
Enabling Energy Efficient Sensing and Computing Systems

by

He Ba

Submitted in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Wendi B. Heinzelman

Department of Electrical and Computer Engineering

Arts, Sciences and Engineering

Edmund A. Hajim School of Engineering and Applied Sciences

University of Rochester

Rochester, New York

2015

ii

Biographical Sketch

The author was born in Beijing, China. He received his Bachelor of Science

degree in Electrical Engineering from Beijing Institute of Technology in 2008 and

his Master of Science degree from the University of Rochester in 2011. He pursued

his doctoral research under the direction of Professor Wendi Heinzelman. He

worked as an Informatics Intern at UCB Pharma from February 2012 to June

2012. He worked as a Systems Engineering Intern at ASSIA Inc. from June 2014

to October 2014. His research interests lie in the areas of wireless sensor networks,

signal processing and mobile computing. After graduation, he will start working

at KPMG as a Software Engineer in Big Data from March 2015.

The following publications were a result of work conducted during doctoral

study:

He Ba, Ilker Demirkol, and Wendi Heinzelman, “Feasibility and Benefits of

Passive RFID Wake-up Radios for Wireless Sensor Networks,” in IEEE Global

Telecommunications Conference, 2010.

He Ba, Jeff Parvin, Luis Soto, Ilker Demirkol, and Wendi Heinzelman, “Passive

RFID-based Wake-up Radios for Wireless Sensor Network,” in Wirelessly Powered

Sensor Networks and Computational RFID, Springer Publishers, 2012.

He Ba, Na Yang, Ilker Demirkol, and Wendi Heinzelman, “BaNa: A Hybrid

Approach for Noise Resilient Pitch Detection,” IEEE Statistical Signal Processing

Workshop, 2012.

Li Chen, He Ba, Wendi Heinzelman and Andre Cote, “RFID Range Extension

with Low-power Wireless Edge Devices,” in Proceedings of International Confer-

ence on Computing, Networking and Communications, 2013.

iii

Li Chen, Stephen Cool, He Ba, Wendi Heinzelman, Ilker Demirkol, Ufuk

Muncuk, Kaushik Chowdhury and Stefano Basagni, “Range Extension of Passive

Wake-up Radio Systems through Energy Harvesting,” in Proceedings of IEEE

ICC, 2013.

He Ba, Wendi Heinzelman, Charles-Antoine Janssen and Jiye Shi, “Mobile

Computing - A Green Computing Resource,” in Proceedings of IEEE Wireless

Communications and Networking Conference, 2013.

Tolga Soyata, He Ba, Wendi Heinzelman, Minseok Kwon and Jiye Shi, “Cloudlets:

Extending the Utility of Mobile Computing,” in Communication Infrastructures

for Cloud Computing: Design and Applications, IGI Global, 2013.

Rajani Muraleedharan, Ilker Demirkol, Ou Yang, He Ba, Surjya Ray, Wendi

Heinzelman, “Sleeping Techniques for Reducing Energy Dissipation,” in The Art

of Wireless Sensor Networks, Springer Berlin Heidelberg, 2014.

Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, Wendi Heinzelman, “BaNa:

A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and

Music,” in IEEE/ACM Transactions on Audio, Speech, and Language Processing,

2014.

Minseok Kwon, Zuochao Dou, Wendi Heinzelman, Tolga Soyata, He Ba, Jiye

Shi, ”Use of Network Latency Profiling and Redundancy for Cloud Server Selec-

tion,” in IEEE International Conference on Cloud Computing, 2014.

Colin Funai, Cristiano Tapparello, He Ba, Bora Karaoglu, and Wendi Heinzel-

man, “Extending Volunteer Computing through Mobile Ad Hoc Networking,” in

IEEE Global Telecommunications Conference, 2014.

Cristiano Tapparello, Colin Funai, Shurouq Hijazi, Abner Aquino, Bora Karaouglu,

He Ba, Jiye Shi, and Wendi Heinzelman, “Volunteer Computing on Mobile De-

vices: State of the Art and Future Research Directions,” in Enabling Real-Time

Mobile Cloud Computing through Emerging Technologies, IGI Global, 2015

iv

Acknowledgements

Throughout my study at the University of Rochester, I have received infinite

help and support from a number of people, without whom this dissertation would

not be completed.

First and foremost, I would like to express my deepest appreciation to my

advisor, Prof. Wendi Heinzelman. Her knowledge, wisdom, insight, patience and

working attitude will not only lead me towards my doctoral degree but will also

benefit me beyond my graduation.

My gratitude also goes to Prof. Mark Bocko, Prof. Zhiyao Duan and Prof.

Kai Shen for serving as my thesis committee members and providing invaluable

comments and suggestions to my research and thesis.

I would like to express my thanks to Dr. Jiye Shi, for offering me the internship

opportunity at UCB Pharma and for providing insightful guidance and support

during our collaboration since 2012.

Over the years, I have had the pleasure to work with many exceptional fac-

ulty members and researchers. Among them, I would like to specially thank Prof.

Melissa Sturge-Apple and Prof. Zeljko Ignjatovic from Project CONNECT, Dr.

Ilker Demirkol from Project GENIUS, Prof. Tolga Soyata, Prof. Minseok Kwon

and Dr. Rajani Muraleedharan from Project MOCHA, and Dr. Cristiano Tap-

parello from Project GEMCloud.

I am grateful to all my brilliant colleagues in the Wireless Communications

and Networking Group. Specifically, I would like to acknowledge Ou Yang, Tianqi

Wang, Chen-Hsiang Feng, Surija Ray, Bora Karaoglu, Li Chen, Na Yang and Colin

Funai for their inspirations and collaborations. They and many other friends have

v

made my life in Rochester bright, colorful and filled with memories that I will

always cherish.

Last but not least, I would like to give my special thanks to my dear parents

Hong Ba and Xiang Shen. Without their love, encouragement and support, I

would not be able to come to the US and achieve my goals.

vi

Abstract

Wireless electronic devices are becoming more and more powerful while re-

maining portable and affordable. Some of the smartphones and tablets on the

market today are equipped with multi-core CPUs and GPUs and have compara-

ble computing capabilities to PCs, along with the improved network bandwidth

and connectivity provided by cellular networks. Given this state of current tech-

nology, in this dissertation we develop a variety of techniques to enable energy

efficient sensing and computing systems. As an example of such a system, consider

a personal healthcare system, where wireless sensors are used to gather physio-

logical data and send the data to a local cloudlet. The local cloudlet preprocesses

the data and transmits the data to a remote cloud server for computation and

storage purposes. Data analysis results are sent back to the cloudlet or directly

to the user’s smartphone for display.

One of the challenges in developing such a system is the data acquisition

and processing. For applications like emotion classification or personal health,

sensed data are not always gathered in clean environments and therefore are often

corrupted by noise. Noisy sensing signals must be processed to improve the signal-

to-noise ratio (SNR) in order to extract relevant information. For example, in an

emotion classification application, speech data may contain babble noise from

people talking in the background. In order to extract pitch, which is a key feature

in emotion classification algorithms, from noisy speech data, we developed a hybrid

pitch detection algorithm named BaNa. The BaNa algorithm combines the idea

of using the ratios of harmonic frequencies and the Cepstrum approach to find the

pitch from a noisy signal. We tested our BaNa algorithm on real human speech

samples corrupted by various types of realistic noise. Evaluation results show the

vii

high noise resiliency of BaNa compared to other state-of-the-art pitch detection

algorithms.

The second challenge comes from considering the energy availability. Wireless

sensors are usually battery powered and hence have limited lifetime. To extend the

battery life of a sensor node, power management approaches have to be utilized.

The energy of a node can be saved by putting its radio and other components

into sleep mode occasionally. To wake up a sensor node so that it can perform its

functionalities, traditionally, a duty cycling approach is used, where an internal

timer fires to wake up the sensor node from the sleep state. In this case, the

sensor’s energy efficiency may suffer from idle listening since it has no knowledge

of the channel while sleeping. We created a passive wake-up radio sensor node

named WISP-Mote by using a programmable RFID tag as an external wake-

up radio for a Tmote Sky sensor node. The wake-up radio reduces the energy

wasted on idle listening and hence improves the energy efficiency of the sensor

node. We characterized the WISP-Mote’s performance by measuring its energy

consumption for different operations and assessing its wake-up probabilities in

different environments for various WISP-Mote to reader distances. MATLAB

simulation results show that the energy efficiency of a sensor network using the

WISP-Motes is much greater than when using traditional duty-cycling nodes.

Computation of energy efficient sensing and computing systems can be local

on the node, or, for more intense applications, computing can be off-loaded to

external computing resources, such as cloud-based resources, to save the energy

of the node. However, a traditional cloud is composed of powerful but energy-

hungry workstations. The growth of the population of mobile devices such as

smartphones and tablets provides a huge amount of idle computing power. We

describe the design and implementation of a mobile computing system prototype

named GEMCloud that utilizes energy efficient mobile devices (e.g., smartphones

and tablets) as computing resources. The computing power and energy efficiency

viii

of the mobile devices are evaluated through comprehensive experiments. The

results show that a cloud computing system with enough mobile devices working

cooperatively is able to save 55% to 98% of the energy consumption of conventional

server-based clouds while providing comparable computing speed.

By addressing the challenges of data processing, energy efficient operation

and computation off-loading, we have provided the next step forward for energy

efficient sensing and computing systems.

ix

Contributors and Funding
Sources

This work was supported by a dissertation committee consisting of Professors

Wendi Heinzelman (advisor), Mark Bocko and Zhiyao Duan of the Department of

Electrical and Computer Engineering, Professor Kai Shen of the Department of

Computer Science and Dr. Jiye Shi from UCB Pharma. The following chapters

of this dissertation were jointly produced, and were funded by multiple sources.

My participation and contributions to the research as well as funding sources are

as follows.

I am the primary author of Chapter 2 with the exception of Section 2.4, which

was based on collaborations with Luis Soto and Jeff Parvin. I collaborated with

Dr. Ilker Demirkol and Dr. Wendi Heinzelman for this work. The work described

in this chapter was published in Elsevier Ad Hoc Networks in 2013. Part of

this work was published in the IEEE Global Telecommunications Conference in

2010. Section 2.4 appeared as a chapter in Wirelessly Powered Sensor Networks

and Computational RFID, Springer Publishers, 2012. This work was funded in

part by NSF CNS-1143662 and was supported in part by a generous donation of

equipment from Intel Research.

I am the primary author of Chapter 3. The research work described in Chap-

ter 3 was based on my collaborations with Na Yang, Weiyang Cai, Dr. Ilker

Demirkol and Dr. Wendi Heinzelman. The tests of the BaNa algorithm on An-

droid were based on an app implemented by Thomás Horta. The work described in

this chapter was published in IEEE Transaction on Audio, Speech and Language

Processing journal in 2014. Part of this work was published in IEEE Statistical

x

Signal Processing Workshop in 2012. This work was supported by the Eunice

Kennedy Shriver National Institute of Child Health and Human Development

Grant R01HD060789.

Chapter 4 was based on my collaborations with Dr. Tolga Soyata, Dr. Wendi

Heinzelman, Dr. Minseok Kwon and Dr. Jiye Shi. I am the primary author

of this chapter except the work described in Section 4.1 and Section 4.2. This

work appeared as a chapter in the book Communication Infrastructures for Cloud

Computing: Design and Applications, IGI Global, 2013. This work was funded

in part by UCB Pharma, and by CEIS, an Empire State Development-designated

Center for Advanced Technology.

I am the primary author of Chapter 5 and Chapter 6. I collaborated with Dr.

Wendi Heinzelman, Charles-Antoine Janssen and Dr. Jiye Shi. Part of this work

was published in IEEE Wireless Communications and Networking Conference in

2013. This work was funded in part by UCB Pharma, and by CEIS, an Empire

State Development-designated Center for Advanced Technology.

xi

Table of Contents

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 The Growth of Personal Mobile Devices 1

1.2 The Envisioning of Energy Efficient Sensing and Computing Systems 2

1.3 Design and Development Challenges 5

1.4 Dissertation Contributions and Organization 6

2 Energy Savings for Sensors Using Passive Wake-Up Radios 8

2.1 Introduction . 8

2.2 State of The Art In Radio Wake-up 11

2.3 RFID Wake-up Sensor Device . 16

2.4 Characterization of WISP-Mote 20

2.5 Simulations . 28

2.6 Applications That Can Benefit From WISP-Motes 43

2.7 Conclusions . 49

xii

3 Noise Resilient Pitch Detection from Speech Data 51

3.1 Introduction . 51

3.2 Related Work . 56

3.3 BaNa F0 Detection Algorithm for Speech 59

3.4 Experimental Settings for BaNa F0 Detection For Speech 68

3.5 F0 Detection Performance For Speech Signals 77

3.6 BaNa F0 Detection Algorithm for Music 85

3.7 Implementation Issues . 90

3.8 Conclusions . 92

4 Mobile Cloud Computing - A Survey 94

4.1 Introduction . 94

4.2 Technological Challenges in Mobile-Cloud

Computing . 97

4.3 Architectural Design . 106

4.4 Task Management Among Mobile, Cloudlet, and Cloud 113

4.5 Conclusions and Future Research Directions 124

5 Energy Savings for Mobile Cloud Computing 128

5.1 Introduction . 128

5.2 State of the Art . 130

5.3 The GEMCloud System . 132

5.4 Performance Evaluations . 137

5.5 Conclusions . 143

xiii

6 Volunteer Computing on Mobile Devices 146

6.1 Introduction . 146

6.2 GEMCloud Platform . 149

6.3 Volunteer Computing on Mobile Devices Study Details 151

6.4 Participants’ Availability . 155

6.5 Analysis of Participants’ Behavior 160

6.6 Factors that Impact a Volunteer’s Behavior 167

6.7 Conclusions . 174

7 Conclusions and Future Directions 176

7.1 Conclusions . 176

7.2 Future Directions . 178

Bibliography 180

xiv

List of Tables

2.1 Wake-up Receiver (WuR) Comparisons 15

2.2 Power Consumption Measurements of a T-mote Sky Node 19

3.1 Evaluated speech databases and their features. Parameters are

tuned using samples from the Arctic database. 69

3.2 Optimal values of tuned parameters, and other values of the pa-

rameters for which BaNa algorithm is tested. 75

3.3 Elapsed time (in seconds) for F0 detection using the BaNa algo-

rithm implemented on an Android platform with a different number

of threads and FFT sizes. The speech file is 1.3 s long. 93

3.4 Elapsed time (in seconds) for F0 detection using the BaNa algo-

rithm implemented on an Android platform for speech samples with

different lengths. 93

4.1 Cloud-based applications and their resource requirements. Each

application has a significantly different response time requirement

and resource utilization tolerance to reduce costs while still keeping

the functionality within expected bounds. 96

4.2 Average and standard deviation of latencies over wired connections

(in ms). 100

xv

4.3 Average and standard deviation of latencies over wireless connec-

tions (in ms). 101

4.4 The major differences between the cloudlet and the conventional

cloud [1]. 105

4.5 Task Partitioning Approaches Comparison 115

5.1 Device specifications (Note: “* 2 (4)” means there are two (four)

physical CPUs in the workstation). 138

5.2 Performance results of the Xiaomi Mi-One (1 CPU, 2 Cores) . . . 143

5.3 Performance results of the Samsung Galaxy S3 (1 CPU, 2 Cores) 143

5.4 Performance results of the Asus Nexus 7 (1 CPU, 4 Cores) 143

5.5 Performance results of the workstation 1 (2 CPUs, 2 Cores) . . . 144

5.6 Performance results of the workstation 2 (2 CPUs, 8 Cores) . . . 144

5.7 Performance results of the workstation 3 (4 CPUs, 64 Cores) . . . 145

6.1 Survey Stats: Daily usage time of smartphones and tablets 162

6.2 Survey Stats: Charging frequency of smartphones and tablets . . 163

6.3 Survey Stats: Charging time of smartphones and tablets 164

6.4 Volunteer performance with regard to negative impact 172

6.5 The impact of user-app interaction frequency 173

xvi

List of Figures

1.1 Smart Sensing and Computing at Home Illustration. 3

2.1 A WISP-Mote. 16

2.2 Broadcast-based wake-up probabilities in an open environment. 24

2.3 ID-based wake-up probabilities in an open environment. 25

2.4 Broadcast-based wake-up probabilities in a closed environment. 25

2.5 ID-based wake-up probabilities in a closed environment. 26

2.6 Broadcast-based wake-up and ID-based wake-up probabilities in a clus-

tered environment. 27

2.7 WISP-Mote vs. duty-cycling with increasing packet rate (0.002 nodes/m2,

1 data MULE, unlimited buffer). 35

2.8 WISP-Mote vs. duty-cycling with increasing node density (1 pkt/min,

1 data MULE, unlimited buffer). 37

2.9 WISP-Mote vs. duty-cycling with limited buffer size (0.002 nodes/m2,

1 data MULE, buffer size = 10 pkts). 39

2.10 WISP-Mote vs. duty-cycling with increasing MULE quantities (0.002

nodes/m2, 1 pkt/min, unlimited buffer size). 41

2.11 Comparisons among different mobility models for the data MULE; RW=Random

Walk, RD=Random Direction, SP=Snake Path (0.002 nodes/m2, 1

pkt/min, unlimited buffer size). 42

xvii

2.12 Patient monitoring scenario (unlimited buffer), “BCWM stands for Broadcast-

based WISP-Mote, “ID-WM stands for ID-based WISP-Mote. 44

2.13 Animal monitoring scenario; D1= 1% Duty-cycling with R = 1, W1=WISP-

Mote with R = 1, D2=1% Duty-cycling with R = 2, W2=WISP-Mote

with R = 2 (0.2 pkt/min, buffer size unlimited) 47

3.1 Spectrum of one frame of clean speech and speech with babble noise

at 0 dB SNR. 54

3.2 Tolerance ranges for harmonic ratios when the number p of selected

spectral peaks is set to 5, and an example to illustrate the procedure

for determining the F0 candidates. 61

3.3 For one clean speech utterance: a) speech waveform and the auto-

labeled ground truth F0 derived from three algorithms: PEFAC,

YIN, and Praat, and b) the spectrogram. The frame length used

to compute the spectrogram is 60 ms. 72

3.4 GPE rates of BaNa for the LDC database [2] with eight types of

AURORA noise [3] averaged over all SNR values, using individually

optimized parameter sets that provide the lowest GPE rates for a

specific type of AURORA noise, and using the tuned parameter set

selected in the chapter. Detected F0 deviating more than 10% from

ground truth are errors. 76

3.5 GPE rate of the different algorithms for the LDC database [2],

averaged over all eight types of noise. Detected F0 deviating more

than 10% from ground truth are errors. 77

3.6 GPE rate of the different algorithms for the CSTR database [4],

averaged over all eight types of noise. Detected F0 deviating more

than 10% from ground truth are errors. 78

xviii

3.7 GPE rate of the different algorithms for the KEELE database [5],

averaged over all eight types of noise. Detected F0 deviating more

than 10% from ground truth are errors. 79

3.8 GPE rate of the different algorithms for the LDC database [2] for

speech with babble noise. Detected F0 deviating more than 10%

from ground truth are errors. 80

3.9 GPE rate of the different algorithms for the LDC database [2] for

speech with white noise. Detected F0 deviating more than 10%

from ground truth are errors. 81

3.10 GPE rate of BaNa, PEFAC and YIN for the LDC database [2] with

eight types of noise at 0 dB SNR. Detected F0 deviating more than

10% from ground truth are errors. 83

3.11 GPE rate of BaNa, BaNa without the Cepstrum candidate, BaNa

without the lowest frequency candidate, BaNa without both added

candidates, and BaNa without post-processing for the LDC database,

averaged over all eight types of noise. Detected F0 deviating more

than 10% from ground truth are errors. 84

3.12 GPE rate of BaNa and BaNa music for a piece of violin music with

eight types of noise at 0 dB SNR. Detected F0 deviating more than

3% from ground truth are errors. 86

3.13 GPE rate of the different algorithms for a piece of violin music

with eight types of noise. Detected F0 deviating more than 3%

from ground truth are errors. 87

3.14 GPE rate of the different algorithms for a piece of trumpet music

with eight types of noise. Detected F0 deviating more than 3%

from ground truth are errors. 89

xix

3.15 GPE rate of the different algorithms for a piece of clarinet music

with eight types of noise. Detected F0 deviating more than 3%

from ground truth are errors. 90

3.16 GPE rate of the different algorithms for a piece of piano music

with eight types of noise. Detected F0 deviating more than 3%

from ground truth are errors. 91

3.17 GPE rate of BaNa, YIN and HPS for a piece of violin music with

eight types of noise at 0 dB SNR. Detected F0 deviating more than

3% from ground truth are errors. 92

4.1 A generalized mobile-cloud architecture. 108

4.2 The Mobile-Cloud computing and Mobile-Cloudlet-Cloud comput-

ing architectures: mobile devices directly interact with a cloud or

via the cloudlet and use dynamic partitioning to achieve their qual-

ity of service (QoS) goals (e.g., latency, cost). 111

4.3 The cost model of mobile cloud computing (adapted from [7,8]). . 126

5.1 Computing device sales comparisons. Data are from [9]. 129

5.2 The mobile computing system architecture. 133

5.3 The server-client protocol flow chart. 134

5.4 The prototype screen shot from an Android phone. 136

5.5 Comparison of computing time. 140

5.6 Comparison of energy consumption. 141

6.1 The architecture of the GEMCloud platform. 148

6.2 Participant affiliations. 154

6.3 Participant age distribution. 154

xx

6.4 Histogram of the number of tasks finished by each volunteer during

the first 60 days. 156

6.5 Map showing where volunteer computing users are located. 157

6.6 Number of active participants since the study started. 158

6.7 Number of daily task results returned since the study started. . . 158

6.8 Number of active participants since joining the study. 159

6.9 Active ratio for the first 60 days. 160

6.10 Smartphone users usage pattern. 165

6.11 Tablet users usage pattern. 166

6.12 Number of preference changes per device. 167

6.13 Number of devices that allow computing on battery vs. charging

only. 168

6.14 Number of devices that allow computing on cellular data vs. Wi-Fi

only. 169

6.15 Number of daily active volunteers according to the day the users

received the prizes. 170

6.16 Number of tasks finished each day according to the day they re-

ceived the prizes. 171

1

1 Introduction

1.1 The Growth of Personal Mobile Devices

With recent technology advancements, nowadays wireless electronic devices have

become more and more powerful, while retaining the important features of porta-

bility and affordability. The smartphone is a perfect example. The 2010 released

Motorola Backflip Android smartphone has only a 528 MHz ARM 11 single-core

CPU [10], while the 2011 released Samsung Galaxy Nexus has a 1.2 GHz TI

OMAP4460 dual-core CPU [11], a flagship at the time. By the end of 2012, a

smartphone is able to be equipped with a 1.7 GHz quad-core CPU as the one on

the HTC One X Plus [12]. The screen size has increased from the 3.1 inch with

320 x 480 pixels of the 2010 Motorola Backflip to the 4.7 inch with 720 x 1280

pixels of the 2012 HTC One X Plus, providing a much better visual experience,

while the weight of the smartphone remains almost the same (133 g vs. 135 g).

