s to ←↩

perform r e c e i v i n g ope ra t i on s on the r e cve ived packet

197 void sendUp ( TRACEMACPacketType* p ) ; // D i f f e r e n t i a t i a t e ←↩

between d i f f e r e n t packets and c a l l them one by one

198

199 int MCastRelayNode_ ;

200 int MCastGroupID_ ;

201 bool DoIBelongtoMcastGroup ( int qmcastid ) {

202 if ( qmcastid == MCastGroupID_ ) return ( TRUE ) ;

203 return ( FALSE ) ;

204 } ;

205 int ISMHSTREAM ;

206 int ISNBSTREAM ;

207 int ISMCSTREAM ;

208

209

210 // Recept ions

211 void MAC_CDCAUTRACE : : RecordChannelPower ( ULONG &el ) ;

212 void RxBeacon ( TRACEMACPacketType* p ) ; //RX Beacon

213 void RxCA ( TRACEMACPacketType* p ) ; //RX Beacon
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214 void RxContention ( TRACEMACPacketType* p ) ; //RX Beacon

215 void RxHeader ( TRACEMACPacketType* p ) ; //RX Beacon

216 void RxIS ( TRACEMACPacketType* p ) ; //RX Beacon

217 void RxDATA ( TRACEMACPacketType* p ) ; //RX Beacon

218

219 void UpdateCHTable ( TRACENodeIDType src , int ads , ←↩

TRACEPowerType rxpwr , TRACEPriorityType prio ) ;

220 void ProcessCHTable ( ) ;

221 void DelCHTableEnt ( TRACENodeIDType nodeid ) ;

222 void ReArrangeCHTable ( ) ;

223

224 void fetchSlot ( TRACEMACPacketType* p ) ;

225

226 void CalculateTimeInFrame ( ) ;

227

228 void CalculateFrameNumber ( ) ;

229

230 void CalculateSFrameNumber ( ) ;

231

232 int Get_t_mode_Operation ( ) ;

233

234 void Set_t_mode_Operation ( int const &m ) ;

235

236 void CheckForObsoletePackets ( int k ) ;

237

238 void UpdateTraceTime ( ) ;

239

240 bool DoIListenThisSlot ( ) ;

241 bool DoIListenThisSlot2 ( ) ;

242
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243 bool DoITXThisSlot ( ) ;

244

245

246 bool AmIInListenState ( ) ;

247

248 double GetCurrentTime ( ) ;

249

250 double GetTimeinFrame ( ) ;

251

252 int SuperFrameNumber ( ) ;

253

254 int FrameNumber ( ) ;

255

256 void MarkSlot_TX ( int i ) ;

257 void MarkSlot_RX ( int i ) ;

258

259 void SetMyDownStreamNodeID2 ( int dst ) ;

260 void SetMyUpStreamNodeID2 ( int dst ) ;

261

262 void ToggleSourceMode ( int k ) ;

263 //SEND PACKETS

264 bool preparePacket ( TRACEMACPacketType* p , ←↩

TRACEPacketIdentifierType typ , int seq_number ) ;

265 bool prepareBeacon ( TRACEMACPacketType* p ) ;

266 bool prepareCA ( TRACEMACPacketType* p ) ;

267 bool prepareContention ( TRACEMACPacketType* p ) ;

268 bool prepareHeader ( TRACEMACPacketType* p ) ;

269 bool prepareIS ( TRACEMACPacketType* p ) ;

270 bool prepareData ( TRACEMACPacketType* p ) ;

271
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272 void HandleOutgoing ( int sentpckttype ) ;

273 void sendBeacon ( ) ;

274 void sendCA ( ) ;

275 void sendContention ( ) ;

276 void sendHeader ( ) ;

277 void sendIS ( ) ;

278 void sendData ( ) ;

279 void sendGenericPacket ( ) ;

280

281

282 //DCA TRACE Related

283 int NumTimesCHFullObserved ;

284 int NumofNeededTimeDivisions ;

285

286 void prepareGenericPacket ( TRACEMACPacketType* p ) ;

287

288 // Pe r i od i c f u n c t i o n s

289 void ResetNumIntf ( ) ;

290 void ResetNumIntf2 ( ) ;