With all of these improvements, the price of a smartphone remains affordable,

normally ranging from about $300 to about $600 without a carrier contract or

$0-$200 with a 2-year contract with the carrier.

At the same time, the cellular network (infrastructure) is evolving as well. By

the end of 2012, according to Verizon Wireless [13], Verizon’s 4G LTE had covered

2

470 cities and nearly 80% of the population in the US. AT&T [14] has also built

up a large 4G LTE network, covering 134 cities and over 285 million people.

Along with other carriers, the 4G network has already had a wide coverage and

is expanding fast. Although the network bandwidths offered by different carriers

vary, in general, the current 4G network provides a downloading speed of at least

around 5-10 Mbps [15]. The increasing network bandwidth and extensive network

coverage provide the basis for a variety of potential applications.

The powerful computation capability, improved user experience, increased

portability and affordability, and better network bandwidth and connectivity all

have helped portable computing devices such as smartphones and tablets to be-

come increasingly popular. The popularity of these devices results in an enor-

mous amount of total computing power that could be potentially utilized. These

portable wireless computing devices, along with the existing wireless-connected

PCs and laptops, form a ubiquitous computing environment that could be har-

nessed to provide an unlimited amount of computing power to the user.

1.2 The Envisioning of Energy Efficient Sensing

and Computing Systems

The powerful computing speed, fast connectivity and sensing capability possessed

by smartphones and other personal wireless electronic devices allow us to envision

a connected sensing and computing system. Imagine the following scenario in the

near future:

Tyrion is a diabetic patient who requires an insulin injection at certain times

throughout the day. He wears a wireless glucose monitor on his wrist, which

monitors and reports his blood glucose level to his smartphone in real time. The

most recent glucose level data received by the smartphone are stored locally on

3

the smartphone. The historical glucose level data are transmitted to and stored in

the cloud for future analytic usage by Tyrion’s doctor in another city. Previously,

Tyrion had to inject insulin once every several hours. To prevent himself from

forgetting the injections, Tyrion had to set up a timer to remind himself. Now,

thanks to the real-time monitoring, the smartphone automatically analyzes his

glucose level and predicts the time when he needs to inject insulin. When that

time comes, the smartphone sends a command to an insulin injector carried by

Tyrion, which is also wirelessly connected to the system, to inject an accurate

amount of insulin.

The above case represents an example of using a smartphone and a wireless

sensor as a smart sensing and computing system in personal healthcare. With the

development of sensing devices, there are numerous applications such as this that

can be created. In the near future, we envision an energy efficient sensing and

computing system for home applications, as shown in Figure 1.1.

In this system, sensors to detect a user’s daily activities are located in the bed,

couch, door and other places. Physiological data are gathered via wearable sensor

Figure 1.1: Smart Sensing and Computing at Home Illustration.

4

devices that are equipped on the user’s body. Using passive wake-up technology,

the sensors do not have to sense or transmit data unless necessary, which helps to

preserve the stored energy on the sensors. The sensor data are transferred to a

local cloudlet or nearby computing server (e.g., the laptop in Figure 1.1), which

provides intermediate processing of the raw data to reduce the data size, improve

the signal-to-noise ratio (SNR) and increase the security. The processed data

then are transmitted to available cloud resources for computation and storage

purposes. The cloud resources may include remote data centers, local computers

such as desktops and laptops, and mobile devices such as smartphones and tablets.

The decisions on where to send the data for processing may be based on algorithms

that consider multiple criteria, such as the energy and time cost for transmitting

the data, the energy and time cost for completing the computations, the monetary

cost for using these resources and the security level of the place to which the data

are being transferred. Using proper algorithms, the system is able to achieve better

energy efficiency while not sacrificing much quality of service. After completing

the data processing, the results are transmitted back to the cloudlet and displayed

at the user’s smartphone, tablet, laptop or desktop. As introduced in the above

diabetic patient’s example, the result may automatically trigger an actuator to

work.

We can imagine a large number of such applications that may benefit from this

system. Another example is real-time stress and emotion detection. Previously,

due to the large amount of data and computations to process the data, stress or

emotion detection has been done off-line. With the help of cloud resources from

both the local devices and the remote cloud servers, the detection results may get

back to the user in real-time, providing the user the possibility to take actions to

release the high stress or deal with the negative emotions in time.

5

1.3 Design and Development Challenges

While the applications described above all seem promising, there are a number of

technical challenges that must be addressed before these applications can become

reality.

The first challenge relates to data acquisition and processing. Due to the

mobility of portable devices, their environments are usually unstable, which results

in the difficulties of acquiring clean data. For example, speech data recorded by a

microphone may contain background noise from the people chatting next to the

mobile phone user [16]; or ECG data from an ECG monitor may be corrupted

by the static generated by the movements of body and clothes [17]. Therefore,

it is necessary to preprocess the data in order to enhance the quality of the raw

data (i.e., signal-to-noise ratio (SNR) of the data). It is also important to seek

out approaches or algorithms to process the noisy data and retrieve the relevant

information from the noisy data.

Since portable devices are normally powered by batteries and only have lim-

ited battery lives, it is crucial to preserve energy [18]. To achieve better energy

efficiency, software and hardware approaches can be used. Software approaches

include introducing a better power management strategy for the device (e.g., duty-

cycling of the sensors and radios equipped on the device, reduction of CPU fre-

quency depending on the computation load, controlling of screen brightness ac-

cording to the environmental brightness, offloading computations to other devices)

and improvement of the transmission protocols of the wireless transceiver (e.g.,

switching to a more energy efficient transmission channel whenever necessary).

Hardware approaches may include the design of more energy efficient circuits

(e.g., using more advanced manufacturing process technology such as 22nm tech-

nology), and the addition of extra components (e.g., wake-up radio technology for

assistance of power management, energy harvester to scavenge energy from the

6

environment).

1.4 Dissertation Contributions and Organization

In this dissertation, we describe our work developing approaches to support an

energy efficient sensing and computing system. More specifically, this dissertation

includes approaches to obtain quality data from noisy environments, to save the

energy on sensing devices, and to provide energy efficient computing resources.

Our primary contributions include:

• Development of WISP-Mote, a passive wake-up radio sensor node. We per-

formed field tests to characterize the wake-up range of the WISP-Mote, and

we conducted simulations to compare the performance of the WISP-Mote

network to that of a network of sensors employing duty-cycling [18–21].

Two example applications are also provided to show the benefits of using

WISP-Mote in specific scenarios.

• Development of a noise resilient pitch detection algorithm named BaNa.

We compared the performance of BaNa with other state-of-the-art pitch

detection algorithms using real speech data and music data with 8 types of

noise from real scenarios. We implement a pitch detector using the BaNa

algorithm on the Android platform and discuss the possibility of real-time

pitch detection on mobile devices [16,22].

• Evaluation of the state-of-the-art in the area of mobile cloud computing.

We compare different approaches that enhance application performance via

cloud-based execution and highlight the research and technological chal-

lenges in different approaches [23].

• Development of an energy efficient mobile cloud computing system named

GEMCloud that utilizes the computation resource from smartphones and

7

tablets. We provided energy efficiency comparisons of GEMCloud with tra-

ditional cloud servers [24].

• We conduct a public study on mobile volunteer computing using GEMCloud.

Data analytics from gathered data shows the feasibility of using mobile

devices for volunteer computing. We studied volunteers’ behavior based on

the device type and their personal preferences and discussed the factors that

have impacts on the volunteers’ behavior.

The organization of the rest of this dissertation is as follows. In Chapter 2,

we introduce the design of a passive wake-up radio sensor node and provide char-

acterizations of the wake-up range, followed by network performance evaluations

in multiple scenarios. Chapter 3 introduces a noise resilient pitch detection al-

gorithm. Performance evaluations are provided using real speech data corrupted

by 8 different types of additive noise. In Chapter 4, we summarize the challenges

of the design and development of mobile cloud computing and provide a survey

of the current work on mobile cloud computing. In Chapter 5, we propose an

energy efficient mobile cloud computing platform and perform energy efficiency

evaluations in comparison with traditional cloud computing platforms. In Chap-

ter 6, we discuss the data collected from a public study using our mobile cloud

computing platform. Chapter 7 concludes the dissertation and provides future

research directions.

8

2 Energy Savings for Sensors

Using Passive Wake-Up

Radios

2.1 Introduction

In our envisioned sensing and computing system, energy efficiency is one of the

key focuses. Especially for wireless sensor nodes, due to the portability require-

ments, usually they are powered by batteries and thus have very limited lifetime

if no power management is performed. In some extreme cases such as implanted

sensors, it is impossible to exchange the batteries frequently. In other wireless

sensor applications, energy efficiency of the sensors is also crucial due to the cost

of labor for exchanging batteries.

When looking into the energy consumption of a sensor node, radio transmission

and reception are the two major sources of energy drain. When a node is active

and waiting to receive data, it wastes energy on idle listening. Since traffic loads

are usually low in WSNs, such idle listening can waste enormous amounts of energy

unless efficient communication mechanisms are employed.

To extend the lifetime of a sensor node, we can turn off its radio and set its

microcontroller (MCU) into a sleep mode when it is idle and wake it up when

9

there are possible transmissions. To wake up a sensor node, there are generally

two approaches: a scheduled approach where a timer is set and the firing of the

timer wakes up the node, namely duty cycling, and an on-demand approach where

the node is woken up by a radio signal, namely radio wake-up.

In duty cycling, a node, or only part of the node (e.g., its radio component

if using technologies such as wake-on-radio [25]) is periodically set into the sleep

mode and can manage the trade-off between energy consumption and data latency,

by setting the duty cycle value accordingly. With lower duty cycles, nodes will

consume less energy at the cost of higher latency for data delivery. Once a node

wakes up during the active part of its duty cycle, it must listen to the channel for

a period of time to determine whether other nodes or the sink are available for

communication. This introduces complexities and adds overhead to the medium

access control (MAC) protocol.

Using radio wake-up techniques, such overhead can be reduced. A wake-up sig-

nal triggers a node to wake up from the sleep mode and start reception activities.

Normally, the wake-up signal is sent or received by a secondary radio transceiver.

In order to improve energy efficiency, the energy consumption of this extra wake-

up radio tranceiver should be extremely low. The energy benefit of using radio

wake-up in comparison with duty-cycling is that nodes do not waste energy on idle

listening of the main radio, since they are only awakened by neighboring nodes

when there is a request for communication. In addition, using a wake-up signal

reduces the overhead in control traffic since a node woken up through a wake-up

radio knows that another node is ready to receive data.

Wake-up radio receivers can be categorized as active and passive based on

whether the receiver uses a connected power supply. Active wake-up radio re-

ceivers require a continuous power supply while passive wake-up radio receivers

harvest energy to power themselves from the wake-up radio signal transmitted by

the sender. Active wake-up radio receivers have a relatively better sensitivity, in

10

other words, their wake-up range is relatively longer. On the other hand, passive

wake-up receivers operate within a relatively smaller range but do not require any

attached power source.

One possibility to achieve a passive wake-up radio is to use a passive radio-

frequency identification (RFID) tag as the wake-up signal receiver and an RFID

reader as the wake-up radio transmitter, as off-the-shelf RFID tags and readers

are readily available. Despite the low cost of this solution, there are two major

challenges for implementing this approach in real-world applications: the limited

wake-up range compared to the main radio communication range, and the energy

cost for the wake-up signal transmitter. The former creates problems in terms

of network coverage, while the latter makes it impossible for a battery-powered

sensor node to wake up another node, i.e., multi-hop wake-up is unrealistic using

this approach. However, these types of devices can be beneficial in scenarios where

there is a mobile data sink (i.e., a data MULE [26]) or where the sensors are mobile

(e.g., sensors on a person) and come in contact with a fixed sink at some point.

For these scenarios, the sink can wake up the sensor nodes to query them for data

whenever they are in the wake-up range.

In this chapter, we describe and characterize a passive RFID-based wake-up

radio sensor node that we developed, and we discuss and analyze the use of our

passive wake-up radios in various scenarios. Our passive RFID wake-up device,

which we call a WISP-Mote, is created by combining a WISP (Wireless Identifi-

cation and Sensing Platform) [27], an RFID tag developed by Intel Research, and

a Tmote Sky [28] sensor node. We characterized the WISP-Mote’s performance

by measuring its energy consumption for different operations and assessing its

wake-up probabilities in different environments for various WISP-Mote to reader

distances. Finally, we performed MATLAB simulations to show the benefits of

using WISP-Motes by comparing the performance of a sensor network with WISP-

Motes with a standard duty-cycling architecture. Our results show that the energy

11

efficiency using the WISP-Motes is much greater than when using duty-cycling,

without any loss in performance.

The rest of this chapter is organized as follows. In Section 2.2, we review

the current state of the art in radio wake-up technology. Section 2.3 introduces

our RFID wake-up sensor devices, including the hardware implementation and

the energy consumption measurements. Field tests to determine the wake-up

probability in relation to the distance from the RFID reader are presented in

Section 2.4, followed by simulation results and performance analyses when using

the WISP-Motes in different network scenarios in Section 2.5. As applications

are the motivators for research in wireless sensor networks, Section 2.6 describes

various potential applications of our passive wake-up radios and shows the benefits

of these wake-up radios through simulations. Finally, Section 2.7 concludes the

chapter.

2.2 State of The Art In Radio Wake-up

Remote wake-up is realized via a second receiver triggering the main data receiver

when necessary. To gain a benefit in energy efficiency, the extra receiver must be

lower power than the main data receiver (or, ideally, require no battery power to

operate), because while the main receiver is in the sleep mode, only the wake-up

receiver remains on to monitor the wake-up channel continuously or following a

duty-cycling scheme.

Wake-up radios can be categorized as active wake-up radios and passive wake-

up radios, depending on their energy sources [29]. An active wake-up radio has a

better wake-up range than a passive wake-up radio, however, the active wake-up

radio requires continuous power supply. On the other hand, a passive wake-up

radio operates within a relatively smaller range, but it does not require an external

power supply. A passive wake-up receiver harvests energy to power itself from the

12

wake-up signal transmitted by the sender. In this section, we review the state-of-

the-art of both active and passive wake-up radio receivers.

Table2.1 provides a summary of these different wake-up receiver design tech-

niques and a comparison of the energy consumption, sensitivity, and implementa-

tion status of these wake-up radio receivers.

2.2.1 Active Wake-up Radio Receivers

Several different low-power active wake-up receivers have been proposed [30–36].

In [30], Otis et al. propose the use of a super-regenerative architecture with a

1.9GHz bulk acoustic wave (BAW) resonator to reduce the power consumption

of the wake-up radio. The power consumption of this radio is 400µW for the

receiver and 1.6mW for the transmitter. This approach is further optimized to

create a 65µW wake-up receiver [31], using a 1.9GHz BAW resonator matching

network for RF signal filtering. This wake-up receiver can provide a sensitivity of

− 50 dBm at 40 kbps and −48 dBm at a maximum data rate of 100 kbps.

A different approach is developed by Le-Huy and Roy [32] and Von der Mark

et al. [33], where zero-bias Schottky diodes are used because they have no bias

current through the diodes. The low-power 2.4GHz wake-up receiver proposed

in [32] is designed to work with a directional antenna and pulse width modulation

in order to reduce energy dissipation. Simulation results show that the receiver

can reach − 50 dBm sensitivity with only 19µW power consumption. A three

stage wake-up scheme is introduced in [33]. In this approach, a very low power

(on the order of nW) always-on stage is used to trigger an intermediate higher

power (on the order of µW) stage for wake-up signal verification. Only if the

wake-up signal is confirmed is the main transceiver activated.

Other approaches for active wake-up radios are described in [34] and [35]. Ju-

naid et al. propose a wake-up receiver including a five stage charge pump used

13

to increase the received signal voltage [34]. The only active parts of the wake-up

circuit are the digital comparator and the voltage divider, which consume 350nA

and 526nA, respectively. In [35], Van der Doorn et al. implement a wake-up

receiver using only commercial components to reduce the extra hardware costs.

Their design consumes 171 µW with −51 dBm sensitivity. Although there are

several hardware proposals for active wake-up radios, not many physical imple-

mentations or commercialized products are available today. Recently, Austria

Microsystems announced their latest 3-channel low frequency wake-up receiver

working at 15 − 150 kHz [36]. This product consumes 8.1µW and can reach a

sensitivity of about − 37 dBm (as calculated from the provided specifications).

2.2.2 Passive Wake-up Radio Receivers

Compared with active wake-up receivers, passive wake-up receivers do not require

energy from a physically connected power supply; instead, they harvest energy

from the transmitted wake-up signal. While this makes passive wake-up radios

energy efficient, the wake-up range for passive wake-up radios is relatively shorter,

i.e., the receivers’ sensitivity is lower. Currently, there are limited studies on

passive radio wake-up receivers. Gu et al. propose a passive radio wake-up circuit

that theoretically could operate at a range of 10 ft with 5ms latency, according

to SPICE simulation results [37]. If a comparator and an amplifier are added,

which respectively consume negligible currents of 350nA and 880nA, the radio

could theoretically reach up to 100 ft with 55ms latency.

A performance study on the use of passive RFID wake-up radios is given

by Jurdak et al. [38, 39]. In their work, an RFID wake-up mechanism is pro-

posed, namely RFIDImpulse, which assumes a commercial RFID reader and a

passive RFID tag are attached to each sensor node, providing radio wake-up ca-

pability. The performance of the proposed mechanism is investigated through

MATLAB simulations and compared with the BMAC protocol [40] and the IEEE

14

802.15.4 standard [41]. Their results show that RFIDImpulse outperforms both

other methods in terms of energy efficiency and transmission rate for low and

medium traffic scenarios. However, the analysis is based on an important as-

sumption that all nodes have the capability to wake up their neighbors, which is

not feasible currently, due to the considerable amount of energy required by the

RFID reader, which sends out the wake-up signal, and its large size. In addition,

their energy consumption analysis does not include the energy consumed by the

nodes to wake up. In reality, the wake-up energy consumption includes the en-

ergy used for MCU boot-up and for radio initiation, which could be comparable

to the energy consumed for radio transmission. Furthermore, the implementation

described in [38,39] uses a coil instead of an RFID tag for the purpose of proof of

concept.

In this chapter, we introduce a passive RFID-based wake-up device named

WISP-Mote and characterize its power consumptions during different operation

modes, including waking up. To the best of our knowledge, the WISP-Mote is

the first reported complete implementation of a passive radio wake-up device that

provides both broadcast-based wake-up and ID-based wake-up. The provided

characterization data are measured using our implemented WISP-Mote in various

environments.

To have wide network coverage, WISP-Motes are used with mobile sinks in

this chapter due to their short wake-up ranges. The mobile sink wakes up the

WISP-Motes when it gets within their wake-up range to collect their data. This

is similar to the three-tier layered architecture described in [26]. In our scenarios,

we investigate random walk along with two other mobility models and present

their performance comparison.

15

T
ab

le
2.

1:
W

ak
e-

u
p

R
ec

ei
ve

r
(W

u
R

)
C

om
p
ar

is
on

s

A
ct

iv
e

W
u
R

s
M

ai
n

te
ch

n
iq

u
es

F
re

q
u
en

cy
P

ow
er

C
on

su
m

p
ti

on
S
en

si
ti

v
it

y
Im

p
le

m
en

ta
ti

on

B
.

O
ti

s
et

al
.

[2
]

S
u
p

er
-r

eg
en

er
at

iv
e

w
it

h
B

A
W

m
at

ch
in

g
n
et

w
or

k

1.
9

G
H

z
40

0
W

-1
00

.5
d
B

m
Y

es

N
.
P

le
tc

h
er

et
al

.

[3
]

B
A

W
m

at
ch

in
g

n
et

w
or

k
1.

9
G

H
z

65
W

-5
0

d
B

m
Y

es

P
.

L
e-

H
u
y

et
al

.

[4
]

Z
er

o-
b
ia

s
S
ch

ot
tk

y
vo

lt
ag

e
d
ou

-

b
le

r

2.
4

G
H

z
19

W
-5

0
d
B

m
N

o

S
.

V
on

d
er

M
ar

k

et
.a

l
[5

]

T
h
re

e
st

ag
e

w
ak

e-
u
p
,

Z
er

o-
b
ia

s

S
ch

ot
tk

y
d
io

d
e

u
se

d
at

1s
t

st
ag

e

N
/A

n
W

s
to
µ

W
s

N
/A

N
o

J
.

A
n
sa

ri
et

al
.

[6
]

F
iv

e
st

ag
e

ch
ar

ge
p
u
m

p
N

/A
2.

62
8

W
N

/A
Y

es

B
.

V
an

d
er

D
o
or

n
et

al
.

[7
]

C
om

m
er

ci
al

fi
lt

er
an

d
am

p
li
fi
er

86
8

M
H

z
17

1
W

-5
1

d
B

m
Y

es

A
u
st

ri
a

M
i-

cr
os

y
st

em
s

[8
]

N
/A

15
-1

50
k
H

z
8.

1
W

-3
7

d
B

m
Y

es

P
as

si
ve

W
u
R

s
M

ai
n

te
ch

n
iq

u
es

F
re

q
u
en

cy
P

ow
er

C
on

su
m

p
ti

on
S
en

si
ti

v
it

y
Im

p
le

m
en

ta
ti

on

L
.

G
u

et
al

.
[9

]
Z

er
o-

b
ia

s
S
ch

ot
tk

y
d
io

d
e

43
3

M
H

z
0

or
3.

69
W

N
/A

N
o

H
.

B
a

et
al

.
[2

3]
P

as
si

ve
R

F
ID

(W
IS

P
)

90
2-

92
8

M
H

z
0

-1
0

d
B

m
Y

es

N
/A

:
D

at
a

n
ot

av
ai

la
b

le

16

2.3 RFID Wake-up Sensor Device

In this section, we describe the implementation of our WISP-Mote and provide

measurements of its energy consumption in different modes.

2.3.1 Design and Implementation of the WISP-Mote

In our previous work [18], we introduced our hybrid sensor device with RFID

wake-up receiver, namely the WISP-Mote, as shown in Fig. 2.1. We employ an

Intel WISP (Wireless Identification and Sensing Platform) as an external wake-up

signal receiver for a Tmote Sky mote. A WISP is an RFID tag with sensing and

computing capabilities developed by Intel research. Using energy harvesting, it

can be powered wirelessly by a UHF RFID reader. In our implementation, we use

a UHF Gen2 Speedway RFID reader from Impinj [42].

The RFID reader sends a continuous wave along with commands according

to the standard C1G2 protocol [43] to the tag. The tag sends data back by

modulating the reflection coefficient of the backscattered signal (via changing the

antenna impedance) [44]. The tag also collects the energy from the received signal

and stores it in a capacitor as its power supply. Therefore, using a WISP as a

Figure 2.1: A WISP-Mote.

17

wake-up receiver does not consume extra power from the sensor node. The Tmote

Sky mote [45] is a battery-powered wireless sensor node developed by UC Berkeley.

By using the WISP to generate an interrupt signal to the Tmote Sky, a passive

wake-up sensor node is created.

According to the destination of a wake-up signal, radio wake-up can be catego-

rized as broadcast-based wake-up and ID-based wake-up. Using a broadcast-based

wake-up radio, all sensors within range of the transmitted wake-up signal will be

woken up, while an ID-based wake-up radio transmits a wake-up signal that con-

tains the intended destination’s address and thus only wakes up the node with

a matching address. Using the WISP, we can implement both broadcast-based

wake-up and ID-based wake-up.

For broadcast-based wake-up, whenever the WISP harvests enough energy

from the reader’s radio, it sends a pulse to wake up the mote from the sleep state.

Thus, any WISP-Mote within the wake-up range of the reader will be awakened.

Since in our RFID wake-up scheme there is no communication from the WISP to

the reader, we programmed the WISP not to respond to any command sent by

the reader. Therefore, we reduced the energy consumption caused by the MCU

and other components on the circuit that typically perform the standard RFID

communication protocol (e.g., C1G2 protocol). To reduce this energy consump-

tion, we disable all functions of the C1G2 protocol on the WISP that are not

required for the wake-up of the sensor node. Thus the only responsibility of the

WISP for broadcast-based wake-up is to harvest energy from the reader and send

an interrupt signal to the mote. By minimizing the energy required for the WISP,

we maximize the wake-up range of the WISP-Mote.

In a dense network, this broadcast-based wake-up may bring a large number of

collisions on the data channel, since all the nodes within the wake-up range will be

awakened by the reader, and none of them is aware of the other nodes awakened

at the same time. To reduce unnecessary wake-ups and to reduce collisions caused

18

by these unnecessary wake-ups, we need the ability to wake up a certain node or

a specified class of nodes. With this intention, we programmed the WISP to let

it generate a trigger pulse only after receiving a packet that has its ID or Class

number in the packet header. This functionality requires the demodulator to work

and additional computation by the WISP’s MCU, both of which consume extra

energy from the WISP. Therefore, for any given distance, the wake-up probability

of the ID-based wake-up is expected to be smaller than or equal to the wake-

up probability for the broadcast-based wake-up. For a wake-up receiver with

addressing capability, broadcast-based wake-up can be achieved by assigning a

particular ID as a broadcast address.

To determine the performance of our WISP-Mote, we performed field tests

of both broadcast-based and ID-based wake-up in various environments. Details

of this characterization are discussed in Section 2.4. For both broadcast-based

and ID-based wake-up, it is preferred that the nodes not be awakened by the

sink when not necessary, i.e., when the nodes do not have any buffered data to

send. To achieve this, we programmed the sensor nodes to disable the interrupt

functionality of the wake-up signal input port when they have no data to send.

Thus the node will wake up only when it has buffered data and it receives a wake-

up signal. Otherwise, the node will remain in the low-power sleeping state. This

reduces unnecessary energy waste.

2.3.2 Energy Consumption Measurements

Unlike active wake-up radios, which constantly consume energy, RFID wake-up

radios do not consume any energy from the sensor node. This further enhances

its energy efficiency. The Tmote Sky datasheet [45] provides the current con-

sumptions in typical operating conditions, but lacks information about energy

consumed when the node is waking up, which is essential for the energy consump-

tion analysis of RFID-based wake-up sensor networks. In addition to current

19

Table 2.2: Power Consumption Measurements of a T-mote Sky Node

Operation Average current Duration

consumption

Wake-up 10.4mA 5ms

Transmit 12 byte packet 18.2mA 30ms

Receive and idle listening 20.2mA

Sleep 0.2mA

consumptions in transmitting and receiving, we measured the current and time

consumed in booting and radio initiation, i.e., when the node is waking up from

the sleep state. The results are shown in Table 2.2. Our measurements are con-

sistent with those from the Tmote Sky datasheet. The results show that besides

radio transmission and reception, a node’s wake-up also consumes energy that

cannot be ignored. These measurements are used in the energy analysis for our

sensor network.

2.3.3 Sensor Network System

Besides the WISP-Motes, in some applications, the sensor network may also in-

clude one or more base stations (BSs) and data MULEs (MULEs). MULEs are

mobile data collectors that are equipped with both a mote and an RFID reader,

and therefore have the capability to wake up the nearby WISP-Motes and to re-

ceive data from them. We assume that when the MULEs are close to a BS, they

dump all of the collected data to the BS, or they can act as a gateway and send

the data immediately e.g., using a cellular network. The MULE must have the

ability to move and sufficient energy to power the RFID reader. In a real system,

any moving agent, e.g., a vehicle, an animal or a human, that carries an RFID

reader and a mote with adequate power supply can perform as a MULE.

20

This system is designed for a delay-tolerant network with energy constraints

on the sensor nodes. The major advantage of this network is high energy effi-

ciency for the sensor nodes. Energy waste is reduced by decreasing the number

of unnecessary wake-ups and the time used for sensing the channel. The packet

delay in the data MULE architecture is related to both the mobility behavior of

the MULEs and the wake-up range of a MULE. Therefore, in order to evaluate the

performance of our sensor network, the effective wake-up range of the WISP-Mote

is required, which will be addressed in the next section.

In some other applications, data collectors can be set at specific locations and

wake up the nodes when the nodes move close to the data collectors. These types

of applications are discussed in Section 2.6.

2.4 Characterization of WISP-Mote

Field tests to determine the capabilities of our WISP-Mote are important to guide

the design of appropriate protocols and the performance evaluation of the overall

system. We perform field tests to characterize the wake-up probability of a WISP-

Mote as a function of height and distance to the reader.

There are two main factors that have a very large effect on the wake-up prob-

ability in a real world implementation. The first is the distance from the reader

to the WISP. The energy that a WISP is able to harvest is inversely proportional

to the square of the distance due to path loss (assuming a free-space environ-

ment). When the harvested power is enough for the WISP to drive its MCU, the

WISP will perform its function (either decoding the packet to check for the ID or

automatically waking up the mote), otherwise it will remain asleep.

The second factor is the environment where the system is located. The en-

vironment plays a critical role because reflections can have large effects on the

wake-up probabilities at different areas in the three dimensional space in front of

21

the reader. The line-of-sight signal and reflections meet, and create constructive

areas and destructive areas depending on their phase differences. In certain loca-

tions, there are destructive effects, causing dead zones where the node is unable

to be awakened. There will also be constructive effects resulting in locations with

much higher wake-up probabilities than the locations that are closer to the reader.

Because the ID-based wake-up scheme has higher energy consumption than

the broadcast-based one, theoretically it should have a slightly reduced effective

range in all environments. The main goal of this testing was to explore what is

the effective range of both schemes, and to provide numerical support for later

analyses of the trade-offs between wake-up radio based networks and duty-cycling

networks.

This section will cover three different environments with both ID-based and

broadcast-based wake-up to demonstrate the effects of distance and environment.

We measure the wake-up probability as a function of distance and height to a

reader in a hallway and an open-air environment, and the average wake-up prob-

ability as a function of distance in an office environment. The measurements are

used in the network simulations described in Sections 2.5 and 2.6.

2.4.1 Experiment Setup

We set up our experiments as follows. The reader is raised off of the ground to a

height of 84 cm to reduce reflective effects due to the ground close to the reader.

The height of 84 cm was chosen purely for convenience in the experimental set-up.

Due to the necessity to vary both distance from the reader and height, the WISP-

Mote was attached to a tripod, which allows both x-axis movement, towards and

away from the reader, and y-axis movement, up and down with respect to the

reader.

For the broadcast-based wake-up scheme, the data collector broadcasts a

22

generic wake-up signal that causes every WISP-Mote receiving this signal to ac-

cumulate energy to wake up. After waking up, the WISP-Mote sends a packet to

the data collector, which also includes a wake-up count. After sending the packet,

the WISP-Mote promptly returns to sleep. In our single WISP-Mote field tests,

no ACKs or back-offs are implemented, since the backward link quality is good

(mote-to-data collector) compared to the forward link quality (data collector-to-

tag) and since there is no contention in the network.

To calculate the wake-up probability, we set up the system as follows. Since we

cannot control the commercial RFID reader to send a wake-up signal at particular

times, instead we have the RFID reader send a continuous wave. To count the

number of times that a WISP-Mote is able to be awakened by this continuous

wave, we periodically enable the interrupt from the wake-up signal input port

once every 0.5 seconds and disable it after the mote is awakened by the WISP. As

a result, WISP-Motes can wake up as long as the wake-up receiver is harvesting

enough power and the interrupt is enabled. The reader is then run for a fixed

amount of time, in this case 100 seconds, and the final wake-up count sent by the

WISP-Mote is recorded. We can then calculate the wake-up probability of the

investigated scenario by dividing the observed number of wake-ups to the total

possible wake-ups, i.e., 200 wake-ups.

The ID-based wake-up experiments were conducted in an identical manner,

except that instead of simply broadcasting a generic wake-up signal, the data

collector transmits an ID, against which the WISP compares its own ID before

deciding whether to wake up the mote or not.

23

2.4.2 Wake-up Probability

Open Environment

The purpose of the open environment tests was to extract the WISP-Mote wake-

up characteristics in an area with very few reflecting surfaces. This environment

could be a large indoor area, or an outdoor area, but for testing purposes a large

gymnasium was used.

Fig. 2.2 shows the test results for the broadcast-based wake-up in an open

environment . The y-axis of the graph shows the vertical distance between the

WISP-Mote and the data collector, and the x-axis shows the horizontal distance

between the WISP-Mote and the data collector. The data collector is located

at point (0, 0) on the graph. The colors at each point represent the wake-up

probability at that particular point. As seen in Fig. 2.2, the WISP-Mote has al-

most 100 % wake-up probability for all points within 2.5m, and after that point,

reflections from the ground start to have a significant effect on the wake-up proba-

bility. These reflections appear to match the two-ray ground model, and there are

clearly areas where destructive interference creates dead zones, as well as areas

where constructive interference enables 100 % wake-up probability far from the

data collector.

Fig. 2.3 shows the test results for the ID-based wake-up in the open environ-

ment. As expected, there has been a slight decrease of the wake-up range from

the 3m of the broadcast-based scheme down to 2.5m for the ID-based one at a

height of 0.2m above the data collector. However, generally the ID-based scheme

has a similar performance to the broadcast-based scheme in this environment. As

in the broadcast results, the effect of the wake-up signal reflected from the ground

is also evident in these results.

24

Figure 2.2: Broadcast-based wake-up probabilities in an open environment.

Closed Environment

When such pronounced reflective effects are witnessed in an environment with

only one reflective surface, it can be hypothesized that even more significant and

far more unpredictable reflections will occur in a closed environment. The next

set of tests took place in a long hallway.

As can be seen in Figs. 2.4 and 2.5, a closed environment vastly increases

the amount of interference among the multiple copies of the received signal. For

the broadcast-based wake-up, 100 % wake-up only occurs at any height for only

very small distances from the reader, and for ID-based wake-up, even at close

distances, the impact of reflections is obvious.

25

Figure 2.3: ID-based wake-up probabilities in an open environment.

Figure 2.4: Broadcast-based wake-up probabilities in a closed environment.

26

Figure 2.5: ID-based wake-up probabilities in a closed environment.

Cluttered Environment

In real-life applications, it is more likely that the sensor network will be deployed

in a cluttered environment such as an office, a warehouse or a store. For the

cluttered environment, it was infeasible to set up the in depth systematic tests as

for the previous two environments, due to physical obstacles. Instead, the average

wake-up probability was tested at different distances from the data collector. For

each distance on the plots, ten measurements were taken in various spots within

an office and then the average value is plotted.

Although not shown in the same detail as the previous graphs, Fig. 2.6 does

illustrate that even more interference is occurring in the cluttered environment

than in the previous two environments for both broadcast-based and ID-based

wake-up. No wake-up was recorded at or outside of the 3 meter mark, anywhere

in the room. As the data show, the WISP-Mote has a relatively stable wake-up

27

range in an open environment, a volatile but similar range wake-up in a closed

environment, and a relatively shorter wake-up range in a cluttered environment.

2.4.3 Broadcast-based vs. ID-based Wake-up

There are quite a few meaningful conclusions we can draw from this data about

the differences between ID-based and broadcast-based wake-up, and also the ef-

fectiveness of the system as a whole. In every environment, comparing the average

wake-up probabilities as a function of the distance from the data collector, we can

see that the broadcast-based scheme results in slightly higher average wake-up

probabilities. While the ID-based wake-up scheme sacrifices performance by a

very small amount in terms of wake-up probability, it has the capability of waking

up a particular class of nodes or an individual node.

If there are only specific nodes that need to be woken up, then ID-based wake-

up can lead to significant energy savings, as it does not force all nodes to wake

up and contend for the medium. In a scenario where all nodes serve the same

purpose, then the usefulness of having ID-based wake-up may be reduced, but

in the case where different nodes have different sensors and information, it may

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

W
ak

e−
up

 P
ro

ba
bi

lit
y

Average distance from reader (m)

Broadcast−based
ID−based

Figure 2.6: Broadcast-based wake-up and ID-based wake-up probabilities in a clustered

environment.

28

lead to very large savings in energy. In most scenarios, the very small sacrifice in

wake-up range is less crucial than the increased functionality and possible energy

savings. Detailed simulation-based performance analysis of the wake-up radio

schemes will be provided in Sections 2.5 and 2.6.

To implement the ID-based wake-up, in some scenarios, the data collector has

to know the node’s ID so that it can wake up a specific sensor. One approach to

enable the data collector to determine the nodes’ IDs is to set a broadcast ID that

can let the data collector wake up any node in the network. The data collector first

uses the broadcast ID to wake up all the nodes in the nearby area and obtain their

IDs. Then the data collector uses these node IDs to wake up each individual node

one by one to acquire data from them if needed. Another approach that can be

used in other scenarios, such as a health monitoring scenario, is to assign a group

ID to classify various types of nodes (e.g., all heart monitor sensors are assigned

an ID of 1, all blood oxygen sensors are assigned an ID of 2, etc.). The data

collector only needs to know the group ID and is able to wake up the interested

group of nodes on demand (e.g., any heart monitor in the area).

2.5 Simulations

As we introduced previously, the two challenges in the design of passive wake-up

radio systems that limit their use in existing sensor network applications are the

large energy cost of the wake-up transmitter and the short wake-up range. The

power amplifier needed to send the wake-up signal requires a high power budget.

However, most sensor network applications consist of low-power (usually battery-

powered) sensor nodes and are expected to run for years. Notwithstanding the

cost (which is also important in real systems), the huge power drain renders it

hard to equip every node with a wake-up signal transmitter, e.g., in our system,

the RFID reader. On the other hand, the limited wake-up range shortens the one-

29

hop range. Therefore, currently, to achieve large network coverage, mobility is a

necessity. Scenarios where the data collector moves to the sensors or the sensors

move to the data collector are possible applications for our radio wake-up system.

In the simulations in this section, we consider a data MULE scenario to compare

the performance between our WISP-Mote RFID wake-up scheme and standard

duty-cycling.

2.5.1 Simulation Setup

We use MATLAB to simulate the performance of the WISP-Mote network and

several duty-cycling networks (with duty cycles between 10 % and 0.1 %). In our

simulations, we deploy static nodes according to a uniformly random distribution

in a 200m× 200m network, and we simulate 1 hour of the network activities. We

measure the latency, undelivered packet ratio, number of collisions, and energy

as our performance metrics. For each option (WISP-Motes and duty-cycling),

we run 20 simulations, where each simulation has a different random network

deployment, and we plot the average value of each of the performance metrics.

We compare two sensor network systems, one with standard sensor nodes that

employs duty-cycling and the other with the WISP-Motes that employs radio

wake-up. Both systems have Data MULEs, i.e., mobile data sinks with a mote, an

RFID reader (in the WISP-Mote network), and a very large power source. MULEs

start with random locations and move according to a random direction mobility

model. Each MULE uniformly randomly selects a speed from [5m/s, 15m/s] and

moves towards a direction chosen uniformly randomly from [0, 2π]. Whenever

the MULE reaches the field boundary, it chooses another speed and direction

randomly.

In the duty-cycling scenario with standard sensor nodes, each MULE broad-

casts a beacon signal, which is actually a short packet, to indicate its presence to

30

the nodes. On the other hand, in the radio wake-up scenario with WISP-Motes,

each MULE sends out a wake-up signal continuously. The sensors will wake up

with a probability related to the distance between the sensor and the MULE. The

wake-up probability is calculated by the average value at each distance according

to our field test results in Section 2.4. We have six wake-up probability models

corresponding to broadcast-based wake-up and ID-based wake-up in an open en-

vironment, in a closed environment, and in a clustered environment. We consider

the broadcast-based wake-up probability model in an open environment in this

section to provide general performance comparisons. Other wake-up probability

models are used in other example applications in Section 2.6.

We describe the algorithms for both the WISP-Mote scenario and for the duty-

cycling scenario in Algorithms 1 and 2. A non-persistent CSMA MAC protocol is

used for both scenarios. It is important to note that both scenarios may benefit

from more efficient protocols. However, designing a MAC layer protocol is not the

focus of this dissertation. We choose a simple wake-up radio MAC protocol and a

simple duty-cycling MAC protocol to facilitate the understanding of the benefits

of using a wake-up radio in a sensor network.

In the WISP-Mote sensor network, once a sensor node is awakened by the

MULE, it performs carrier sensing. If the channel is free, it transmits a packet.

If not, it will back off for a random time.

For duty-cycling, a MULE has to announce its presence by sending out a

beacon signal. When the MULE is not communicating with any sensor node, it

sends a beacon signal once every 8 time slots and listens for responses during the

remaining 7 time slots (in our simulations, the transmission of a packet takes 6

slots and an ACK packet takes 1 slot). Once a sensor node is in the active part

of its duty cycle, it will first listen to the channel for the MULE’s beacon signal

for 8 time slots in order to guarantee not missing the beacon signal if a MULE is

nearby. If no beacon is received during this period of time, the node will go back

31

to sleep. To reduce the chance of collisions, if the node receives a beacon signal,

it will randomly select a time slot from the following 7 time slots to transmit.

However, note that collisions may still occur due to the hidden terminal problem

and due to the fact that nodes that are woken up by the same beacon may happen

to select the same slot for transmission.

For both scenarios, the node will receive an acknowledgement (ACK) once the

packet is received by the MULE. Based on the reception of an ACK, the sensor

node can deduce two important facts: 1) the MULE is still close by; and 2) the

channel was free of collisions. Therefore, in the next time slot, it is highly probable

that the MULE is still within the communication range of the node. Therefore,

a node that receives an ACK and has additional packets to send will continue

to send packets, once again following the non-persistent CSMA MAC protocol

regardless of whether it receives a wake-up signal. After the node starts sending

the second continuous packet, it will stop sending and go back to sleep or its

duty-cycling schedule when a collision occurs.

For energy efficiency considerations, when a node does not have any buffered

data, for the WISP-Mote wake-up scheme we disable the wake-up interrupt, and

for the duty-cycling schemes we stop the wake-up timer, as there is no need for

the node to wake up. In addition, for both schemes we apply a binary exponential

backoff to reduce the chances of collisions when an ACK is not received after

sending data.

According to the algorithms, it is obvious that the wake-up radio sensor net-

work does not consume energy on listening to the beacon signal. Therefore, when

the MULE is not nearby, the wake-up radio node has zero energy consumption

while the duty-cycling node still wakes up periodically to check for a beacon signal.

However, we cannot simply assert that the wake-up radio network has better en-

ergy efficiency because energy efficiency is also affected by collisions and dropped

packets, which are more complicated to analyze. We will discuss this (as well as

32

other performance metrics) in the rest of this section and 2.6.

To simplify the simulations, we made the following assumptions.

• Propagation delay is ignored.

• Link is ideal (i.e., a packet is correctly received unless a collision happens).

• We assume that MULEs have the ability to communicate directly to the BS

and ignore the MULE-BS latency. Therefore, packet delay is counted from

the time a packet is generated until the time it is delivered to a MULE.

• We only consider the delay of delivered packets.

• We ignore the energy costs for sensing activities as they will not impact the

performance evaluation.

• The mote’s communication range is set to 40m based on experiments de-

scribed in [46] as well as our own field experiments.

In all simulations (except the limited buffer simulations), we evaluate the net-

work performance in terms of: (1) the average latency per delivered packet, (2)

the number of packets that remain in the buffer at the end of the simulation time

(undelivered packet ratio, UPR), (3) the average collisions per delivered packet

(where collisions are counted whenever two or more nodes try to send packets to

the same MULE at the same time), and (4) the average energy consumption for

delivering a packet. In the limited buffer simulations, we investigate the average

buffer size and the packet delivery ratio (PDR) instead of (2) and (3).

33

Algorithm 1 WISP-Mote Algorithm

WISP-Mote Algorithm Energy cost

for node i = 1 to N

if i has buffered data

if i is awakened by the MULE E Wakeup

or i has successfully transmitted a pkt

sense the channel E CS

if the channel is free

send one packet to the MULE; E TxPkt

if ACK received E RxACK

keep awake; C = 3;

end

elsif channel is busy orACK is not received

back off for a random number of time slots

chosen from[1, 2C]; C++;

end

end

end

end

∗C ∈ [3, 8]

34

Algorithm 2 Duty-Cycling Algorithm

Duty Cycling Algorithm Energy cost

for node i = 1 to N

if i has buffered data

if i is in the active period E Wakeup

or i has successfully transmitted a pkt

listen for beacon for up to 8 slots E Beacon

if beacon signal received

back off for [1, 7] slots

sense the channel E CS

if the channel is free;

send one packet to the MULE E TxPkt

if ACK received E RxACK

keep awake; C = 3;

end

elsif channel is busy orACK is not received

back off for a random number of time slots

chosen from[1, 2C]; C++;

end

end

end

end

∗C ∈ [3, 8]

35

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

Packet rate (pkt/min)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)(

%
)

Packet rate (pkt/min)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

Packet rate (pkt/min)

A
ve

ra
ge

 c
ol

lis
io

ns
 p

er
 p

kt

10% duty−cycling
1% duty−cycling
0.5% duty−cycling
0.2% duty−cycling
0.1% duty−cycling
WISP−Mote

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
1

10
2

10
3

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

Packet rate (pkt/min)

Figure 2.7: WISP-Mote vs. duty-cycling with increasing packet rate (0.002 nodes/m2,

1 data MULE, unlimited buffer).

2.5.2 Performance Results

Effects of Packet Generation Rate

In this set of simulations, we deploy 80 nodes in a 200m × 200m area, each

node has an unlimited buffer size (the effect of limited buffer size is investigated

in Section 2.5.2), and we use 1 data MULE. The packet generation rate is varied

between 0.2 pkt/min and 2 pkt/min. Fig. 2.7 shows the performance comparisons

of six sensor network scenarios, five of them employing duty-cycling with different

duty cycle values and a radio wake-up scenario with WISP-Motes. The results

show that the 10% duty-cycling scheme has the best performance in terms of

36

packet delay and UPR, while its energy efficiency is very poor compared to the

other scenarios. At 0.2 pkt/min, 10% duty-cycling consumes about 6 times more

energy than the other duty-cycling schemes for delivering 1 packet (380.8mJ

vs. 62.0mJ) and about 88 times more energy than the WISP-Motes network

(380.8mJ vs. 4.3mJ). This low energy efficiency is caused by a large amount of

idle listening.