291 void WakeForBeacon ( ) ;

292 void SleepAfterBeacon ( ) ;

293 void WakeForHeader ( ) ;

294 void SleepAfterIS ( ) ;

295 void WakeForDataSlot ( ) ;

296 void SleepAfterDataSlot ( ) ;

297 void SetSST ( ) ;

298 void CheckDataPacketDelay ( ) ;

299 void CheckDACK ( ) ;

300 void CheckCHIST ( ) ;

301 int GetProbability ( int i ) ;
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302 void ProcessDACKTable ( ) ;

303 void CheckReStartUp ( ) ;

304

305 TrSchSrcPrioType TrSchSrcPrio_ [ MAXNTD_ ] [ MAXNDS_ ] ;

306 StreamRegister StreamRegister_ ;

307 Stream* Stream2BeSent ;

308 void SelectStream2BeSent ( ) ;

309

310

311 int LastReceivedDataSourceID ;

312 int LastReceivedDataPacketID ;

313 int LastReceivedDataPacketID1 ;

314 int LastReceivedDataPacketID2 ;

315 int LastReceivedDataPacketID3 ;

316 int LastReceivedDataPacketID4 ;

317

318 bool CheckTransmissionSchedule ( int nodeid ) ;

319 void InsertTransmissionSchedule ( int nodeid , int prio , int ←↩

targetframe ) ;

320 int InsertTransmissionScheduleAtLowestInterference ( int ←↩

nodeid , int prio , int targetframe=−1) ;

321

322 bool DoISendData ( ) ;

323 bool DoISendDataInTheFollowingSlot ( ) ;

324 bool DoISendISInTheFollowingSlot ( ) ;

325 bool DoIListenToTheFollowingDataSlot ( ) ;

326

327 void RearrangeTransmissionSchedule ( ) ;

328

329
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330 int ContentionSlotNumber_ ;

331 int GetContentionSlotNumber ( ) {

332 return ( ContentionSlotNumber_ ) ;

333 } ;

334 void CalculateContentionSlotNumber ( ) {

335 double length = ContentionSlotLength_ ;

336 // return the Data s l o t number f o r t h i s time

337 ContentionSlotNumber_ = ( int ) ( Timein_t_mode_Operation ←↩

/ length ) ;

338 } ;

339 int ISSlotNumber_ ;

340 int GetISSlotNumber ( ) {

341 return ( ISSlotNumber_ ) ;

342 } ;

343 void CalculateISSlotNumber ( ) {

344 // return the Data s l o t number f o r t h i s time

345 double length = ISSlotLength_ ;

346 ISSlotNumber_ = ( int ) ( Timein_t_mode_Operation / length←↩

) ;

347 } ;

348 int DataSlotNumber_ ;

349 int GetDataSlotNumber ( ) {

350 return ( DataSlotNumber_ ) ;

351 } ;

352 void CalculateDataSlotNumber ( ) {

353 double length = DataSlotLength_ ;

354 // return the Data s l o t number f o r t h i s time

355 DataSlotNumber_ = ( int ) ( Timein_t_mode_Operation / ←↩

DataSlotLength_ ) ;

356
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357 } ;

358

359 int GetSlotNumber ( ) {

360 switch ( t_mode_operation ) {

361 case T_MODE_CONTENTIONSLOT :

362 return ( GetContentionSlotNumber ( ) ) ;

363 case T_MODE_ISSLOT :

364 return ( GetISSlotNumber ( ) ) ;

365 case T_MODE_DATASLOT :

366 return ( GetDataSlotNumber ( ) ) ;

367 default :

368 return (−1) ;

369 break ;

370 } ;

371 } ;

372 TRACETimeType GetSlotLength ( ) {

373 switch ( t_mode_operation ) {

374 case T_MODE_BEACONSLOT :

375 return ( BeaconSlotLength_ ) ;

376 case T_MODE_CASLOT :

377 return ( CASlotLength_ ) ;

378 case T_MODE_CONTENTIONSLOT :

379 return ( ContentionSlotLength_ ) ;

380 case T_MODE_HEADERSLOT :

381 return ( HeaderSlotLength_ ) ;

382 case T_MODE_ISSLOT :