From Fig. 2.7, we can see that the latency, UPR and energy performance of

both the WISP-Mote network and all duty-cycling networks are relatively stable

for all packet generation rates investigated. The sensor nodes with lower duty

cycles are not able to deliver packets to the MULE fast enough. Therefore, at

the end of simulation, these nodes have more undelivered packets in their buffers,

and hence a higher UPR. When the packet generation rate increases, the la-

tency per delivered packet and the UPR only increase slightly. This is because

in both algorithms, once a node successfully transmits a packet, the node is able

to continuously transmit multiple packets until the MULE is out of the node’s

communication range or a collision occurs. As the results show, the WISP-Mote

node has fewer collisions to successfully transmit a packet. This is because the

short wake-up range of the WISP-Mote leads to fewer nodes awake at the same

time compared to the duty-cycling network.

The major advantage of the sensor networks employing passive radio wake-

up is their energy efficiency. From the energy consumption results, we can see

that 10% duty cycling has poor energy efficiency due to regular beacon signal

listening, idle listening and collisions. The energy consumption per packet for the

WISP-Mote network (4.3mJ) is about 1/4 of the lowest energy consumption per

packet for all the duty-cycling scenarios investigated (16.4mJ). For two 2800mAh

alkaline batteries, the WISP-Mote can transmit more than 7 million packets, if

not counting the sensing energy consumption. At 1 packet per minute data rate,

the lifetime of a WISP-Mote may last more than 13.4 years, while the lifetime for

37

0.002 0.006 0.01 0.014 0.018
0

500

1000

1500
A

ve
ra

ge
 p

ac
ke

t d
el

ay
 (

s)

Node density (nodes/m2)
0.002 0.006 0.01 0.014 0.018
0

20

40

60

80

100

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)(

%
)

Node density (nodes/m2)

0.002 0.006 0.01 0.014 0.018
0

1

2

3

4

Node density (nodes/m2)

A
ve

ra
ge

 c
ol

lis
io

ns
 p

er
 p

kt

10% duty−cycling
1% duty−cycling
0.5% duty−cycling
0.2% duty−cycling
0.1% duty−cycling
WISP−Mote

0.002 0.006 0.01 0.014 0.018
10

0

10
1

10
2

10
3

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

Node density (nodes/m2)

Figure 2.8: WISP-Mote vs. duty-cycling with increasing node density (1 pkt/min, 1

data MULE, unlimited buffer).

the best duty-cycling approach is only 3.5 years.

Effects of Node Density

Fig. 2.8 shows the performance of the network as the node density increases from

0.002 to 0.02node/m2, with a packet generation rate of 1 pkt/min, unlimited

buffer size, and 1 data MULE. In other words, we increase the network from 80

nodes to 800 nodes, all of which are distributed in the 200m × 200m area. In our

simulations, the nodes are not synchronized. For the duty-cycling sensor network,

every node has a timer that is set randomly at the beginning of the simulation.

Therefore, the lower the duty cycle is, the less chance nodes wake up at the same

38

time, which will reduce collisions.

As we can see, the 10% duty-cycling scenario is greatly affected by node den-

sity in that the chance of collision for 10% duty-cycling is much higher than the

other cases. Therefore, as the node density increases, the number of collisions of

10% duty-cycling increases significantly from 0.1 collisions per delivered packet

to 1.6 collisions per delivered packet. Additionally, the packet delay increases

from 134.8 s to 1110 s and the UPR increases from 1.7% to 62.6%. While the

other duty-cycling networks have smaller probabilities of collisions, but we can

see that their performances decrease much faster than the WISP-Mote network’s

performance.

At a high node density of 0.02node/m2, the WISP-Mote network outperforms

the duty-cycling networks in delay, UPR, collisions and energy efficiency. It is

expected that with even higher node density, the performance differences will

be even more significant. Because of the limited wake-up range, the chance of

the hidden terminal problem and multiple nodes being simultaneously awakened

and selecting the same transmission slot is very low. Thus, the performance

of the WISP-Mote sensor network decreases slower than the duty-cycling sensor

networks when the node density increases.

Effects of Buffer Size

In the previous simulations, we assumed each sensor node had an unlimited buffer.

In other words, the node will never drop a packet even if it cannot deliver all the

packets before a new one arrives, and hence the node accumulates more and

more packets. This, however, is not realistic and is not reasonable for certain

applications, e.g., applications that only care about the recently updated sensed

data. Thus, in this subsection we consider limited buffer sizes and investigate the

effect of buffer size on the network performances.

39

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

Packet rate (pkt/min)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

A
ve

ra
ge

 P
D

R
 (

%
)

Packet rate (pkt/min)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

Packet rate (pkt/min)

A
ve

ra
ge

 b
uf

fe
r

si
ze

 o
ve

r
si

m
ul

at
io

n

10% duty−cycling
1% duty−cycling
0.5% duty−cycling
0.2% duty−cycling
0.1% duty−cycling
WISP−Mote

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
1

10
2

10
3

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

Packet rate (pkt/min)

Figure 2.9: WISP-Mote vs. duty-cycling with limited buffer size (0.002 nodes/m2, 1

data MULE, buffer size = 10 pkts).

In these simulations, we set the buffer size to be a small value, 10 packets, in

order to show the impact of increasing packet rate given a fixed-size buffer. In

real life, to have a higher packet delivery performance, the buffer size must be

larger at the expense of longer packet latency. As the average packet delay only

includes delivered packets, dropped packets are excluded from the packet latency

calculations.

We can see from Fig. 2.9 that the packet delay decreases as the packet rate

increases. The reason is that more and more old packets are dropped due to the

limited buffer size and these dropped packets are not included in the calculation

of the packet latency. The upper right subplot of Fig. 2.9 shows that the PDRs

consistently decrease as the packet rate increases, which is reciprocal to the average

40

buffer usage in the lower left subplot. The energy consumptions for the duty-

cycling and WISP-Mote schemes are consistent with the previous results.

Effects of the Number of Data MULEs

The data MULE sensor network performance depends on both the properties of

the sensor nodes and the characteristics of the data MULEs. The packet delay and

UPR are related to how fast the MULE(s) can sweep over the entire network. The

moving speed of a data MULE is clearly correlated to the network performance.

The faster the MULEs move, the lower the latency and the undelivered packet

ratio that can be achieved.

A more interesting investigation is the effect of the number of MULEs. Besides

packet collisions, the beacon signal and ACKs sent by the MULEs can also collide.

Since the WISP-Mote does not need to receive a beacon signal to be informed

of the MULE’s appearance, it will not be affected by beacon signal collisions.

Furthermore, the wake-up range is much smaller than the communication range

in the WISP-Mote network. This greatly reduces the probability of MULE-node

link collisions for the multi-MULE scenarios.

As Fig. 2.10 shows, the latency and UPR both perform better when there are

more MULEs in the network. When there are multiple MULEs on the field, there

are chances that one node is talking to multiple MULEs. In this case, the ACKs

will collide and the node will have to retransmit the packet. We also consider

these as collisions. At the same time, when the number of MULEs increases, the

nodes can transmit packets more efficiently. Therefore, the average collision per

packet delivery remain stable when there are multiple MULEs in the field.

For the duty-cycling scenario, the energy consumption to deliver one packet

drops because the nodes are wasting less energy on idle listening when there are

more MULEs (since they do not wake up when they have no data to send). On the

41

1 2 3 4 5
0

500

1000

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

Mule quantity
1 2 3 4 5

0

20

40

60

80

100

Mule quantity

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)(

%
)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Mule quantity

A
ve

ra
ge

 c
ol

lis
io

ns
 p

er
 p

kt

10% duty−cycling
1% duty−cycling
0.5% duty−cycling
0.2% duty−cycling
0.1% duty−cycling
WISP−Mote

1 2 3 4 5
10

0

10
1

10
2

10
3

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

Mule quantity

Figure 2.10: WISP-Mote vs. duty-cycling with increasing MULE quantities (0.002

nodes/m2, 1 pkt/min, unlimited buffer size).

other hand, the energy efficiency for the WISP-Mote network remains quite stable.

From the results, we can conclude that trading off with more infrastructure cost,

we can achieve better performance by placing more data MULEs in the network.

Effects of the Mobility Model of the Data MULEs

The MULE’s mobility pattern is another factor that has impact on the sensor

network performance. We can expect that the best prescheduled route is to let

the MULE directly go to the nodes one by one, but that would require pre-

knowledge of the network topology (which may not be available for certain types

of applications), and would introduce extra complexity to the MULE.

42

1 2 3 4 5
0

200

400

600

800

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

Mule Quantity
1 2 3 4 5

0

20

40

60

80

100

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)(

%
)

Mule Quantity

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Mule Quantity

A
ve

ra
ge

 c
ol

lis
io

ns
 p

er
 p

kt

RW WISP−Mote
RD WISP−Mote
SP WISP−Mote

1 2 3 4 5
0

2

4

6

8

10

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

Mule Quantity

Figure 2.11: Comparisons among different mobility models for the data MULE;

RW=Random Walk, RD=Random Direction, SP=Snake Path (0.002 nodes/m2, 1

pkt/min, unlimited buffer size).

In our simulations, we compare three different mobility models for the WISP-

Mote scenario: Random Walk, Random Direction, and Snake Path. The Random

Direction algorithm has been described in Section 2.5.1. For the Random Walk

algorithm, each MULE selects a speed from [5m/s, 15m/s] and moves towards a

direction chosen from [0, 2 π] for a period of time chosen from [0, 10 s]. All these

selections are done in a uniformly random manner from the intervals given. In

the Snake Path algorithm, each MULE sweeps over the entire field by following a

snake-shaped route with a constant speed of 10m/s.

As we can see from the results, the MULE with Snake Path algorithm has

a higher efficiency of covering the entire network. The Random Walk algorithm

43

is slightly worse than the Random Direction algorithm. When there are five

MULEs, the network with 5 MULEs using the Snake Path algorithm can deliver

99.3% of the packets with an average latency of 112 s per packet, whereas the

Random Direction mobility model has a latency of 156 s with 98.0% of the packets

delivered. As for collisions, MULEs with prescheduled routes also outperform the

other two approaches. Therefore, using data MULEs with prescheduled routes is

the most efficient for collecting data from the sensors.

2.6 Applications That Can Benefit From WISP-

Motes

The applications that can benefit from passive wake-up radio sensor networks are

determined by the characteristics of the network in terms of transmission range,

asymmetric energy consumption values, and the equipment costs of the receiver

and the transmitter. Considering the hardware costs and the energy constraints,

it is expected that there will only be a few powerful nodes in a sensor network that

have the capability to wake up the other nodes in realistic applications. Even if

all the sensors are assumed to have enough energy, the wake-up range is relatively

short due to path loss and the efficiency of power harvesting at the receiver. As a

result, to cover a large area of sensor nodes, either the wake-up signal transmitter

has to be mobile to wake up the sensor nodes and collect data, or the sensor nodes

have to be mobile to move to the base station to deliver data. Based on these

features and constraints, we present several potential real-world applications that

can benefit from passive wake-up sensor networks.

44

1% DC BC−WM ID−WM
0

100

200

300

400

500

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

1% DC BC−WM ID−WM
0

20

40

60

80

100

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)

(%
)

1% DC BC−WM ID−WM
0

0.05

0.1

0.15

A
ve

ra
ge

 c
ol

lis
io

n
pe

r
pk

t d
el

iv
er

ed

1% DC BC−WM ID−WM
0

20

40

60

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

1 pkt/min
2 pkt/min

Figure 2.12: Patient monitoring scenario (unlimited buffer), “BCWM stands for

Broadcast-based WISP-Mote, “ID-WM stands for ID-based WISP-Mote.

2.6.1 Health Monitoring Applications

Body area networks bring inexpensive health monitoring to different environ-

ments. Wake-up radio technology has great potential for such applications. In

a home health monitoring application, such as the one we introduced at the be-

ginning of this dissertation, instead of using traditional health monitors, which

connect to a user’s body with wires limiting his/her daily activities, each user

can be equipped with various wireless sensor nodes for collecting different phys-

iological information, e.g., heart rate, blood pressure, blood glucose, and insulin

level. Wake-up radio transmitters are placed at specific locations such as kitchen

and bedroom. With ID-based wake-up radio, only specific sensors will be awak-

45

ened and gather data or perform data transmissions when the user enter these

locations. For example, when the user enters the kitchen, glucose sensor will be

waken up and start monitoring glucose level; when the user goes to bed, EEG

sensor will be awakened and start monitoring the user’s brain wave. By reducing

unnecessary sensing and transmission activities, the sensor node lifetime may be

greatly improved.

Similarly, patient monitoring in long-term care facilities (e.g., a sanatorium or

an assisted living facility), is another potential application. In these places, pa-

tients are cared for over a relatively long period of time and require non-emergency

but long-term health monitoring (e.g., the data from the patients only need to

be collected by nurses several times per day). Wireless body sensors are placed

on patients’ body as in the home health monitoring application. With all the

equipments (the wake-up transmitter, the data receiver, the computer, and the

power source) carried in a trolley, a nurse can easily gather all the sensor data

from patients while periodically traveling throughout the patients’ rooms.

We performed simulations for this scenario to compare the performance of

duty-cycling, broadcast-based wake-up and ID-based wake-up. 1% duty-cycling is

chosen for the duty-cycling scenario, as it has similar latency and packet delivery

performance as the wake-up scheme in the previous data MULE scenario simu-

lations. The wake-up probability models used for broadcast-based wake-up and

ID-based wake-up are built based on our closed environment field test results.

In the simulations, we assume there are 36 rooms, each with an area of 20m ×

20m. A ”nurse” goes from room to room with a speed of 1m/s to collect data

from the 4 sensors on each patient. We also set the nurse with 20% probability of

pausing while moving.

The ID-based wake-up is beneficial in this scenario, since there are multiple

nodes on each patient’s body. If a broadcast-based wake-up is used, all of the

nodes on a patient will be awakened with probability calculated based on our

46

closed environment field test results, which would cause congestions. Therefore,

waking up the nodes one by one based on their type (or patient ID in other cases)

will greatly reduce the chance of collisions and hence extend the nodes’ lifetime.

The simulation results confirm our expectations. As we can see from Fig. 2.12,

the delay for the three scenarios are generally about the same. However, both the

WISP-Mote networks can deliver more packets than the 1% duty-cycling and

consume about 5 times less energy. In terms of collisions, broadcast-based wake-

up, as expected, has the highest number of collisions, which somewhat decreases

its energy efficiency. ID-based wake-up, on the other hand, has zero collisions

and consumes a little less energy (4.3mJ/pkt) than broadcast-based wake-up

(4.8mJ/pkt). Overall, in the health-monitoring scenario, ID-based wake-up is

the most energy efficient scheme with competitive performance in terms of delay

and UPR.

2.6.2 Environmental Applications

Wildlife monitoring is one of the potential applications for passive wake-up radio

sensor networks. A branch of zoology research investigates the behavior of or

interactions between species. It is important to gather information on individual

animals such as their locations or physiological data, as well as environmental

information such as temperature and humidity, to understand the effects of the

environment and influences from other species.

The cost of collecting data by equipping animals with sensor nodes is much

lower than the cost of other approaches, e.g., volunteers. However, it is usually

difficult for scientists to retrieve the sensor nodes from wild animals for battery

replacement or recharging individually. Hence, the energy-efficient operation of

the sensor nodes is crucial, which is the main motivation for using the radio wake-

up technique.

47

20 40 60 80 100
0

500

1000

1500

2000

2500

Node number

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
s)

20 40 60 80 100
0

20

40

60

80

100

Node number

U
nd

el
iv

er
ed

 p
kt

s
ra

tio
 (

U
P

R
)

(%
)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Node number

A
ve

ra
ge

 c
ol

lis
io

ns
 p

er
 p

kt

20 40 60 80 100
0

5

10

15

20

Node number

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

pk
t(

m
J)

D1
W1
D2
W2

Figure 2.13: Animal monitoring scenario; D1= 1% Duty-cycling with R = 1,

W1=WISP-Mote with R = 1, D2=1% Duty-cycling with R = 2, W2=WISP-Mote

with R = 2 (0.2 pkt/min, buffer size unlimited)

Scientists may put sensor nodes on the animals, e.g., using a sensor collar,

as done by researchers in the ZebraNet project [47], and place data collectors

(equipment including a wake-up signal transceiver, data transceiver, and large

energy supply) at places where the animals are expected to congregate, such as

ponds and rivers, or where the animals are expected to roam. When the animals

get close to the data collector, the radio on them will be awakened and start

transmitting the gathered sensor data to the data collector. Since the sensor nodes

may last for years, the battery retrieval and replacement costs can be saved.

We simulate this scenario by assuming a 1000m by 1000m area with a pond

at the center. Assuming animals will tend to come to the pond for water, we

48

set a data collector at the pond sending out a broadcast-based wake-up signal

continuously. Animals equipped with WISP-Mote sensor devices roam around

this area and irregularly go to the pond for water. When the animals are roaming,

they follow a random walk mobility model with average speed of 5m/s. After a

uniform random period of time with mean value of tr, they move toward the pond

and stay there for another uniform random amount of time with mean of ts.

The ratio R = ts / tr impacts the network performance as is shown by the

results below. A larger ratio of R represents a longer stay at the pond, and as we

can see from Fig. 2.13, this results in a lower packet latency. For duty-cycling,

lower packet delay means less idle listening. In other words, the energy waste is

reduced and hence the energy efficiency is increased.

On the other hand, for the WISP-Mote scenario, the average number of col-

lisions before a successful packet delivery is much higher than for duty-cycling.

Yet, the undelivered packets and the energy consumption of the WISP-Mote sce-

nario is much lower than the 1% duty-cycling scenario. This scheme will suffer

from collisions if the number of nodes is large. As we can see, in this scenario,

when R and the number of nodes increase, the average number of collisions per

packet increases dramatically, which results in a decrease in the energy efficiency.

One way to improve the network performance is to add a random delay before

a WISP-Mote node performs carrier sensing. The maximum value of the delay

should be adjusted according to the number of nodes in the network, which pro-

vides a good estimate of the probability of collision in practice. Since our goal for

this chapter is not to design an application specific protocol, we do not optimize

the WISP-Mote algorithm here.

49

2.6.3 Other Potential Applications

Daily activity monitoring is one application similar to the one envisioned at the

beginning of this dissertation. In this application, passive wake-up radio receivers

can be put on wearable sensors and smartphones (which nowadays are usually

equipped with several sensors including accelerometer, gyroscope, proximity sen-

sor, GPS, temperature sensor, light sensor and so forth, in order to track the

smartphone’s motion, location and environmental parameters). When the user

enters certain areas where wake-up radio transmitters are located, the sensors or

smartphones could be awakened to perform sensing activities. While the user is

outside of the area, the sensors and smartphones will stay in a low power mode

in order to save energy.

Intelligent Transportation System (ITS) is a very promising application that

aims to improve traffic safety while providing other benefits such as reducing fuel

consumption and latency. Using transportation facilities to collect sensor data

throughout the city, i.e., urban monitoring [48], can be part of the ITS. The

sensor data may include traffic conditions and weather information that will be

helpful for congestion avoidance and improving traffic safety. Battery powered

sensor nodes can be easily attached to traffic lights, bus stations, toll booths, and

traffic signs and may work for years due to the energy efficiency improvements

from using wake-up radios. Buses, trains and garbage trucks are good candidates

for performing data collection duties, as they can cover a fairly wide area [49,50]

and they have no energy limitations so that transmitting a powerful wake-up

signal is not a problem.

2.7 Conclusions

In this chapter, we presented a novel device that utilizes current commercial sensor

nodes and programmable RFID tags to implement a passive wake-up radio sensor

50

network. Field tests in various environments are performed to characterize the

wake-up probability as a function of distance between the wake-up transmitter and

receiver. The results indicate that the wake-up radio performs the most stable as

distance increases in an open environment compared to a closed environment and

a cluttered environment. The results also prove that the wake-up range is very

limited compared to the ZigBee-compliant sensor mote communication range. In

addition, the radio wake-up transmitter requires high energy consumption that

cannot be applied to all the sensor nodes considering the hardware cost and the

energy budget. Both of these introduce a coverage problem.

To extend the sensor network coverage, mobility has to be introduced into pas-

sive wake-up radio based networks. We conduct detailed investigations on a data

MULE scenario to study the impacts of packet generation rate, node density, node

buffer size, MULE quantity, and MULE mobility model on network performance.

The simulation results indicate that in the mobile scenarios we investigated, the

passive wake-up radio sensor network achieves significantly better energy efficiency

than duty-cycling. Furthermore, potential applications of passive wake-up radio

sensor networks are discussed, and simulations are performed based on two spe-

cific application scenarios. The results reveal that passive wake-up radio sensor

networks have comparable packet latency and packet delivery performance while

greatly improving the energy efficiency.

Increasing the RFID reader-to-tag communication range will improve the per-

formance of passive wake-up radio networks. The directional antenna and beam

forming technique mentioned in [32] provide a possible solution to extend the

wake-up range without increasing the wake-up transmitter power. As another

approach, Omni-ID Corporation [51] has developed a patented technology called

a “plasmatic structure” that captures incoming RF waves and creates a region of

highly concentrated energy around the RFID, greatly extending the operational

range.

51

3 Noise Resilient Pitch

Detection from Speech Data

3.1 Introduction

In many applications for energy efficient sensing and computing systems, sensing

signals are noisy and must be processed to improve the signal-to-noise ratio or to

extract relevant information. For example, in the stress and emotion classifica-

tion application described in Chapter 1, sensing data from a human subject must

be obtained. These data may include speech data, image data of facial expres-

sion and body expressions, electrocardiograph (ECG) and electroencephalograph

(EEG). From the sensing data, features that contain important emotion infor-

mation can be acquired. For example, from speech data, we can extract pitch,

intensity, formant, linear prediction coefficients (LPC), linear predictive cepstral

coefficients (LPCC), mel-frequency cepstral coefficients (MFCC) and linear fre-

quency cepstrum coefficients (LFCC). However, if the original data is corrupted

by noise, obtaining these features from the noisy speech data is challenging. In

this chapter, we focus on the detection of pitch, which is one of the most essential

features in emotion classification from speech [52], from a noisy speech signal.

For human speech, pitch is defined by the relative highness or lowness of a

tone as perceived by the human ear, and is caused by vibrations of the vocal

52

cords. Since pitch is a subjective term, in this chapter, we use the objective

term fundamental frequency (F0), which is an estimate of pitch. If there were

perfectly periodic speech signals, F0 would be the inverse of the period of voiced

speech. However, the interference of formant structure for speech signals, or the

interference of spectral envelope structure for music signals, makes the accurate

detection of F0 difficult. Also, due to the aperiodicity of the glottal vibration itself

and the movement of the vocal tract that filters the source signal, human speech

is not perfectly periodic [53]. Additionally, accurate F0 detection is difficult when

the speech signal is corrupted with noise. Therefore, F0 detection has always been

a challenge in speech signal analysis.