383 return ( ISSlotLength_ ) ;

384 case T_MODE_DATASLOT :

385 return ( DataSlotLength_ ) ;

386 default :
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387 return ( 9 5 . 0 ) ;

388 break ;

389 } ;

390 } ;

391

392 TRACETimeType GetPacketSlotLength ( int pckt_typ ) {

393 switch ( pckt_typ ) {

394 case PACKET_TYPE_Beacon :

395 return ( BeaconSlotLength_ − ( RampTimeAdjustment + ←↩

TracePreamble_ + IFS_ ) ) ;

396 case PACKET_TYPE_CA :

397 return ( CASlotLength_ − ( RampTimeAdjustment + ←↩

TracePreamble_ + IFS_ ) ) ;

398 case PACKET_TYPE_Contention :

399 return ( ContentionSlotLength_ − ( RampTimeAdjustment +←↩

TracePreamble_ + IFS_ ) ) ;

400 case PACKET_TYPE_Header :

401 return ( HeaderSlotLength_ − ( RampTimeAdjustment + ←↩

TracePreamble_ + IFS_ ) ) ;

402 case PACKET_TYPE_IS :

403 return ( ISSlotLength_ − ( RampTimeAdjustment + ←↩

TracePreamble_ + IFS_ ) ) ;

404 case PACKET_TYPE_DATA :

405 return ( DataSlotLength_ − ( RampTimeAdjustment + ←↩

TracePreamble_ + IFS_ ) ) ;

406 default :

407 return (−1.0) ;

408 break ;

409 } ;

410 } ;
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411

412 TRACETimeType GetTimeinSlotLength ( TRACETimeType t=−1.0) {

413 if (t<0) t = NOW ;

414 int sn = GetSlotNumber ( ) ;

415 if (sn>0) return ( Timein_t_mode_Operation − sn * ←↩

GetSlotLength ( ) ) ;

416 else return ( Timein_t_mode_Operation ) ;

417 } ;

418

419 int MyGTDMASlots_ [ MAXNTD_ ] ; //BK

420

421 void GetRandomContentionSlotNumber ( ) ;

422 void contentionTimer ( ) ;

423

424 //RESET Funcion

425 void ResetCHTable ( ) ;

426 void ResetScheduleControlTable ( ) ;

427 void ResetTransmissionSchedule ( ) ;

428 void ResetRcvPwrLevel ( ) ;

429 void ResetISTable ( ) ;

430 void ResetLCTable ( ) ;

431 void ResetDACKTable ( ) ;

432 void ResetDataSlotSourceList ( ) ;

433 void ResetIntfLevel ( ) ;

434 void ResetGTDMASlots ( ) ;

435

436

437 //MONITORING

438 void PrintTimeFrameParameters ( ) ;

439 void PrintTraceManegerState ( ) ;



254

440 void PrintTransmissionSchedule ( FILE *foutp ) ;

441 void PrintDataSlotSourceList ( ) ;

442 void PrintIntfLevel ( FILE *foutp ) ;

443 void PrintCHTable ( FILE *foutp ) ;

444 void ClearMONITORFlags ( ) ;

445

446 int ListenDataState ;

447

448 TRACETimeType LastQueryTime ;

449 void Query ( ) {

450 if ( NOW − LastQueryTime > 1) {// 1 sec i n t e r v a l {

451 TRACETimeType BeforeQuery , AfterQuery ;

452 TRACEClock . GetCurrentSeconds ( BeforeQuery ) ;

453 LastQueryTime = NOW ;

454 PrintTRACEState ( stdout ) ;

455 TRACEClock . GetCurrentSeconds ( AfterQuery ) ;

456 StreamRegister_ . PrintList ( stdout ) ;

457 printf ("******End of TRACE Query Report Took = %.7f ←↩

secs*******\n" , AfterQuery − LastQueryTime ) ;

458

459 }

460 } ;

461 void PrintTRACEState ( FILE *foutp ) {

462 fprintf ( foutp , "******TRACE Query Report*******\n" ) ;

463 fprintf ( foutp , "<%d> t_mode_operation = %d [FNum= %d ←↩

Timein_t_mode_Operation = %.7f @ %.7f]\n" , index_ , ←↩

t_mode_operation , FNumber , Timein_t_mode_Operation , ←↩

NOW ) ;

464

465 if ( Stream2BeSent != ( Stream *) 0)
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466 fprintf ( foutp , " Stream2BeSent ->sourceID = %d ←↩

DoIHaveData_ = %d tDoIHaveAReservedSlot_=%d ←↩

numoftimesInputfileisread =%d \n" , Stream2BeSent−>←↩

sourceID , DoIHaveData_ , DoIHaveAReservedSlot_ ,←↩

numoftimesInputfileisread ) ;

467

468 fprintf ( foutp , "BeaconPacketState = %d CAPacketState = %←↩

d ContentionPacketState = %d HeaderPacketState = %d ←↩

ISPacketState = %d DataPacketState = %d \n \n"

469 , BeaconPacketState , CAPacketState , ←↩

ContentionPacketState , HeaderPacketState , ←↩

ISPacketState , DataPacketState

470 ) ;

471

472 for ( int i=0; i<NumberofDestinations ; i++) {

473 fprintf ( foutp , "NumberofRxDataPackets[%d] = %d " , i , ←↩

NumberofRxDataPackets [ i ] ) ;

474 }

475 fprintf ( foutp , "\n" ) ;

476 fprintf ( foutp , "TotalNumberofTxDataPckt \t= %d \←↩

tTotalNumberofRxPckt \t= %d \tTotalNumberofTxPckt \t= ←↩

%d\n" , TotalNumberofTxDataPckt , TotalNumberofRxPckt , ←↩

TotalNumberofTxPckt ) ;

477 for ( int i=0; i<NumberofPacketTypes ; i++) {

478 fprintf ( foutp , "NumberofRxPckt[%d] = %d \t ←↩

NumberofTxPckt[%d] = %d \n" , i , NumberofRxPckt [ i ] , i ←↩

, NumberofTxPckt [ i ] ) ;

479 }

480 fprintf ( foutp , "\n" ) ;

481
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482 fprintf ( foutp , "LastReceivedDataSourceID \t= %d \←↩

tLastReceivedDataPacketID \t= %d \n" , ←↩

LastReceivedDataSourceID , LastReceivedDataPacketID ) ;

483 fprintf ( foutp , "LastReceivedDataPacketID1 \t= %d \←↩

tLastReceivedDataPacketID2 \t= %d \←↩

tLastReceivedDataPacketID3 \t= %d \←↩

tLastReceivedDataPacketID4 \t= %d\n"

484 , LastReceivedDataPacketID1 , LastReceivedDataPacketID2 , ←↩

LastReceivedDataPacketID3 , LastReceivedDataPacketID4 ) ;

485

486 fprintf ( foutp , "AmIASourceNode_ \t \t= %d feof(←↩

fp_indatafile) = %d DoINeed2SendContention_ = %d \n" , ←↩

AmIASourceNode_ , feof ( fp_indatafile ) , ←↩

DoINeed2SendContention_ ) ;

487 fprintf ( foutp , "NextController_ \t \t= %d \←↩

tDoIHaveAReservedSlot_ \t \t= %d \←↩

tMyContentionSlotNumber_ \t= %d\n" , NextController_ , ←↩

DoIHaveAReservedSlot_ , MyContentionSlotNumber_ ) ;

488 fprintf ( foutp , "AmITheController_ \t \t= %d \←↩

tMyGTDMASlot_ \t \t \t= %d \tActiveDataSlots_ \t \t= %←↩

d \tAllActiveDataSlots_ \t= %d TotalNumofCHResigns = %←↩

d \n \n" , AmITheController_ , MyGTDMASlot_ , ←↩

ActiveDataSlots_ , AllActiveDataSlots_ , ←↩

TotalNumofCHResigns ) ;

489 for ( int t=0; t<NTD_ ; t++){

490 fprintf ( foutp , "MyGTDMASlots[%d] = %d \t" , t , ←↩

MyGTDMASlots_ [ t ] ) ;

491 }

492 fprintf ( foutp , "\n\n" ) ;

493 for ( int t= 0 ; t<NTD_ ; t++) {
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494 for ( int i= 0 ; i<NDS_ ; i++) {