A variety of speech-based applications can benefit from a more precise and

robust F0 detection algorithm. For example, F0 detection is essential in auto-

matic speech recognition, where pitch-accent patterns can be used to improve

recognition performance [54], or homophones can be differentiated by recognizing

tones [55]. For synthesized speech to be natural and intelligible, it is crucial to

have a proper F0 contour that is compatible with linguistic information such as

lexical accent (or stress) and phrasing in the input text. Therefore, F0 modeling

can be used for speech synthesis [56] [57]. F0 and azimuth cues can be jointly used

for speech localization and segregation in reverberant environments [58]. More-

over, in emotion detection or other affective measurement, it has been found that

prosodic variations in speech are closely related to one’s emotional state, and the

F0 information is important for the identification of this state [59]. A warning

system has been developed in [60] to detect if a driver exhibits anger or aggressive

emotions while driving, using statistics of the F0 value and other metrics. Some

health care providers and researchers implemented F0 detectors and other behav-

ior sensing technologies on mobile devices, such as smartphones, for behavioral

studies [61] [62] or patient monitoring, such as the clinical trials conducted by

the University of Pittsburgh for detecting depression in patients [63]. However,

53

for these types of applications, the vehicle noise captured by the detector or the

ambient noise captured by mobile devices may strongly influence the F0 detection

performance.

F0 detection also plays a very important role in music signal analysis and

music information retrieval, and has a broad range of applications. Music nota-

tion programs use F0 detection to automatically transcribe real performances into

scores [64]. Reliable F0 extraction from humming is critical for query-by-humming

music retrieval systems to work well [65]. Music fingerprinting technology also uses

F0 information for music identification among millions of music tracks [66]. F0

detection in noisy music is also challenging. Music may be recorded in noisy en-

vironments such as in a bar or on the street. Noise may also be introduced by

the recording device itself. One challenge is that the F0 generated from tonal

musical instruments spans a large range, normally from 50 Hz to 4,000 Hz [67].

For musical signals with high F0, the wide range of possible F0 candidates in-

creases the likelihood of finding a wrong F0 value. The other challenge is that,

unlike for human speech, the sound for musical signals can last for several sec-

onds, thus the overlapped musical tones can also be considered as noise. Due to

these reasons, when performing F0 detection in real scenarios, the quality of the

input signal may be greatly degraded. Therefore, F0 detection of musical signals

in noisy environments is necessary.

Adding noise may introduce spectral peaks in the spectrum of the speech signal

or distort the shape of the speech peaks, depending on the type and level of the

noise. The key to detecting F0 from noisy speech or music is to differentiate speech

or music spectral peaks from noise peaks. In Fig. 3.1, we plot the spectrum of one

frame from a clean speech file and the same frame with babble noise at 0 dB SNR.

By examining this frame, we can see that F0 is located at 192 Hz. By comparing

the spectrum of the clean speech and the noisy speech, we can see that the added

noise peaks distort the shape of the speech peaks, causing the highest point of

54

the peak to be shifted. For the noise at 0 dB SNR, the amplitudes of the noise

peaks can even be comparable with the amplitudes of the speech peaks. However,

their locations in the frequency domain are not periodic, and the distribution of

the noise peaks in the frequency range varies for different types of noise. Thus,

the locations of the spectral peaks are affected less by the additive noise than

the amplitudes of the peaks. Therefore, the ratios of harmonic frequencies are

essential to find F0 from a noisy signal.

Also, as seen in the spectrum of the noisy speech shown in Fig. 3.1, the first

four harmonics are located at 391 Hz, 581 Hz, 760 Hz, and 958 Hz. The spectral

peak located at 485 Hz is from the noise signal. We can see that the harmonics

are not exactly spaced at integer multiples of the fundamental frequency F0 in

the frequency domain, and the higher order harmonics have larger drift than the

lower order harmonics. Therefore, we need to set a tolerance range to account for

the drifts when calculating the ratios of harmonic frequencies.

0 500 1000 1500 2000
−20

−15

−10

−5

0

5

10

15

20

25

30

35

X: 484.8
Y: 22.21

Frequency (Hz)

L
o

g
 M

a
g

n
it
u

d
e

 (
d

B
)

X: 580.7
Y: 28.45

X: 191.8
Y: 28.36

X: 390.6
Y: 23.35

X: 759.7
Y: 19.3

X: 958.2
Y: 20.85

clean speech

speech with 0 dB babble noise

Figure 3.1: Spectrum of one frame of clean speech and speech with babble noise

at 0 dB SNR.

55

As existing F0 detectors, such as Cepstrum [68], HPS [69], and Praat [70],

do not perform well when the input data is noisy, we are motivated to design a

noise resilient F0 detection algorithm that is better suited for practical uses. This

chapter is based on our previous work [71], which proposed the BaNa algorithm

for F0 detection in speech signals. The BaNa algorithm is a hybrid F0 detection

algorithm that combines the idea of using the ratios of harmonic frequencies with

tolerance ranges and the Cepstrum approach to find F0 from a noisy signal. In

this chapter, we discuss F0 detection for both speech and music signals, and we

describe the simple modifications of BaNa required for music F0 detection. We

show that using the ratios of harmonic frequencies with pre-tuned tolerance ranges

for F0 detection enables the algorithm to be resilient to additive noise. We also

show that incorporating Cepstrum and post-processing techniques can improve

the F0 detection performance.

In addition, we extend the work in [71] by evaluating the BaNa algorithm on

a range of speech databases and by comparing it with seven classic and state-of-

the-art F0 detection algorithms. We test the proposed BaNa algorithm on real

human speech and music samples corrupted by various types and levels of realistic

noise. Evaluations show the high noise resilience of BaNa compared to the classic

and state-of-the-art F0 detection algorithms. For noisy speech at 0 dB SNR,

BaNa achieve 20% to 35% Gross Pitch Error (GPE) rate for speech and 12% to

39% GPE rate for music. Also, we discuss issues with implementing BaNa on a

smartphone platform. Test results on a real device show that our implementation

of BaNa can process recorded speech files with a reasonable speed, opening the

door for real-time F0 detection on mobile platforms.

The rest of the chapter is organized as follows. Section 3.2 provides a brief

survey of well-known F0 detection algorithms and also some of the most recent F0

detection algorithms. Section 3.3 describes the BaNa algorithm for F0 detection

in noisy speech. Experimental settings and extensive experimental results com-

56

paring the BaNa algorithm with several classic and state-of-the-art F0 detection

algorithms using different speech databases are presented in Section 3.4 and Sec-

tion 3.5, respectively. Section 3.6 presents the slight modifications of the BaNa

algorithm to improve its performance for F0 detection in noisy music. We describe

an implementation of the BaNa F0 detection algorithm in Section 3.7. Finally,

Section 3.8 concludes the chapter.

3.2 Related Work

Among the well-known classic F0 detection algorithms, autocorrelation function

(ACF) and cross correlation are among the most widely used time domain meth-

ods. A number of algorithms have been developed based on these two approaches.

Average Magnitude Difference Function (AMDF) [72] is a variation of ACF, which

calculates a formed difference signal between the delayed signal and the original

one. Since the AMDF algorithm does not require any multiplications, it is de-

sirable for real-time applications. Praat [70] considers the maxima of the auto-

correlation of a short segment of the sound as F0 candidates, and chooses the

best F0 candidate for each segment by finding the least cost path through all the

segments using the Viterbi algorithm. YIN [73] uses a novel difference function

similar to autocorrelation to search for the F0 period. It further refines the F0

detection result using some post-processing methods. Two types of modified dif-

ference function used in YIN are proposed in [74]. The RAPT F0 tracker [75],

on the other hand, is a variation of cross correlation, which computes the F0 by

extracting the local maxima of the normalized cross correlation function.

In the frequency domain, F0 is found by searching for harmonic peaks in the

power spectrum. The Cepstrum method [76] [68] is among the most popular

algorithms. Cepstrum is found by computing the inverse Fourier transform of

the log-magnitude Fourier spectrum, which captures the period in the speech

57

harmonics, and thus shows a peak corresponding to the period in frequency.

Schroeder’s frequency histogram [69] enters all integer submultiples of all the

peaks in the spectrum in a histogram. Since F0 is the integer submultiple of all

the harmonics, in an ideal case, the entry with the highest weight in Schroeder’s

frequency histogram is the correct F0. As pointed out in [77], Schroeder’s fre-

quency histogram is susceptible to octave errors, as F0 and F0/2 will have the

same weight in Schroeder’s frequency histogram. In cases where noise peaks are

selected, Schroeder’s histogram will make mistakes by selecting the greatest com-

mon divisor of both the harmonics and the noise peaks.

The Harmonic Product Spectrum algorithm (HPS) [69] multiplies the original

signal with downsampled signals, thus in the frequency domain, the spectra of all

the downsampled signals line up the peaks at the F0 value for isolation. Another

harmonic summation method is proposed in [78], which modifies the HPS method

for multiple F0 estimation in polyphonic music. The harmonic components’ energy

distribution is used, and F0 candidates are selected using a competition mecha-

nism. The algorithm is tested on three different instruments. However, for these

harmonic summation methods, noise peaks with high amplitudes can be easily

mistaken for harmonic peaks at low SNR scenarios. Since our proposed BaNa

algorithm only relies on the locations of the harmonic peaks to calculate the fre-

quency ratios of those spectral peaks, with the peak’s amplitude information only

being considered for peak selection, we show in Section 3.4.3 and Section 3.6.5

that the BaNa algorithm is more robust than the HPS algorithm for noisy speech

and noisy music.

The PEFAC (Pitch Estimation Filter with Amplitude Compression) algorithm

proposed in [79] is another frequency-domain F0 detection algorithm for noisy

speech. This approach estimates F0 by convolving its power spectral density in

the log-frequency domain with a filter that sums the energy of the F0 harmonics

while rejecting additive noise that has a smoothly varying power spectrum. Also,

58

amplitude compression is applied before filtering to attenuate narrow-band noise

components.

Some F0 estimators operate in the time-frequency domain by applying time-

domain analysis on the output of a filter bank. In the algorithm proposed by Jin

and Wang [80], a new frequency channel selection method is proposed to select

less corrupted channels for periodicity feature extraction. F0 scores for each F0

state are derived given the periodicity features and are given to a hidden Markov

model for F0 state tracking.

Recently, an increasing number of F0 detection algorithms have been designed

using a data-driven statistical approach to combat noise, such as the algorithms

described in TAPS [81], Wu [82], and SAFE [83]. In [81], Huang et al. propose

an F0 estimation method that uses Temporally Accumulated Peaks Spectrum

(TAPS). Since the harmonic structure of voiced speech changes more slowly than

the noise spectrum over time, spectral peaks related to F0 harmonics would stand

out after temporal accumulations. Clean and noisy speech data is required to

train the peak spectrum exemplar set and the Gaussian mixture model.

The Wu algorithm [82] is also a statistical approach, which integrates a new

method for extracting periodicity information across different channels, and a

Hidden Markov Model for forming continuous F0 tracks. The modeling process

incorporates the statistics extracted from a corpus of natural sound sources. The

SAFE algorithm [83] also uses a data-driven approach to model the noise effects

on the amplitudes and locations of the peaks in the spectra of clean voiced speech.

However, these data-driven approaches may not always be practical. Since

these algorithms are trained with known noise types and specific noise levels, the

noise information of the test sample is also required as input to the model. How-

ever, this information is not always available, since the user often does not know

the type of noise, and it is even harder to measure the noise level. The proposed

BaNa algorithm, on the other hand, does not require any prior information about

59

the noise.

Though most F0 detection algorithms were developed for F0 detection in

speech, a number of the aforementioned algorithms have also been used in mu-

sic. The YIN and Praat algorithms are evaluated in [84] for synthetic signal and

real-time guitar signal F0 tracking. In [85], F0 detection performance of the HPS

algorithm and its variation called Cepstrum-Biased HPS are compared for inter-

active music. Clean cello and flute pieces are used in the experiments. However,

robust F0 detection in noisy music is still a topic that needs to be explored.

In this chapter, we perform an extensive quantitative comparison analysis to

show the performance, in terms of Gross Pitch Error (GPE) rate, for our proposed

F0 detection algorithm, BaNa, and several of the aforementioned algorithms (YIN,

HPS, Praat, Cepstrum, PEFAC, SAFE, and Wu) for noisy speech and music

signals.

3.3 BaNa F0 Detection Algorithm for Speech

In this section, we describe the BaNa hybrid F0 detection algorithm for speech.

3.3.1 Preprocessing

Given a digital speech signal, preprocessing is performed before the extraction of

the F0 values. In the BaNa algorithm, we filter the speech signal with a bandpass

filter. Let Fmin
0 and Fmax

0 denote the lower limit and upper limit for F0 values

of human speech, respectively. The lower bound of the bandpass filter is set to

Fmin
0 . The upper bound is set to p ·Fmax

0 , where p is the number of spectral peaks

captured that will later be used for F0 detection.

60

3.3.2 Determination of the F0 candidates

Since harmonics are regularly spaced at approximately integer multiples of F0 in

the frequency domain, we use this characteristic of speech in the proposed BaNa

algorithm to achieve noise resilience. If we know the frequency of a harmonic and

its ratio to F0, then F0 can be easily obtained. However, even if a harmonic is

discovered, its ratio to F0 is unknown. Therefore, we propose an F0 detection

algorithm that looks for the ratios of potential harmonics and finds the F0 based

on them by applying the following steps.

Step 1: Search for harmonic peaks

Spectral peaks with high amplitudes and low frequencies are preferred to be

considered for F0 candidates, since peaks with high amplitudes are less likely to

be caused by noise, and peaks with low frequencies are easier to be identified to

be harmonics by calculating the ratios. Peaks with high frequencies may be high

order harmonics, which cannot be used to calculate harmonic ratios, since we only

consider the ratios of the first p harmonics. Therefore, we consider the p peaks

with amplitudes higher than a certain threshold and with the lowest frequencies

to derive F0 candidates. We use the peak detection algorithm provided in [86] to

search for the peaks in the spectrum. In [86], spectral peaks with small amplitudes

are filtered out by setting a peak amplitude threshold, and peaks located very

close to dominant peaks are smoothed by setting a threshold of the window width

for smoothing. Settings that we use for the number of selected peaks p, the

peak amplitude threshold parameter, and the window width parameter for the

smoothing function in the peak detection function are presented in Table 3.2.

Let F̂i and | Ĥi | represent the frequencies and the magnitudes of the p spectral

peaks with the lowest frequencies whose magnitudes are above a certain threshold,

where i = 0, · · · , p− 1. We place the p peaks in ascending order of frequency to

obtain the set of F̂i, denoted as F̂ . For most human speech, energy concentrates in

61

the low frequency part, thus some or all of the p peaks are likely to be at the first

p harmonics, which are at m × F0, m = 1, · · · , p. For each frame, F0 candidates

are derived from the ratios of the frequencies of F̂ using the following algorithm.

Step 2: Calculate F0 candidates

Figure 3.2: Tolerance ranges for harmonic ratios when the number p of selected

spectral peaks is set to 5, and an example to illustrate the procedure for deter-

mining the F0 candidates.

We calculate the ratios Rij = F̂j/F̂i for all F̂i, F̂j, where i < j, and i, j =

0, · · · , p − 1. Take the number of selected spectral peaks p = 5 for example. If

a calculated ratio Rij falls into any tolerance range of the harmonic ratios shown

in the left table in Fig. 3.2, we are able to find to which harmonics F̂i and F̂j

correspond. For harmonic ratios with small numbers, we set adjacent tolerance

ranges to be bounded with each other, i.e., the upper bound of the tolerance range

of the ratio of F̂4 and F̂3 is the same as the lower bound of the tolerance range

of the ratio of F̂3 and F̂2, which is (5/4 + 4/3)/2 = 1.29, as shown in Fig. 3.2.

For harmonic ratios with large numbers, the width of the tolerance range is set to

62

0.2 or 0.4, depending on the ratio number. We show in Section 3.4.3 that these

tolerance range numbers are tuned to achieve the best F0 detection performance.

A potential F0 candidate can be obtained by dividing the harmonic by its ratio

to F0: F̃ = F̂i/m, where m = 1, · · · , p. Note that due to the imperfect periodicity

of human speech, the harmonics may not be exactly on integer multiples of F0,

and we observed that higher order harmonics have even larger drift than lower

order harmonics in practice. Therefore, we set a smaller ratio tolerance range for

lower order harmonics, and we set a larger ratio tolerance range for higher order

harmonics. In total, Cp
2 ratio values are calculated between every pair of F̂ . Since

both ratios of F1/F0 and F3/F1 are equal to 2, it is not trivial to differentiate to

which harmonics this ratio belongs. In our algorithm, we assume it belongs to

F1/F0 and calculate the F0 candidate based on that.

In order to combat these octave errors, the proposed BaNa algorithm adds two

other F0 candidates. One added candidate is the spectral peak with the smallest

frequency value, since we have found that in some cases only the F0 peak is high

enough to be detected. The other added F0 candidate is the F0 value found

by the Cepstrum method. The reason is that the p spectral peaks we choose

mainly belong to low frequency values. For some rare cases, the higher order

harmonics (e.g., 5th to 10th harmonics) are found to yield higher spectral peak

values compared to the low order harmonics. In that case, the spectral peaks

at low frequencies are more vulnerable to noise. However, since the Cepstrum

method depicts the global periodicity of the spectrum, and considers all spectral

peaks, it can help to detect the F0 in those rare cases. In Section 3.5.2, we show

the benefit of including the spectral peak with the smallest frequency value and

the Cepstrum F0 as additional candidates.

The number of F0 candidates derived from the ratio analysis and the two

added candidates, K, is then less than or equal to Cp
2 + 2. Among these K

F0 candidates, the ones that are out of the Fmin
0 to Fmax

0 human speech range

63

are discarded, and the number of candidates is reduced from K to K ′. If no

candidate is derived from the ratios, we set the F0 value to 0 Hz. We then

order the K ′ candidates in ascending order of frequency. F0 candidates that are

within ξ Hz of each other are considered to be “close” candidates. For each of

these K ′ candidates F̃k, where k = 1, ..., K ′, we count the number of “close”

candidates Uk, and select the one with the largest number of “close” candidates

to be a “distinctive” candidate F̌d, where d = 1, ..., D, and D is the number of

“distinctive” candidates. The “distinctive” candidate and its “close” candidates

are deleted from the candidate list. If there is more than one candidate that has

the same largest number of “close” candidates, we select the one with the smallest

frequency to be the “distinctive” candidate. We continue the same procedure for

the remainder of the list until the list is empty. We set the number of “close”

candidates, including the chosen candidate itself, to be the confidence score Vd

for the corresponding “distinctive” candidate F̌d. Among the D “distinctive”

candidates, where D ≤ K ′, the ones with higher confidence scores are more likely

to be F0.

In Fig. 3.2, we use the frame shown in Fig. 3.1 to illustrate the process of

calculating F0 candidates. In Fig. 3.1, the dotted line represents the spectrum of

one frame of speech with 0 dB babble noise. The five selected spectral peaks that

have the lowest frequencies are located at 192 Hz, 391 Hz, 485 Hz, 581 Hz, and

760 Hz. The 485 Hz peak is caused by the noise signal, and the remaining four

peaks are from the speech signal. We map each calculated frequency ratio in the

right table in Fig. 3.2 to one expected harmonic ratio in the left table in Fig. 3.2.

For example, the ratio of the 5th and 4th spectral peaks is F̂5/F̂4 = 760/581 = 1.31,

which maps to the [1.29 1.42] frequency ratio tolerance range for the expected

frequency ratio of the 3rd and 2nd harmonics. Therefore, the F0 candidate is

derived as 581/3=194 Hz. In this example, all calculated frequency ratios are

mapped to one expected harmonic ratio in the left table, which results in 10 F0

64

candidates. The Cepstrum candidate and the peak with the lowest frequency are

added as two additional F0 candidates, which are 190 Hz and 192 Hz, respectively.

If we use the parameters shown in 3.4.3, all the 12 candidates are within

the Fmin
0 = 50 Hz to Fmax

0 = 600 Hz range for F0. Candidates that are within

ξ = 10 Hz of each other are considered to be “close” candidates. In Fig. 3.2,

the bottom table shows the “distinctive” candidates and their confidence scores.

The 190 Hz candidate has the highest confidence score, which is very close to

the ground truth F0, i.e., 191 Hz calculated from the corresponding clean speech

signal. In Fig. 3.2, correct F0 candidates are listed on the bottom and are marked

by solid red lines. Incorrect F0 candidates are listed on the top and are marked

by dotted black lines. We can see that the candidates calculated from the 485 Hz

noise peak are all incorrect candidates.

3.3.3 Selection of F0 from the candidates

In Section 3.3.2, the “distinctive” candidates of individual frames are obtained

independently. However, the F0 values of neighboring frames may correlate, since

the F0 values of human speech exhibit a slow time variation, and hence, large F0

jumps among subsequent frames are rare. Therefore, we use the Viterbi algorithm

[87] for post-processing to go through all the candidates in order to correct F0

detection errors, similar to the post-processing used in the Praat algorithm [70].

We aim to find a path that minimizes the total cost, which consists of two parts:

the frequency jumps between the candidates of two consecutive frames, and the

inverse of the confidence scores of each “distinctive” candidate.

Let F̌ n
i denote the ith “distinctive” F0 candidate of frame n and Nframe denote

the number of frames in the given speech segment. Moreover, let pn denote the

index of the chosen F0 candidate for the nth frame. Thus, {pn | 1 ≤ n ≤ Nframe}

defines a path through the candidates. For each path, the path cost is defined to

65

be

PathCost ({pn}) =

Nframe−1∑
n=1

Cost
(
F̌ n
i , F̌

n+1
j

)
, (3.1)

where pn = i and pn+1 = j. The Cost is used to calculate the cost of adjacent

frames. We define the function Cost by using the F0 differences between the

adjacent frames and the confidence score of the candidates. The F0 difference is

modeled similarly with the transition cost defined in the Praat algorithm [70].

The larger the F0 difference, the higher the Cost should be. We present the F0

difference in the Mel scale, which is a perceptual scale of F0 judged by listeners.

The perceived F0 in the Mel scale has a logarithm relation with the F0 in frequency,

as shown in (3.2):

m = 2595 · log10

(
1 +

f

700

)
. (3.2)

Therefore, in the cost function, the F0 difference in frequency is modeled as the

logarithm of the F0 division in the Mel scale. The other part of the cost function is

modeled using the confidence score. We assign a lower cost to those F0 candidates

with higher confidence scores, thus we use the inverse of the confidence score in

the expression of the cost function. A weight w is introduced to balance the two

parts. The setting for this value is shown in Table 3.2. Then, Cost is defined

mathematically as

Cost
(
F̌ n
i , F̌

n+1
j

)
=| log2

F̌ n
i

F̌ n+1
j

| +w × 1

V n
i

, (3.3)

where V n
i is the confidence score of the ith “distinctive” F0 candidate of the nth

frame.

We use the Viterbi algorithm to find the minimum cost path, i.e., the path

that reduces the F0 jumps the most, while giving priority to the F0 candidates

with higher confidence scores. The optimal path is found for each voiced part in

the speech. The Praat algorithm also uses the Viterbi algorithm to choose F0 from

several F0 candidates for each frame. However, the F0 candidates of Praat are

66

local maxima of the autocorrelation of each frame, which have the same confidence

score to be selected as F0. On the other hand, the F0 candidates in BaNa have

different confidence scores, and thus F0 candidates derived from noise spectral

peaks are less likely to be selected as F0. Therefore, the cost function of BaNa’s

Viterbi algorithm shown in (3.3) is different from that in the Praat algorithm.

The complete BaNa algorithm that describes the selection of the peaks and the

calculation and selection of the F0 candidates is given in Algorithm 3.

Algorithm 3 The BaNa F0 Detection Algorithm

1: // For frame n:

2: // Select harmonic peaks

3: select F̂ n: the p peaks with lowest frequencies

4: // Calculate F0 candidates

5: number of candidates K ← 0

6: for i =1 to p, j = i+ 1 to p do

7: ratio Rij = F̂ n
j /F̂

n
i

8: for m =1 to p, m′ = m+ 1 to p do

9: if Rij falls in the left table of Fig. 3.2 and close to m′

m
then

10: K ← K + 1, F̃ n
K ← F̂ n

i /m

11: end if

12: end for

13: end for

14: K ← K + 1, add spectral peak with the lowest frequency F̂ n
1 : F̃ n

K ← F̂ n
1

15: K ← K + 1, add Cepstrum F0: F̃ n
K ← Cepstrum F0

16: discard F̃ n that are out of the Fmin
0 to Fmax

0 range

17: K ′ ← number of remaining candidates F̃ n

18: number of “distinctive” candidates Dn ← 0

67

Algorithm 4 The BaNa F0 Detection Algorithm (Continued)

19: while ∃F̃ n 6= null do

20: for k =1 to K ′ do

21: if F̃ n
k 6= null then

22: num. of “close” candidates of F̃ n
k : Uk ← 0

23: for l = 1 to K ′ do

24: if | F̃ n
l − F̃ n

k |≤ ξ Hz then

25: Uk ← Uk + 1

26: end if

27: end for

28: end if

29: end for

30: Dn ← Dn + 1, V n
D ← max Uk

31: “distinctive” candidate F̌ n
Dn ← F̃ n with max Uk

32: F̃ n with max Uk ← null

33: all “close” candidates of F̃ n with max Uk ← null

34: end while

35: // For all frames within a voiced segment:

36: // Choose F0 from “distinctive” candidates

37: for n =1 to number of frames Nframe do

38: for i, j =1 to Dn do

39: Cost
(
F̌ n
i , F̌

n+1
j

)
=| log2

F̌n
i

F̌n+1
j

| +w × 1
V n
i

40: end for

41: end for

42: return {pn} of min {PathCost} ← V iterbi (Cost), where path {pn} denotes

F0 for all frames

68

For each frame, the time complexity to calculate K F0 candidates by calculat-

ing frequency ratios of p selected peaks is O (p2). The time complexity to calculate

D ‘distinctive’ candidates from K ′ remaining candidates is O
(
K ′3
)
, which is the

most complex process. The time complexity to use the Viterbi algorithm to choose

the final F0 from ‘distinctive’ candidates is O (D2).

3.4 Experimental Settings for BaNa F0 Detec-

tion For Speech

In this section, we present the speech and noise databases we use for F0 detection

performance evaluation, the error measurement metric, and parameter tuning of

the proposed algorithm.

3.4.1 Speech and Noise Databases

Noisy speech samples can be generated by adding noise recorded in noisy environ-

ments to clean speech samples. Using this approach, the ground-truth F0 values

can be obtained from the clean speech. An alternative approach is to use speech

samples directly recorded in real noisy environments, such as the SPEECON

database [88], where additive noise, reverberations, and channel distortions are

present. The ground-truth F0 values in the SPEECON database are derived by

manually F0-marked recordings from a close speaking microphone with relatively

little noise (clean speech). Several F0 detection algorithms use the SPEECON

database to evaluate their performance [89] [90] [91].

In this work, we use noisy speech samples generated from clean speech and

different types of additive noise.

The clean speech samples we use are taken from four English speech databases:

LDC [2], Arctic [92], CSTR [4], and KEELE [5]. Since female speakers normally

69

have higher F0 values than male speakers, approximately an equal number of

speech samples from male and female speakers are chosen from these databases.

Also, since the frequency characteristics in speech differ from person to person,

we select speech samples from all the available speakers within these databases.

Table 3.1 presents the specifications of these speech databases.

Table 3.1: Evaluated speech databases and their features. Parameters are tuned

using samples from the Arctic database.

Speech

databases

Emotion # of

speakers

of se-

lected

samples

% of

voiced

frames

Has F0

ground

truth?

Arctic [92] neutral 4 10 54.2% No

LDC [2] various 7 20 50.4% No

CSTR [4] neutral 2 100 50.3% Yes

KEELE [5] neutral 10 10 50.4% Yes

The LDC database is the Emotional Prosody Speech and Transcripts Database

from Linguistic Data Consortium. It is chosen because it includes speech samples

with strong emotions such as hot anger and elation, for which the F0 values may

change dramatically even within a short utterance. In the BaNa algorithm, the

difference of F0 values for neighboring frames is taken into consideration by the

Viterbi algorithm. Therefore, the LDC database helps to investigate whether this

discontinuity in F0 values may influence the performance. The Arctic, CSTR

and KEELE databases all contain speech samples with neutral emotion. All the

speech samples used for the evaluation are included in the BaNa toolkit [93].

To test the noise resilience of the investigated algorithms, eight types of noises

are added to the original signals with different SNR levels. The noise database

70

we use is the NOISEX-92 noise database [94], in which we choose six different

types of real life background noise: speech babble (labeled as babble in the figures

for performance comparison), destroyer engine room noise (engine), destroyer

operations room noise (operation), factory floor noise (factory), vehicle interior

noise (vehicle), high frequency radio channel noise (highfreq), as well as two

common types of noise: white noise (white) and pink noise (pink). To generate

noisy speech with a certain SNR value, the signal energy is calculated only on the

voiced part, and the noise is amplified or attenuated to a certain level to meet the

target SNR value.

3.4.2 Error Measurement Metric

For the noisy speech data, if the detected F0 deviates more than 10% from the

ground truth value, it is counted as a gross pitch error. Otherwise, it is counted

as a fine pitch error. The Praat algorithm also uses the 10% deviation range in

their error measurement in [70]. Gross Pitch Error (GPE) rate is the percentage

of incorrectly detected F0 values in voiced speech segments. GPE rate has been

widely used as the error measurement metric for F0 detection [81] [83] [95]. Mean

and standard deviation of Fine Pitch Errors (FPE) are also used in this study.

FPE is calculated by the relative deviation of the detected F0 from the ground

truth F0, with the unit in percent, for any pitch that does not represent a Gross

Pitch Error [96] [97].

The F0 ground truth values for the CSTR and KEELE databases are pro-

vided, which are obtained from the simultaneously recorded laryngograph signals.

We downloaded the speech data and the ground truth values for the CSTR and

KEELE databases from the SAFE toolkit [98], and then shifted the ground truth

values in time as needed to line up with the F0 detected by all the algorithms

tested. For the LDC and Arctic databases with no F0 ground truth provided,

we use auto-labeled F0 values of the original clean speech as the ground truth F0

71

values and the voiced/unvoiced delineation, since the original speech samples are

clean and with very little background noise. To best estimate the ground truth F0

values, we calculate the detected F0 values of three algorithms: PEFAC, YIN and

Praat, which all perform well in F0 detection for clean speech. For one frame, if

the detected F0 values from all three algorithms are within 10%, we assume that

this frame is voiced, and the auto-labeled ground truth is determined by averaging

the three detected F0 values. Otherwise, we assume that the frame is unvoiced

and do not detect F0 for that frame.

Fig. 3(a) shows an example of a clean speech recording of the utterance ‘three

hundred (and) nine’ along with the auto-labeled F0 values as the ground truth.

The word ’and’ in the middle is skipped and is not spoken. We can see that for

most of this clean utterance, the detected F0 values from the three algorithms are

very close. We use black solid dots to represent the ground truth F0 values, which

are calculated by averaging the detected F0 values from PEFAC, YIN and Praat.

We also note that the detected F0 values from these three algorithms differ at

frames corresponding to unvoiced stop consonants, i.e., ‘th’ in ‘three’ and ‘h’ in

‘hundred’, and discontinuities, i.e., the spaces between two words. Those frames

are regarded as unvoiced and are ignored. For some frames, no F0 value is shown

on the plot for Praat, since Praat has its own voiced/unvoiced frame detection, and

those frames are considered as unvoiced by Praat. The corresponding spectrogram

is shown in Fig. 3(b), in which the lowest dark red curve verifies the calculated

F0 ground truth in Fig. 3.3a. The frame length used to compute the spectrogram

is 60 ms.

The MATLAB code for the BaNa algorithm is available on the University

of Rochester Wireless Communications and Networking Group’s website [93].

Although the voiced/unvoiced speech detection is not within the scope of this

chapter, we provide one version of the MATLAB implementation of the BaNa

72

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Time (s)

A
m

p
lit

u
d

e

waveform

0 0.2 0.4 0.6 0.8 1
0

100

200

300

Time (s)

D
e

te
c
te

d
 F

0
 (

H
z
)

PEFAC

YIN

Praat

Ground Truth

Thr − ee h − un − dr − ed n − i − n − e

(a)

(b)

Figure 3.3: For one clean speech utterance: a) speech waveform and the auto-

labeled ground truth F0 derived from three algorithms: PEFAC, YIN, and Praat,

and b) the spectrogram. The frame length used to compute the spectrogram is

60 ms.

73

algorithm with an automatic voice marker [93]. The voiced/unvoiced speech de-

tector used in this version of the BaNa code is the one implemented in [76] as

the voiced/unvoiced speech detector for the Cepstrum F0 detection algorithm.

Frames with a dominant cepstrum peak, with an amplitude higher than the am-

plitude of the second highest peak by a certain threshold, are considered as voiced

frames. However, we have not evaluated the performance of this voiced/unvoiced

speech detector on noisy speech. Other voiced/unvoiced speech detectors are also

available in the literature [83] [89].

3.4.3 Parameter Tuning

The frame shift is set to 10 ms in order to obtain smooth F0 detection results.

The absolute value of the Fourier transform of the Hann windowed speech signal

is calculated, with the FFT size set to 216 = 65,536 to provide good frequency

resolution. Candidates that are within ξ = 10 Hz of each other are considered

to be “close” candidates. Since the F0 of human speech is normally higher than

50 Hz and can be as high as 600 Hz for children or female voices [99], we set the

lower limit and the upper limit for F0 of human speech to be Fmin
0 = 50 Hz and

Fmax
0 = 600 Hz, respectively.

There are several parameters in the BaNa algorithm that can be pre-tuned to

achieve a more accurate estimate of F0. The Arctic samples are used for the tuning

of these parameters, and the set of parameters that provides the lowest GPE rate

averaged over all levels of noise and all types of the NOISEX-92 noise [94] is chosen

as the parameter set used in this chapter.

The parameter settings are shown in Table 3.2. To obtain a stable estimate of

F0, the frame length is chosen to be at least three times the F0 period. Since the

minimum F0 we consider for both speech and music is 50 Hz, the frame length is

thus 1/50 × 3 = 0.06 s, i.e., 60 ms. We also list in Table 3.2 other frame length

74

values that we have tested. Using the 20 ms frame length, which is one F0 period

at 50 Hz, results in a higher GPE rate. Although using the 90 ms frame length

can slightly reduce the GPE rate, the temporal resolution is sacrificed.

Parameters in the spectral peak selection process are also tuned, including the

number of spectral peaks p chosen to calculate the F0 candidates, the spectral peak

amplitude threshold and the threshold of the window width for smoothing, which

is the width of the smoothing function applied before spectral peak detection.

With these parameters being properly set, spectral peaks with low amplitudes

and small widths are not chosen. We tested the performance of BaNa by choosing

more or fewer spectral peaks, which means possibly more or fewer harmonics,

but we found that choosing 5 peaks provides good F0 detection performance.

Also, choosing more spectral peaks increases the complexity in calculating the F0

candidates.

Other parameters that are tuned are the tolerance range for the harmonic

ratios used in the left table of Fig. 3.2, and the weight parameter used in the cost

function in (3.3). Note that these parameters represent the optimal set across

all noise types and SNR values for the Arctic speech database; they may not be

optimal for a given noise type or SNR value or samples from other databases.

A user could, of course, optimize the parameters for specific noise conditions,

but we will show in Section 3.5 that using these tuned parameters provides good

performance without the need for tuning for specific noise environments. Note

that for all the other F0 detection algorithms, we choose their default parameters

in the evaluation.

To evaluate the parameter sensitivity of the BaNa algorithm on new types of

noise, we use another widely-used noise database [3] with eight types of common

ambient noise, including airport, babble, car, exhibition, restaurant, street, sub-

way, and train noise. This noise database was used to construct the AURORA

75

Table 3.2: Optimal values of tuned parameters, and other values of the parameters

for which BaNa algorithm is tested.

Parameters Optimal value Other values tested

Frame length 60 ms 20 ms, 90 ms

Number of chosen spectral

peaks p

5 3, 4, 6, 7

Spectral peak amplitude

threshold in peak selection

1/15 of the highest

peak

1/25, 1/20, 1/10 of the

highest peak

Window width for smooth-

ing in the frequency domain

in peak selection

50 Hz 40 Hz, 60 Hz, 70 Hz, 80

Hz

Tolerance range for har-

monic ratios

Numbers shown in

Table I

Narrowed range, ex-

tended range

Weight w in the cost func-

tion in (3.3)

0.4 0.05, 0.1, 0.2, 0.3, 0.5,

0.6, 0.7, 0.8, 0.9

noisy speech database [100] for speech recognition. Note that the AURORA noise

database is only used for this parameter sensitivity test. All the remaining perfor-

mance evaluations in this chapter are performed on noisy speech and noisy music

generated using noise samples from the NOISEX-92 noise database [94].

We compare the performance of BaNa on the LDC database [89] by using

1) the set of parameters provided in the chapter, that are tuned on the Arctic

database and the NOISEX-92 noise database [94], and 2) the parameter sets that

are individually optimized on a specific type of noise from the the AURORA noise

database [3] that yields the lowest GPE rates for the LDC database, averaged over

0 dB, 5 dB, 10 dB, 15 dB, and 20 dB SNR values.

As shown in Fig. 3.4, the difference in the performance when using the in-

76

dividually optimized parameter sets and when using the parameter set selected

in the chapter is relatively small for most noise types. These results show that

the performance of BaNa is not very sensitive to the specific parameters chosen.

Thus, we can trade a slight drop in the GPE performance of BaNa for the benefit

of not needing to optimize the parameters for a specific type of noise environment.

airport babble car exhibitionrestaurant street subway train
0

5

10

15

20

25

Type of noise

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

Optimal set

Selected set

Figure 3.4: GPE rates of BaNa for the LDC database [2] with eight types of

AURORA noise [3] averaged over all SNR values, using individually optimized

parameter sets that provide the lowest GPE rates for a specific type of AURORA

noise, and using the tuned parameter set selected in the chapter. Detected F0

deviating more than 10% from ground truth are errors.

77

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

 (
%

)
)

BaNa

HPS

YIN

Praat

Cepstrum

PEFAC

Figure 3.5: GPE rate of the different algorithms for the LDC database [2], av-

eraged over all eight types of noise. Detected F0 deviating more than 10% from

ground truth are errors.

3.5 F0 Detection Performance For Speech Sig-

nals

In this section, we compare the F0 detection performance of the proposed BaNa

algorithm with that of several classic and state-of-the-art algorithms on speech

signals in various noisy environments and for a wide range of SNR values. Seven

algorithms are considered due to their popularity or good performance: YIN, HPS,

Praat, Cepstrum, PEFAC, SAFE, and Wu. These algorithms have been described

in Section 3.2. The source code for YIN, Praat, Cepstrum, PEFAC, SAFE, and

Wu are from [101], [102], [76], [103], [98], and [104], respectively. We implement

the HPS algorithm based on the algorithm described in [69]. F0 detection in eight

different types of noise environments are evaluated, where noisy speech samples are

generated by adding background noise to clean real speech samples with different

noise power levels to achieve different SNR values.

Note that in our study, we only detect F0 when only one speaker is speaking

78

0 5 10 15 20
0

10

20

30

40

50

60

70

80

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

PEFAC

Figure 3.6: GPE rate of the different algorithms for the CSTR database [4],

averaged over all eight types of noise. Detected F0 deviating more than 10% from

ground truth are errors.

or only one instrument is played. If multiple people are speaking or multiple

instruments are played at the same time, multiple F0 values coexist. Multiple

F0 detection, as studied in work such as [105] [106] [107] [108], is not within the

research scope of this work.

3.5.1 F0 Detection Performance for Speech

We test all the F0 detection algorithms on each one of the speech databases men-

tioned in Section 3.4.1, except the Arctic database, which was used for tuning the

BaNa parameters. The GPE rate is evaluated as a function of SNR value, where

the GPE rate is averaged over all types of noise for each SNR value.

For the LDC database with emotional utterances, Fig. 3.5 depicts the results,

which shows that the BaNa algorithm achieves the best F0 detection accuracy, i.e.,

the lowest GPE rate, among all of the algorithms for 0 dB SNR and above 0 dB

SNR. PEFAC performs slightly better than BaNa at -5 dB SNR and -10 dB SNR.

79

0 5 10 15 20
0

10

20

30

40

50

60

70

80

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

PEFAC

Figure 3.7: GPE rate of the different algorithms for the KEELE database [5],

averaged over all eight types of noise. Detected F0 deviating more than 10% from

ground truth are errors.

BaNa achieves the lowest GPE rate of 20.6%, which is obtained by averaging over

-10 dB, -5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB SNR levels. Similar to the

BaNa algorithm, the HPS algorithm is also based on the ratios of the potential

harmonics. However, in real speech, the harmonics are not integer multiples of

F0, which may greatly affect the F0 detection performance. We can also see that

the BaNa algorithm has a very high resilience to severe noise, as it only wrongly

detects 23.7% of F0 values with noise at 0 dB SNR.

For a more stringent evaluation, we have also tested all algorithms on the LDC

database using the GPE rate with a 5% deviation range. BaNa performs slightly

better than PEFAC for above 5 dB SNR, while PEFAC performs slightly better

than BaNa for below 5 dB SNR. The GPE rate for BaNa with a 5% deviation

range is 30% at 0 dB, averaged over all 8 types of noise. The mean and standard

deviation of Fine Pitch Errors (FPE) are also evaluated, using a 10% deviation

range. The mean and standard deviation of FPE for BaNa are both 1.9% at 0 dB,

which are only about 0.5% higher than the mean and standard deviation of FPE

80

0 5 10 15 20
0

10

20

30

40

50

60

70

80

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

PEFAC

SAFE

Wu

Figure 3.8: GPE rate of the different algorithms for the LDC database [2] for

speech with babble noise. Detected F0 deviating more than 10% from ground

truth are errors.

for PEFAC and HPS.

Since the SAFE algorithm is only trained to detect F0 for speech with babble

noise and white noise, we show its performance for these two types of noise at the

end of this section, where we also present Wu’s results, since it is unclear how to

run Wu’s code on long speech samples. Therefore, we only test the Wu algorithm

for the LDC database. Since the -10 dB SNR and -5 dB SNR scenarios are very

severe noisy environments, we present the rest of the F0 detection results for noise

conditions with SNR greater than or equal to 0 dB.

The GPE rates for speech with neutral emotion are shown in Figs. 3.6 and 3.7

for the CSTR and KEELE databases, respectively. Similar results are obtained

for the proposed BaNa algorithm and the five other algorithms, with the main

difference being that PEFAC at 0 dB SNR performs slightly better than BaNa for

the CSTR database. With noise at 0 dB SNR, the GPE rate of BaNa is 35.4%

for the CSTR database, and 20.3% for the KEELE database. However, since

81

0 5 10 15 20
0

10

20

30

40

50

60

70

80

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

PEFAC

SAFE

Wu

Figure 3.9: GPE rate of the different algorithms for the LDC database [2] for

speech with white noise. Detected F0 deviating more than 10% from ground

truth are errors.

the ground truth F0 values for the CSTR and KEELE databases are based on the

laryngograph signals, we checked the ground truth values for a few speech samples

and found that there are many spikes and discontinuities in the ground truth F0

values found by using the laryngograph, especially on the boundaries of voiced

and unvoiced frames. We can see from Figs. 3.6 and 3.7 that even at 20 dB SNR,

the lowest GPE rate for all algorithms is still greater than 5%. While the ground

truth for these databases may include several unvoiced frames and less reliable

data, we present these results for the CSTR and KEELE databases in Figs. 3.6

and 3.7 in order to facilitate comparison with other F0 detection algorithms that

use these databases.

Babble noise and white noise are the most common types of noise in speech

processing. Since the SAFE algorithm is only trained on babble noise and white

noise, we only compare the results of SAFE for these two types of noisy speech.

The KEELE database is used for training of SAFE, as in [83], and the LDC

database is used for testing. We also show the performance of the Wu algorithm

82

proposed in [82]. The detected F0 value is considered to be an error if it deviates

more than 10% from the ground truth value, and again we use GPE rate as the

error measurement metric. Figs. 3.8 and 3.9 present the GPE rate of the different

algorithms for the LDC database for speech with babble noise and white noise,

respectively. We can see that the F0 detection for speech with babble noise is

more difficult than F0 detection for speech with white noise. Results show that

BaNa, YIN, and PEFAC provide the lowest GPE rate for F0 detection for speech

with babble and white noise.

Speech with noise at 0 dB SNR is a challenging scenario for F0 detection. For

a head to head comparison, we present the performances of the BaNa algorithm

and the closest competing algorithms, PEFAC and YIN, using the LDC database

for eight different types of noise at 0 dB SNR in Fig. 3.10. We can see that BaNa

has the lowest GPE rate for four out of eight types of noise. For the babble noise,

which is a very common type of noise in real life scenarios, the BaNa algorithm

achieves a 41.5% GPE rate compared with PEFAC’s 42.9% and YIN’s 54.3%,

even when the speech is only slightly audible by the human ear. We can also see

from Fig. 3.10 that the babble noise and the destroyer operations noise cause the

worst degradation in the F0 detection performance. By investigating the spectrum

of several noisy speech samples, we found that the high spectral peaks of these

two types of noise concentrate in the same frequency range as the spectral peaks

of speech. On the other hand, the high spectral peaks of high frequency noise,

vehicle noise and white noise are distributed in the frequency range, which is quite

different from the spectrum of human speech, making it easier to differentiate

speech spectral peaks from noise spectral peaks. Therefore, the GPE rate for

speech with these types of noise remains at a relatively low level even at 0 dB

SNR.