495 if ( TrSchSrcPrio_ [ t ] [ i ] . src_ >= 0 ) // I f v a l i d node

496 fprintf ( foutp , "TrSchSrcPrio_[%d][%d].src_ = %d \t"←↩

,t , i , TrSchSrcPrio_ [ t ] [ i ] . src_ ) ;

497 else

498 fprintf ( foutp , "TrSchSrcPrio_[%d][%d].src_ = --- \t←↩

" ,t , i ) ;

499 }

500 fprintf ( foutp , "\n" ) ;

501 }

502 PrintIntfLevel ( foutp ) ;

503 PrintCHTable ( foutp ) ;

504 } ;

505

506 bool DataReady ;

507 char DataPayload [ int ( PAYLOADSIZE ) ] ;

508

509

510 protected :

511

512 static int ISFLOODINGENERGYSAVINGON ;

513 static int MONITOR_fetchSlot ;

514

515 static int DEBUG_FUNCTION_INPUT_OUTPUT ;

516 static int MONITOR_SetSST ;

517 static int MONITOR_BEACON_TRANSMISSION ;

518 static int MONITOR_CA_TRANSMISSION ;

519 static int MONITOR_HEADER_TRANSMISSION ;

520 static int MONITOR_PI_TRANSMISSION ;

521 static int MONITOR_PI_RECEPTION ;
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522 static int MONITOR_SOURCE_DATA_TRANSMISSION ;

523 static int MONITOR_ALL_DATA_TRANSMISSION ;

524 static int MONITOR_CH_DATA_TRANSMISSION ;

525 static int MONITOR_ALL_PACKET_RECEPTIONS ;

526 static int MONITOR_DATA_PACKET_RECEPTION ;

527 static int MONITOR_MCastNode_DATA_PACKET_RECEPTION ;

528 static int MONITOR_LATE_PACKET_DROPS ;

529 static int MONITOR_NEW_CLUSTERHEAD ;

530 static int MONITOR_RESIGNING_CLUSTERHEAD ;

531 static int MONITOR_TIME_FRAME_PARAMETERS ;

532 static int MONITOR_CHTable_AT_LATE_PACKET_DROPS ;

533 static int ←↩

MONITOR_TransmissionSchedule_AT_HEADER_TRANSMISSION ;

534 static int MONITOR_TransmissionSchedule ;

535 static int DEBUG_DOUBLE_LISTING_IN_TRANSMISSION_SCHEDULE ;

536 static int MONITOR_VIRTUAL_DATA_ACKs ;

537 static int MONITOR_CH_NODATA ;

538

539 static int MONITOR_PACKET_PREP ;

540

541 static int MONITOR_GATEWAYS ;

542 static int MONITOR_ND_TRANSMISSION ;

543 static int MONITOR_ND_RECEPTION ;

544 static int MONITOR_MCastRelayNode_DATA_TRANSMISSION ;

545 static int MONITOR_CheckReStartUp ;

546 static int NO_ND ;

547 static int NO_CH_DATA_TRANS ;

548

549 static int MONITOR_SENDCONTENTION ;

550 static int MONITOR_DoINeed2SendContention ;
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551 static int MONITOR_CONTENTION_RECEPTION ;

552 static int MONITOR_EXTRACONTENTION ;

553

554 static int MONITOR_UNIQUE_DATA_RECEPTION ;

555 static int MONITOR_DUPLICATE_DATA_RECEPTION ;

556 static int MONITOR_HANDLEOUTGOING ;

557 static int MONITOR_SelectGTDMA ;

558 static int MONITOR_IntLevelAtHeader ;

559 static int MONITOR_CheckDACK ;

560 static int MONITOR_FRAME_SELECTION ;

561 static int MONITOR_CHTABLE_AT_PROCESSING ;

562 static int MONITOR_OBSOLETE_CHS ;

563 static int MONITOR_PRINT_CHS_FILE ;

564 static int MONITOR_PRINT_RX_FILE ;

565 static int MONITOR_PRINT_TX_FILE ;

566 static int SOURCEISACLUSTERHEAD ;

567 static int MONITOR_RecordChannelPower ;

568 } ;
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