83

babble engine operation factory highfreq pink vehicle white
0

10

20

30

40

50

60

Type of noise

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

PEFAC

YIN

Figure 3.10: GPE rate of BaNa, PEFAC and YIN for the LDC database [2] with

eight types of noise at 0 dB SNR. Detected F0 deviating more than 10% from

ground truth are errors.

3.5.2 Breakdown Analysis of the BaNa Algorithm

As we can see from the above F0 detection performance for speech, the proposed

BaNa algorithm has the most advantage at 0 dB SNR across almost all speech

databases. To provide additional insights to understand the core design of this

noise-resilient algorithm, as well as the differences between BaNa and other algo-

rithms, we provide a breakdown analysis of BaNa here:

• BaNa only considers the frequency ratios among the lower-order harmonics,

and also Cepstrum is included as one of the F0 candidates, thus BaNa is less

affected by octave errors than Schroeder’s frequency histogram.

• Harmonic summation methods use the amplitudes of spectral peaks to weight

the frequency histogram, which is not a noise-resilient approach, since noise

peaks with high amplitudes are likely to be chosen as F0 after the harmonic

summation. The BaNa algorithm, on the other hand, only uses the peak

amplitude information to choose the spectral peaks, but the F0 candidates

84

calculation is solely based on the frequency ratios of the chosen peaks. No

peak amplitude information is used at this point, as it may be severely

corrupted by noise.

• By providing a tolerance range for these frequency ratios, our algorithm is

able to combat the frequency drift of harmonics and shape distortions of

harmonic peaks caused by the noise.

• Post-processing using the Viterbi algorithm in BaNa considers the F0 con-

tinuity, which helps to choose the F0 candidates more accurately.

• Since the F0 candidates calculated from peak frequency ratios are only based

on lower-order harmonics, adding the Cepstrum as an additional candidate

helps to capture the general period information for all spectral peaks.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

BaNa without Cepstrum candidate

BaNa without lowest frequency candidate

BaNa without both added candidates

BaNa without post−processing

Figure 3.11: GPE rate of BaNa, BaNa without the Cepstrum candidate, BaNa

without the lowest frequency candidate, BaNa without both added candidates,

and BaNa without post-processing for the LDC database, averaged over all eight

types of noise. Detected F0 deviating more than 10% from ground truth are errors.

85

To show the effectiveness of using the Cepstrum candidate and the spectral

peak with the lowest frequency as two additional F0 candidates, and using the

Viterbi post-processing, in Fig. 3.11 we plot the GPE rates for the BaNa algorithm,

BaNa without the Cepstrum candidate, BaNa without the lowest frequency can-

didate, BaNa without both added candidates, and BaNa without post-processing

for the LDC database. BaNa without post-processing means that we choose the

F0 candidate with the highest confidence score to be F0 for each frame. We can

see that using the two added candidates and using post-processing are effective to

reduce the GPE rate. We can see that the GPE rate is as high as 20% when SNR

is 20 dB without using both added candidates. This is because for some frames,

only the F0 peak’s amplitude is high enough to be detected. Therefore, no F0

candidates are derived from calculating frequency ratios.

By comparing the results for BaNa without post-processing with the results in

Fig. 3.11 for the two algorithms that have no post-processing, HPS and Cepstrum,

with the results in Fig. 3.5, we can see that BaNa without post-processing still

achieves a lower GPE rate. Thus, from the breakdown analysis we conclude that

the post-processing is helpful, but it is not the most critical step in determining

the performance of BaNa.

3.6 BaNa F0 Detection Algorithm for Music

In this section, we extend the BaNa algorithm to enable F0 detection of music

signals in noisy environments.

3.6.1 Modifications on BaNa for F0 Detection for Music

Since speech and music have different frequency characteristics, the BaNa algo-

rithm needs to be slightly modified for F0 detection in music. In Section 3.3.2,

86

when detecting F0 for speech, the p peaks with the lowest frequencies are selected.

However, music signals can have high F0 values, thus the low frequency region can

be dominated by noise peaks. Thus, if we still choose the p peaks with the lowest

frequencies, noise peaks are chosen incorrectly. Therefore, for music F0 detec-

tion, we select the p peaks with the highest amplitudes in the frequency range

considered. We show the benefit of this change in Section 3.6.4.

babble engine operation factory highfreq pink vehicle white
0

10

20

30

40

50

60

70

Type of noise

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa music

BaNa

Figure 3.12: GPE rate of BaNa and BaNa music for a piece of violin music with

eight types of noise at 0 dB SNR. Detected F0 deviating more than 3% from

ground truth are errors.

3.6.2 Experimental Settings for F0 Detection for Music

Due to the variety of spectrum characteristics for different musical instruments, to

show the performance of the F0 detection algorithms for musical instruments, sam-

ples from four instruments are used: violin, trumpet, clarinet and piano. These

music pieces are selected and downloaded from [109], which were all recorded in

a quiet environment. These music pieces include a piece of 3.7 s long violin with

87

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

Figure 3.13: GPE rate of the different algorithms for a piece of violin music with

eight types of noise. Detected F0 deviating more than 3% from ground truth are

errors.

9 notes, a piece of 12.9 s long trumpet with 12 notes, a piece of 5.3 s long clarinet

with 4 notes, and a piece of 7.8 s long piano with 8 notes. All the music samples

used are also included in the BaNa toolkit [93]. The additive noise is from the

same noise database as in Section 3.4.1.

For F0 detection in music, we use hand-labeled ground truth F0 values, which

are determined by manually inspecting the spectrum and locating the F0 peaks

for each frame. Due to the large F0 range in music, we use a more stringent F0

deviation criteria for error measurement. The difference between two neighboring

key frequencies is 2
1
12 , which is approximately 6%. Thus, we use half of this

number, i.e., 3%, as the F0 deviation criteria, which is also called the musical

quarter tone [110]. Thus, detected F0 values that deviate more than 3% from the

ground truth values are counted as errors. This error measurement metric is also

used by other studies [110].

88

3.6.3 Parameter Tuning

According to the music F0 range specified in [67], the lower and the upper limit

for F0 of music are set to Fmin
0 = 50 Hz and Fmax

0 = 4,000 Hz, respectively. It is

set to 50-4,000 Hz for these competing algorithms as well for a fair comparison.

The other parameters are the same as those in Table 3.2, and are not further

optimized using music signals.

3.6.4 BaNa vs. BaNa Music

To show the effectiveness of the changes made to the BaNa algorithm to be suitable

for F0 detection in music, we plot the GPE rate in Fig. 3.12 for a piece of violin

music using both the original BaNa algorithm and the customized BaNa music

algorithm with eight different types of noise at 0 dB SNR. The F0 detection range

is set to be the same for the original BaNa algorithm and the customized BaNa

music algorithm, i.e., Fmin
0 = 50 Hz and Fmax

0 = 4,000 Hz. We can see that

the modifications in the BaNa algorithm for music F0 detection are necessary,

and can greatly reduce the GPE rate for almost all types of noisy music. Note

that throughout this section, we just use ‘BaNa’ to represent the BaNa music

algorithm.

3.6.5 F0 Detection Performance for Music Signals

In this set of experiments, we compare the BaNa algorithm with other algorithms

for music F0 detection. Within the evaluations of the SAFE algorithm in [83],

there are no detection results for music. Therefore, we are not able to run the

SAFE algorithm here due to the lack of noisy music training data. Also, according

89

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

Figure 3.14: GPE rate of the different algorithms for a piece of trumpet music

with eight types of noise. Detected F0 deviating more than 3% from ground truth

are errors.

to the authors of PEFAC [79], PEFAC is not suitable for F0 detection in music,

hence we do not include that here. Also, it is unclear how to use the code for the

Wu algorithm [82] to process long audio samples. Therefore, we only compare the

proposed BaNa algorithm with YIN, HPS, Praat, and Cepstrum. Figs. 3.13-3.16

show the GPE rates of the different algorithms for violin, trumpet, clarinet, and

piano, respectively, averaged over the eight types of noise. Results on all these four

instruments show that the BaNa algorithm achieves the lowest GPE rate among

all the algorithms. At 0 dB SNR, BaNa achieves the lowest GPE rates, which

are 36.1%, 28.1%, 58.3%, and 35.3% lower than the closest performing algorithm,

HPS, for violin, trumpet, clarinet, and piano, respectively.

From the above results, we can see that BaNa, HPS, and YIN provide the

overall best F0 detection performance in noisy music. Praat and Cepstrum do

not provide consistent or satisfying results. Therefore, we choose BaNa, YIN, and

HPS for detailed comparison using the violin piece with eight different types of

noise at 0 dB SNR. In Fig. 3.17 we can see that BaNa has the lowest GPE rate

90

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

Figure 3.15: GPE rate of the different algorithms for a piece of clarinet music

with eight types of noise. Detected F0 deviating more than 3% from ground truth

are errors.

for seven out of eight types of noise, especially for the speech babble noise.

3.7 Implementation Issues

With an increasing number of speech-related smartphone apps emerging in the

market, and due to the fact that speech captured by smartphones are usually

affected by different types of noise, it is important to discuss the challenges in

implementing the BaNa F0 detection algorithm on a mobile platform. To explore

these issues, we implemented BaNa as an app on an Android platform1. Since the

F0 candidates and their confidence scores can be calculated separately for each

frame, as explained in Section 3.3.2, we can take advantage of multithreading to

speed up the implementation. Single-core and multi-core devices can both benefit

from multithreading through an increased utilization of the processor(s). When

all threads finish the calculation of F0 candidates for their own assigned frames,

1Code for the Android implementation of BaNa is available at [93].

91

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

HPS

YIN

Praat

Cepstrum

Figure 3.16: GPE rate of the different algorithms for a piece of piano music with

eight types of noise. Detected F0 deviating more than 3% from ground truth are

errors.

the Viterbi post-processing can go through all the frames to determine F0 for each

frame.

To test the speed of the BaNa F0 detection implementation, we ran tests

with different parameter settings and speech sample lengths on a Google Nexus

7. The specs of the device are: Nvidia Tegra 3 quad-core processor clocked at

1.2GHz, 1GB of RAM. Of course, the speed of the algorithm highly depends on

the capabilities of the mobile device. Table 3.3 shows the elapsed time to process

a 1.3 s long speech sample with sampling rate of 22,050 Hz. All the parameters

for the BaNa algorithm are set to be the same as those in Table 3.2. For a more

reliable measurement, the elapsed time for each test is averaged over 10 trials.

We can see that the BaNa F0 detection algorithm runs roughly 8 times faster by

using the 213 FFT size than using the 216 FFT size, though using the 213 FFT

size still provides a reasonable frequency resolution of 22, 050/213 = 2.7 Hz per

sample. Also, we can see that multithreading helps to further reduce the elapsed

92

babble engine operation factory highfreq pink vehicle white
0

10

20

30

40

50

60

70

80

90

100

Type of noise

G
ro

s
s
 P

it
c
h

 E
rr

o
r

R
a

te
 (

G
P

E
)

(%
)

BaNa

YIN

HPS

Figure 3.17: GPE rate of BaNa, YIN and HPS for a piece of violin music with

eight types of noise at 0 dB SNR. Detected F0 deviating more than 3% from

ground truth are errors.

time.

We show in Table 3.4 the elapsed time for F0 detection for speech samples

with different lengths. For this test, we choose the setting that provides the

fastest speed, i.e., the number of threads is set to 4, and the FFT size is set to 213.

These results show the possibility to turn the BaNa algorithm into a real-time F0

detector even on mobile devices.

3.8 Conclusions

In this chapter, we presented BaNa, a noise resilient hybrid F0 detection algorithm

for speech and music. BaNa was designed to detect F0 in a noisy environment,

for example on a smartphone. This would enable the wide deployment of speech-

based applications, such as the ones that use emotion detection. Evaluations show

that BaNa achieves the lowest GPE rate for most cases among the algorithms

93

Table 3.3: Elapsed time (in seconds) for F0 detection using the BaNa algorithm

implemented on an Android platform with a different number of threads and FFT

sizes. The speech file is 1.3 s long.

FFT size

Number of threads 216 215 214 213

1 11.05 5.16 2.52 1.42

2 6.85 3.15 1.49 0.85

3 5.93 2.67 1.28 0.92

4 5.89 2.67 1.25 0.80

Table 3.4: Elapsed time (in seconds) for F0 detection using the BaNa algorithm

implemented on an Android platform for speech samples with different lengths.

Length of speech sample (s)

Number of threads FFT size 2 4 6 8 10

4 213 0.91 1.61 2.39 3.05 3.82

investigated from the literature including YIN, HPS, Praat, Cepstrum, PEFAC,

SAFE and Wu for different types of background noise, and under different SNR

levels from -10 dB to 20 dB. Even for the very noisy scenario of 0 dB SNR, the

GPE rate of BaNa averaged over all types of noise is only about 20% to 35% for

speech for the different databases evaluated. The GPE rate for music at 0 dB

SNR is 12% to 39% for different instrument pieces. Additionally, we implemented

the BaNa algorithm on an Android platform, and implementation issues such as

delay and multithreading are discussed. Tests on a real device show that the

implementation is fast enough to provide for real-time F0 detection applications

in the future.

94

4 Mobile Cloud Computing - A

Survey

4.1 Introduction

While energy efficiency of the devices themselves and analysis of data in noisy en-

vironments are both important features of energy efficient sensing and computing

systems, where to perform the computation of data analysis is also an important

design consideration. Computing can be performed locally on the node, or, for

more intense applications, computing can be off-loaded to external computing

resources, such as cloud-based resources. Recent developments in mobile com-

puting have truly empowered human users, as mobile computing can augment

cognitive capabilities dramatically, e.g., through voice recognition, natural lan-

guage processing, machine learning, augmented reality, and decision-making [1].

With recent advances in mobile devices, coupled with the technological advances

in wireless and cloud technologies, computationally intensive applications such as

the emotion classification application described in Chapter 1 may run on devices

with limited resources such as tablets, netbooks and smartphones using the cloud

remotely as an additional computational resource.

Although different definitions exist in the literature [111,112], we define mobile-

cloud computing as the co-execution of a mobile application within the expanded

95

mobile/cloud computational platforms to optimize an objective function. A typi-

cal objective function is the application response time, where the goal is to mini-

mize the objective function. Expanding the application computational resources

beyond the mobile is necessary for applications where the objective function can-

not be minimized sufficiently by the mobile platform alone (e.g., real-time face

recognition), as well as for applications that rely on data not stored on the mo-

bile device. In mobile-cloud computing, it is crucial to provide the user seamless,

transparent and cost-effective services as mobile devices rent computing, storage,

and network resources from the cloud in order to process and store a vast amount

of data [113–115].

We define application cost as an example objective function that quantifies

the fees charged by Cloud operators, such as Amazon Web Services, during the

execution of the application. For example, Amazon charges for compute-usage per

hour per CPU instance, which implies increasing application costs as the required

amount of computation increases. Similarly, cloud operators charge for the usage

of database instances, such as Microsoft SQL Server. Table 4.1 shows some exam-

ple mobile-cloud applications and their computational/storage demands, as well

as their application response-time sensitivity. While applications requiring higher

computational and storage resources might cost more during operation in a Cloud

platform such as AWS, certain response-time sensitive applications, such as the

Battlefield application described in Table 1, might tolerate this increased cost due

to their need for low response time. Notice that Cloud operators charge less for

compute-resources with lower response time guarantees. Specifically, while AWS

charges nothing for Micro instances with no response time guarantees, it charges

a small amount for the Small instance, and significantly higher for the Large in-

stance, which is a dedicated CPU instance. By the preparation of this document,

the AWS pricing for these instances ranged from $0.10 to $0.40 per core per GHz

per hour [113], where the unit price decreased with a higher core-count commit-

96

ment (i.e., number of cores available to an instance). This implies a rich variety of

options when executing mobile-cloud applications. The choice of the Cloud CPU

instances depends on the application priorities listed in Table 4.1.

Table 4.1: Cloud-based applications and their resource requirements. Each appli-

cation has a significantly different response time requirement and resource utiliza-

tion tolerance to reduce costs while still keeping the functionality within expected

bounds.

Application Description Database Compute Time

Size Resources Sensitivity

Battlefield Assist soldiers in the battlefield through real-

time object recognition

HIGH HIGH HIGH

Natural

Language

Processing

Perform real-time speaker or speech recogni-

tion

LOW MEDIUM MEDIUM

Airport Conduct real-time face recognition of known

criminals

HIGH HIGH HIGH

Fire

Fighting

Assist fire fighters with disaster in real time MEDIUM MEDIUM MEDIUM

Medicine Accelerate medical research (e.g., recognizing

DNA sequences in real time from a microscope

while research is in progress)

HIGH MEDIUM MEDIUM

Archeology Recognize archeological structures in real time

while researchers are at the archeological site

HIGH LOW LOW

Surgery Recognize diseases (e.g., tumors) in real-time

from a cloud-based database while surgery is

in progress

HIGH MEDIUM HIGH

Amber

Alert

Identify criminals by searching through the

FBI database for match to a photo taken by

cameras

LOW LOW MEDIUM

Social

Network

Profiling online users by searching through the

database for marketing purposes

HIGH LOW LOW

The primary focus of this chapter is to elaborate on the techniques that enable

these mobile-cloud applications to achieve the goals listed in Table 4.1. Although

the demands of these applications will not change from that shown in this table,

97

achieving certain goals might never become possible by using mobile-only or even a

mobile-cloud combination. This is due to the limited computation and storage on

a mobile device, which does not permit the processing or storage of large amounts

of data locally, as well as the high network latencies connecting the mobile and

cloud, placing a lower bound on application response times when utilizing the

cloud for processing and storage of large amounts of data. Later in this chapter,

we will describe how the required application response times may be achieved by

using an edge-server device called a “cloudlet”, creating a mobile-cloudlet-cloud

platform.

This chapter is organized as follows. In Section 4.2, the technological chal-

lenges and the state-of-the-art in computational and storage capabilities of mobile

devices and the network latencies are studied. Issues related to energy efficiency

and security are also explored, followed by a brief study of the aforementioned

intermediate layer cloudlet and its function in the mobile-cloud computing en-

vironment. Existing architectural designs as well as performance enhancement

techniques proposed in the literature for mobile-cloud as well as mobile-cloudlet-

cloud computing are surveyed in Section 4.3 and Section 4.4. Section 4.5 concludes

the chapter with discussions on future research areas.

4.2 Technological Challenges in Mobile-Cloud

Computing

Running the resource-intensive applications enumerated in Table 4.1 far exceeds

the capabilities of today’s mobile devices. The constraints on mobile devices in

terms of weight, size, battery life, ergonomics, and heat dissipation limit the re-

sources available in mobile hardware, including the processor speed, memory size,

and storage capacity. Given these challenges, mobile computing benefits tremen-

98

dously when combined with cloud computing that can offer virtually limitless

computing power and storage space, as well as access to up-to-date databases,

only available in the cloud.

There are, however, several technical obstacles to enabling mobile devices to

benefit from cloud computing resources, including the compute capability and

storage capacity available at the mobile, network connectivity and latency chal-

lenges, the need for energy-efficiency at the mobile device, and security concerns.

As each one of these constraints affect mobile-cloud computing in a unique way,

they will be individually detailed in the following subsections.

4.2.1 Compute Capability and Storage Capacity

Despite an order of magnitude higher computational power of today’s mobile de-

vices compared to the ones from just a few years ago, the relative computational

power ratio of a non-mobile and a mobile device is likely to stay approximately the

same in the foreseeable future. This is due to the architectural and technological

state-of-the-art advances being applied to mobile platforms as well as non-mobile

platforms simultaneously by different market leaders such as Intel for desktop

platforms and ARM for mobile platforms. The most important metric, computer-

power-per-Watt (also defined as GFLOPS-per-Watt) has almost reached equal

levels in both mobile and desktop platforms. For example, a Tegra3-based mobile

phone incorporating an ARM CPU and an Nvidia GPU at the core can deliver

approximately 10 GFLOPS/Watt [116]. Alternatively, a desktop platform com-

posed of an INTEL Core i7 CPU and an Nvidia Geforce 600 GPU [117] nearly has

the same power efficiency metric, delivering around 10 GFLOPS/Watt compute

power. This is due to the significant recent advancements in mobile processors:

almost every power efficiency technique employed in desktop CPUs is now being

incorporated into mobile CPUs, with the most important being the ability to ar-

99

chitect the CPU with multiple cores, which is known to have a dramatic energy

reduction advantage [118].

The storage technology is slightly different in that the widespread use of Solid

State Disks (SSDs) allowed mobile devices to be built with storage capacities

that are currently around 64GB to 128GB. This is currently an order of magni-

tude less than that for desktop platforms, which enjoy inexpensive hard disks in

the multiple-TB range. This means that mobile-cloud applications that require

significant local data storage in the mobile are not feasible.

4.2.2 Network Connectivity

A primary concern in the use of mobile-cloud computing is the non-negligible

latency over the WAN (Wide-Area Network) between the mobile and the cloud,

which hurts the user experience in mobile-cloud computing. Interactive applica-

tions that constantly engage the users are likely to suffer the most from long delay,

jitter and jerky and sluggish processing. Studies [1] show that the quality of client

performance becomes highly variable with long latency.

In order to measure latencies over WAN connections, we ran a simple program

that sends ping packets from a client computer to servers in cloud datacenters

in January and February 2012. The client computer was located in Rochester,

New York, in the United States, and we used the five datacenters available in

AWS [113], which are all located in geographically different regions, namely in

Virginia and Oregon in the United States, Ireland in Europe, Sao Paulo in South

America, and Singapore in Asia.

Table 4.2 and Table 4.3 show the mean and standard deviation of these laten-

cies for the AWS datacenters when being accessed by the client computer from

wired and wireless networks. This data clearly indicates the challenges in running

a mobile-cloud application that uses the AWS datacenters as cloud servers. The

100

Table 4.2: Average and standard deviation of latencies over wired connections (in

ms).

Measuring Time Weekend

Datacenter VA OR Ireland Sao Paolo Singapore

Mean 122 322 294 389 580

Std Deviation 124 525 201 166 242

Measuring Time Weekday

Datacenter VA OR Ireland Sao Paolo Singapore

Mean 42 223 196 389 546

Std Deviation 18 41 25 166 34

response time of such an application will be lower-bounded by the mean latency

of the communication to the datacenter it is using as cloud servers. Alternatively,

the predictability of the response time will be determined by the standard devi-

ation of the latency. While there have been significant improvements in network

throughputs over the past decade, allowing users to enjoy such high-speed connec-

tions with 50 Mbps downstream bandwidth (e.g., DOCSIS3 cable standard [119]),

network latencies have not improved nearly at the same rate.

Although the network latencies might improve in the future, this is expected to

be at a much slower pace, potentially keeping the latencies observed in Table 4.2

and Table 4.3 approximately the same in the foreseeable future. For example, an

application requiring a 200 ms response time (close to what can be described as

real-time) is not a candidate to run on cloud servers residing across international

boundaries with 300 ms to 1100 ms latencies. This presents a dilemma in mobile

applications in that the particular emphasis should be placed on latency, not

101

Table 4.3: Average and standard deviation of latencies over wireless connections

(in ms).

Wireless Connections Wi-Fi

Datacenter VA OR Ireland Sao Paolo Singapore

Mean 253 389 293 434 697

Std Deviation 470 635 520 704 1278

Wireless Connections 3G

Datacenter VA OR Ireland Sao Paolo Singapore

Mean 930 817 798 872 1061

Std Deviation 595 710 915 1079 2060

the throughput, when developing an application. Alternatively, any intermediate

device, such as the cloudlet that will be described later, should be targeted to

reduce the negative impact of this high latency.

4.2.3 Power and Energy Consumption

Today’s mobile devices incorporate significantly sophisticated power management

circuitry [116,120]. This, combined with power consumption demands that change

drastically in sudden peaks imply a sophisticated power consumption pattern from

the mobile device based on the activities being performed (i.e., talk, compute, or

run applications). Power consumption could change between sudden peaks of

mW and a few W. While the power consumption is in fact an irrelevant mea-

sure in terms of battery life, the energy consumption is the relevant measure in

determining the battery life.

To quantify the utility of mobile-cloud computing, one must take into account

the energy demands of computation and communication separately. Analyzing

102

these two activities separately will shed light onto the balance that must be main-

tained between computation and communication via efficient scheduling. In the

following two subsections, we study the power and energy demands of these two

activities.

Computation Power and Energy Consumption

Since the computation energy is the only relevant metric for determining battery

life, we analyze the amount of energy required to execute an identical task in a

desktop and mobile platform. The energy efficiency metric, defined as GFLOPS-

per-Watt describes how many Watts of power is consumed to while delivering 1

GFLOPS of computational output. This metric is 10 GLOPFS/Watt in a modern

mobile processor such as Tegra 3 [116], while it is almost in the same range for

a modern CPU/GPU-based desktop computer [117]. Alternatively, a mobile de-

vice operates at around one Watt average power consumption, whereas a desktop

platform could reach 200-1000 Watts of power consumption.

Although a given computational task (e.g., face recognition) may consume

more power and execute in a shorter amount of time on a non-mobile platform

(e.g., PC), it will consume less power on a mobile platform (strictly due to the

aforementioned constraint on peak power), and is, therefore, expected to complete

in a longer time period. However, due to the fact that approximately the same

amount of computational energy is required for the same task, the mobile platform

will take two to three orders-of-magnitude longer to execute the same task, since

its peak power output is nearly two to three orders-of-magnitude lower.

Communication Power and Energy Consumption

The energy efficiency of Wi-Fi and 3G are significantly different. As the data

provided by [121] indicates, 3G requires much higher energy levels due to its

103

inability to transfer large amounts of data, while Wi-Fi can transfer almost an

order-of-magnitude more data within the same power envelope. According to their

experiments, 3G connections require 2,762 mJ per 100KB (i.e., 27.62 µJ/B). Al-

ternatively, Wi-Fi requires around 5 to 10 µJ/B, making it more energy efficient.

These different energy profiles suggest that, when determining optimum algo-

rithms that partition computation and communication, the energy patterns of

both must be considered. As an example, assume that an algorithm has a choice

among different computation vs. communication options as presented below:

Case 1: Front-loading In this case, most of the computation is done on

the Tegra 3 mobile device that has a 10 GFLOPS compute-capability, and a 10

GFLOPS/W energy efficiency, and 3G is used for communication. For the Case 1

algorithm, 20 GFLOP of computation and 100KB of data transfer are necessary.

Total energy consumption is 2,000 mJ (i.e., 20 GFLOPS / (10 GFLOPS/Watt)

= 2 Watt * 1 second = 2J = 2,000 mJ) for the computation (based on the afore-

mentioned 10 GFLOPS/W for Tegra 3) and 2,762 mJ for the 3G communication

(according to the data from [121]), yielding a total energy demand of 4,762 mJ

for the entire task.

Case 2: Back-loading Assume now that the same algorithm can be modified

to perform more of the computation in the cloud at the expense of increased data

transfer via 3G. In this Case 2, the computation in the mobile will be halved to 10

GFLOP at the expense of doubled data transfer size to 200 KB. This will create a

compute-energy demand of 1,000 mJ and a communication demand of 5,524 mJ,

resulting in a total energy demand of 6,524 mJ, clearly an unfavorable choice.

Case 3: Back-loading on a faster communications link Back-loading on

a faster communications link: If we consider Case 2 on a faster Wi-Fi link (e.g.,

576 mJ/100KB as shown in Figure 1), the energy demand for the front-loading

104

and back-loading cases are (2,000+576=2,576 mJ) and (1,000+1,152=2,152 mJ),

respectively, making back-loading a better alternative for faster Wi-Fi links, al-

though the decision is the reverse for 3G links.

4.2.4 Security

When considering outsourcing the computational tasks of a mobile application

to the cloud, an important issue arises for certain applications: the security of

the data being transmitted/received by the application. Depending on the appli-

cation, the security of the data carries a varying importance. For example, for

online games being played by a few gamers through the mobile device, the security

factor is negligible, while for remote health assistance applications, it is of utmost

importance.

Due to the emergence of applications using wireless sensors with built-in low-

power microcontrollers and the sudden spike in interest for concepts such as

Internet-of-Things [122], the security of the data being transported by the appli-

cation has become one of the most important concepts to consider. Additionally,

emerging tele-medicine applications also emphasize the importance of security and

data privacy [123] within the mobile-cloud platforms [124–126]. The concern for

data security is of great importance for mobile devices with powerful processors

with a 1 W power budget (e.g., NVIDIA Tegra3), but it is particularly chal-

lenging for embedded processors with only a mW power envelope, such as the

Microchip 32-bit microcontroller family [127]. This is due to the fact that the

encryption of the data using standard Advanced Encryption Standard (AES) en-

cryption [128,129] is compute-intensive and strains the computational resources of

the underlying computational platform unless specialized crypto-accelerators are

used. However, as most of today’s devices have AES hardware acceleration built-

in, the encryption time and energy is typically less than the transmission energy

105

Table 4.4: The major differences between the cloudlet and the conventional cloud

[1].

Cloudlet Cloud

State Only soft state Hard and soft state

Management Self-managed; little to no professional attention Professionally administered,

24/7 operator

Environment “Datacenter in a box” at business premises Machine room with power con-

ditioning and cooling

Ownership Decentralized ownership by local business Centralized ownership by

Amazon, Yahoo, etc.

Network LAN latency/bandwidth Internet latency/bandwidth

Sharing Few users at a time Hundreds to thousands of users

at a time

of the data, thereby making encryption widely available with minimal impact on

cost and energy.

4.2.5 Cloud and Cloudlet: Addressing these Challenges

With the help of the cloud, mobile devices may be able to offload the computationally-

intensive parts of their applications. The enormous resources of the cloud may

minimize the time and energy cost of the mobile applications on those computa-

tions. However, as described in the Microsoft MAUI project (Cuervo et al., 2010),

some applications might never be feasible from mobile devices, due to the high la-

tency mobile-cloud connection. Adding a cloudlet, a local device that provides 100

to 1000 times higher computational power than the mobile device with minimal

latencies, creates possibilities for running latency sensitive and computationally-

intensive applications from a mobile device [1]. The notion of a cloudlet was in-

troduced as a means to overcome some of the technical obstacles described above.

The main idea is to provide the abundant resources needed at mobile devices not

from distance clouds, but from a nearby cloudlet.

106

As Satyanarayanan et al. point out, the key differences between the cloudlet

and a conventional cloud are listed in Table 4.4. Note that soft state refers to

cache copies of data or code that are available elsewhere (e.g., mobile device or

the cloud), whereas hard state refers to sole copy of data or code. Since a cloudlet

only contains soft state, the loss of a cloudlet is not catastrophic. Cloudlets allow

offloading a portion of the tasks as well as a re-shaping of the network traffic

by aggregating network packets. With proper task management algorithms, a

cloudlet may be able to leverage the power of distant cloud servers to maximize

the performance while minimizing the impact of long network latency.

In the following section, different approaches will be presented that use the

cloudlet as a buffering layer to either speed up the computation or to reduce the

negative effect of the communication latency to the cloud.

4.3 Architectural Design

As stated in the previous section, in mobile cloud computing, there is a clear need

for a mechanism to handle the interoperations between the mobile device and the

cloud servers in order to improve the performance. Depending on whether or not

cloudlets are used, the current research on the design of mobile-cloud architectures

can be categorized as cloudlet architectures and non-cloudlet architectures. Many

of the technologies being used in non-cloudlet architectures can also be adapted to

cloudlet architectures. In this section, we introduce the state-of-the-art for these

mobile-cloud and mobile-cloudlet-cloud architectures.

4.3.1 Platforms Providing Cloud Services

The “cloud” may consist of commercial servers like the Amazon Web Services

[113], Microsoft’s Windows Azure [114], and the Google Cloud Platform [115], or

107

it may be created ad hoc from available computing resources, as shown through

recent studies [130]. While ad hoc clouds have been conventionally created from

high-end servers or desktop platforms, recently mobile platforms have been ex-

plored as a source for the computing resources.

For example, Hyrax [131] demonstrated the concept of using smartphones as

a cloud of computing resources. Marinelli developed a mobile-cloud computing

system named Hyrax by porting Hadoop Apache, an open-source implementation

of MapReduce, to Android smartphones. Hyrax allows computing jobs to be

executed on networked Android smartphones. However, the performance of Hyrax

was poor compared with Hadoop on traditional servers, not only because the

smartphones were much slower at that time, but also because Hadoop was not

originally designed, nor optimized, for mobile devices.

The GEMCloud [24] we proposed in Chapter 5 is another example of using

mobile devices to create an ad hoc cloud of computing resources. By utilizing

distributed mobile devices to cooperatively accomplish large parallelizable com-

putational tasks, we envision that such approaches can make use of the massive

amount of idle computing power that is potentially available to the public. More

importantly, we show that a mobile computing system like GEMCloud has signif-

icant advantages in energy efficiency over traditional desktop cloud servers when

the overall system is considered, rather than each individual computational device

(e.g., CPU and GPU). The details of the design and development of GEMCloud

are described in Chapter 5.

Other examples of ad hoc cloud systems are NativeBOINC [132] and BOINC

Mobile [133], Android platform (Android, 2012) equivalents of the BOINC vol-

unteer computing platform originally designed for PCs and game console plat-

forms [134]. Since the physical devices that build up the cloud determine the

cloud’s characteristics such as computing power, energy efficiency and network la-

tency, it is important to profile the cloud servers and take this into account when

108

Figure 4.1: A generalized mobile-cloud architecture.

designing the mobile-cloud computing system.

4.3.2 Mobile-Cloud Architectures

Mobile-cloud computing has been investigated since shortly after the concept of

cloud computing was introduced in mid-2007, and it has attracted great interest in

the research community [111]. Some important implementations of mobile-cloud

computing, including MAUI [121], CloneCloud [135,136] and Virtual Smartphone

over IP [137,138] employ cloud servers to process application partitions offloaded

by the mobile device. As discussed previously, the cloud servers may be located

in a commercial cloud or an ad hoc cloud.

Although architectural details may vary in different mobile-cloud computing

109

implementations, some common components are often included on top of the

operating system and hardware layers as shown in Fig. 4.1:

• A Partitioner that analyzes the application and determines which part(s) of

the application can be offloaded to the cloud. Depending on the technique

being used, the partitioning granularity may be application-level, thread-

level, method-level or even line-of-code-level. For applications that cannot

be partitioned, the Partitioner is not necessary.

• A Profiler that collects the mobile device’s system measurements to identify

the performance status, resource status and other contextual information.

The performance measurements may include network condition (e.g., type

of network being used, signal strength, bandwidth, computing power and

response latency of various cloud services, etc.), screen brightness, CPU,

memory and storage usage. The resource status may include remaining

battery, available computing power (derived from CPU, memory usage), and

the resources required by the application (or method, thread, depending on

the granularity offered by the Partitioner). Other contextual status may

include location, acceleration, temperature, date and time, etc.

• A Solver that gathers information from the Partitioner and the Profiler to

decide how to offload the partitions to the cloud based on an optimization

algorithm.

• A User Agent on the mobile device and a Coordinator on the server that han-

dle the authentication and security. The Coordinator may also interact with

the server database that stores the mobile device users’ profiles (e.g., device

specifications, user configurations, subscribed services, contextual data) and

activity logs. The Coordinator allocates the resources on the cloud server

for the mobile users.

110

In general, MAUI [121], CloneCloud [135, 136] and Virtual Smartphone over

IP [137, 138] architectures all have the above components or components with

similar functionalities.

4.3.3 Cloudlet Architectures

As described in Section 4.2, cloudlets can be used as intermediaries between mo-

bile devices and cloud servers. One of the first implementations of a cloudlet

architecture was a prototype mobile-cloudlet computing system named Kimber-

ley [1], developed by Satyanarayanan et al. The authors envisioned a cloudlet as

a “data center in a box” widely dispersed throughout the Internet. Unlike the

cloud, the cloudlet is self-managed with decentralized ownership, maintains only

soft states, is connected to the mobile over a LAN, not a WAN, and is accessed by

only a few users at a time. As a proof-of-concept implementation, the Kimberley

system utilizes a local server as a cloudlet to process application partitions. The

authors show that in some cases, a local server is able to provide enough com-

puting power to boost the execution speed of a mobile application, while in other

cases, the computing resources provided by a local server may not be enough and

a cloud has to be used to fulfill the computation and storage requirements of the

mobile application. Figure 4.2 elaborates the cloudlet architecture in compari-

son with the direct mobile-cloud architecture. The major role of a cloudlet in a

mobile-cloudlet-cloud network is task management. It may also help the mobile

with some intermediate processing.

The MOCHA (MObile Cloud Hybrid Architecture) architecture was created as

a solution to massively-parallelizable mobile-cloud applications [6,139] by Soyata

et al. In MOCHA, mobile devices such as smartphones, touchpads, and laptops are

connected to the cloud via a cloudlet, a dedicated device designed from commodity

hardware supporting multiple network connections such as 3G/4G, Bluetooth,

111

Figure 4.2: The Mobile-Cloud computing and Mobile-Cloudlet-Cloud computing

architectures: mobile devices directly interact with a cloud or via the cloudlet

and use dynamic partitioning to achieve their quality of service (QoS) goals (e.g.,

latency, cost).

112

and WiFi. The cloudlet determines how to partition the computation among

itself and multiple servers in the cloud to optimize the overall quality of service

(QoS) based on continuously updated statistics of the QoS metrics (e.g., latency,

cost) over the different links/routes. The authors demonstrate the concept of

MOCHA via a mobile-cloud application demanding real-time response, such as

face recognition [6] and simulate the same architecture in a battlefield application

where the response time is of primary importance [139].

Similar to the characteristics of cloudlets assumed by the Kimberley [1] and

MOCHA [6] architectures, a two-level architecture is introduced by Ha et al.

(Ha et al., 2012). This two-level architecture leverages both today’s unmodified

cloud infrastructure (Level 1) and a second level data center, named 1WiFi, at the

edge of the Internet (Level 2), servicing currently-associated mobile devices. The

Level 2 data centers are powerful, well-connected and safe cloudlets that only have

cached soft state from Level 1 data centers or buffered data from mobile devices.

Trust issues and speed of provisioning are the new challenges to this architecture

and must be investigated before it can be widely deployed.

In some scenarios such as an office building, multiple cloudlets may be lo-

cated closely to each other and may be connected in a peer-to-peer fashion. In

this case, routing among the cloud servers, the cloudlets and the mobile devices

has to be considered. In [140], Fesehaye et al. propose two types of routing

schemes, namely distributed and centralized routing. In distributed routing, the

routing table is constructed and maintained by the cloudlets. The cloudlets pe-

riodically broadcast their presence information to the neighboring nodes and the

other cloudlets. When a mobile user hears a broadcast message from a cloudlet,

it records the latest cloudlet ID into its cloudlet table. Each mobile user also

periodically broadcasts its ID to let the cloudlet in range register this user and

forward it to other cloudlets. In centralized routing, the central server is responsi-

ble for constructing and maintaining the routing table. The cloudlet periodically

113

sends the IDs of its mobile users, its own ID and its neighboring cloudlets’ IDs

to the central server. The central server then computes the routing table for each

cloudlet and installs the forwarding tables into the cloudlets.

Simulations were conducted to evaluate the performance of this architecture.

In the simulations, distributed routing was chosen as the routing scheme for the

cloudlet architecture. The results show that the cloudlet-based approach has lower

data transfer delay and higher content delivery throughput than the cloud-based

approach. The results were under the assumption that the WiFi transmission

range is larger than 250 m. Therefore, the author suggests using the latest tech-

nologies such as Flashlinq [141] or by using Wi-Fi repeaters to achieve a desired

coverage. Since there are no performance comparisons with the centralized rout-

ing, questions still remain as to which routing scheme has better performance.

4.4 Task Management Among Mobile, Cloudlet,

and Cloud

The goal of developing a cloudlet-assisted mobile-cloud computing system is to

improve the performance (e.g., latency, energy efficiency, monetary cost) on the

mobile device. One important approach for improving the performance is to of-

fload partial or full execution of the application to the more resourceful cloudlet

or the cloud [142]. Shifting the computation load to a communication load may

lead to substantial gains in performance. The computation offloading approaches

are based on virtual machine technologies and can be viewed as middleware de-

signs. Besides the middleware that enables the code offloading, task distribution

algorithms and control policies are needed to improve the performance to its best.

In this section, we will introduce both the middleware designs and the task dis-

tribution algorithms that enhance the performance of mobile computing.

114

Computation Offloading Approaches Despite the advances in mobile device

technologies, the processing and storage capabilities of mobile devices are still

not comparable to those of servers (or the cloudlet) and will continue to lag

in the near future. In order to run computationally-intensive applications, the

mobile can offload some of the computation to servers while the mobile device

computes only lightweight parts of the application. A virtual machine (VM) can

support individual processes or a complete system running on flexible hardware

platforms, thereby providing the feasibility to migrate partial or full applications

from the mobile device to more powerful cloudlet/cloud servers without major

modifications to the application. Therefore, the application processing time can

be shortened while the energy consumption on the mobile device is reduced. Yet

this approach poses several technical challenges. First, how can we identify and

partition the compute-intensive or energy-hungry parts within the mobile appli-

cation automatically? Second, what strategy should a mobile device employ for

partitioning and offloading with the goal of minimizing computation time and

maximizing energy savings? Third, how can we implement such a system from a

practical point of view?

In this subsection, we provide an overview of the state-of-the-art VM-based

techniques for mobile-cloudlet/cloud computing. These include 1) an approach

employed by the Kimberley system [1] that demonstrates the feasibility of VM

synthesis using VirtualBox, 2) an approach used in MAUI [121] that provides

both full and fine-grained remote execution using the .Net framework, 3) the

technique in CloneCloud [135, 136] that supports thread granularity partition-

ing using Dalvik VM, 4) an approach by Chen et al. [137, 138] that enables

offloading on non-customized Android devices also using Dalvik VM, and 5) an

OSGi approach by Verbelen et al. [143]. Table 4.5 compares these five approaches

discussed in this subsection.

115

T
ab

le
4.

5:
T

as
k

P
ar

ti
ti

on
in

g
A

p
p
ro

ac
h
es

C
om

p
ar

is
on

P
u
b
li
ca

ti
on

T
ec

h
n
ol

og
ie

s
P

la
tf

or
m

G
ra

n
u
la

ri
ty

A
p
p
li
ca

ti
on

D
ev

el
op

m
en

t
D

iffi
cu

lt
y

K
im

b
er

ly
V

ir
tu

al
B

ox
L

in
u
x

A
p
p
li
ca

ti
on

L
ow

M
A

U
I

.N
et

F
ra

m
ew

or
k

W
in

d
ow

s
M

et
h
o
d

R
eq

u
ir

e
ap

p
li
ca

ti
on

d
ev

el
op

er
’s

an
n
ot

at
io

n
s

C
lo

n
eC

lo
u
d

D
al

v
ik

V
M

J
av

aV
M

su
p
p

or
te

d
T

h
re

ad
N

o
an

n
ot

at
io

n
re

q
u
ir

ed

C
h
en

’s
ap

p
ro

ac
h

D
al

v
ik

V
M

J
av

aV
M

su
p
p

or
te

d
T

h
re

ad
N

o
an

n
ot

at
io

n
re

q
u
ir

ed

V
er

b
el

en
’s

ap
p
ro

ac
h

O
S
G

i
J
av

aV
M

su
p
p

or
te

d
C

om
p

on
en

t
R

eq
u
ir

e
ap

p
li
ca

ti
on

d
ev

el
op

er
’s

an
n
ot

at
io

n
s

116

Virtual Box in Kimberly

Satyanarayanan et al. implemented a VM for the Kimberley architecture [1] pro-

totype using a technique called dynamic Virtual Machine synthesis that employs

transient cloudlet customization. A small VM overlay is delivered by a mobile

device to the cloudlet infrastructure, which creates and launches the VM using

a base VM plus the delivered VM for the application. The prototype was im-

plemented on a Nokia N810 tablet running Maemo 4.0 Linux, and the cloudlet

infrastructure was implemented using Ubuntu Linux. Kimberley uses VirtualBox

as the VM manager and a tool called “Kimberlize” to create VM overlays and

synthesize those overlays with base VMs to create a launchVM. Both the mobile

and the cloudlet run the Kimberley Control Manager (KCM) to support the tran-

sient binding between themselves using a TCP tunnel established between these

two KCMs.

The authors used VM overlay sizes and the speed of the synthesis process to

evaluate the system performance. The VM overlay sizes were 100-200 MB for a

collection of Linux applications. These sizes were an order of magnitude smaller

than the full VM size (8 GB). The speed of synthesis ranged from 60 to 90 sec-

onds. These results are acceptable for an unoptimized proof-of-concept prototype,

and there is plenty of room for improvement through further optimization. For

instance, a high-bandwidth short-range wireless network can reduce overlay trans-

mission time, parallelism on the cloudlet can decrease decompression and overlay

application times; caching as well as prefetching can be used to eliminate VM

synthesis delays. The deployment challenges are also discussed, including 1) the

business model (bottom-up versus top-down), 2) the sizing of cloudlets, i.e., how

much processing power and storage capacity a cloudlet should provide, and 3)

trust and security.

117

Remote Execution in MAUI

MAUI [121] was originally motivated by the assumption that battery technology

will be a major bottleneck for the future growth of smartphones. MAUI consists

of three main components. First, program partitioning uses the Microsoft .NET

Common Language Runtime (CLR) to enable developers to annotate methods

that may be performed remotely, to extract methods that may be performed re-

motely using reflection (Richter, 2010), and to identify the state of the application

using type-safety and reflection. MAUI generates two proxies on both the mo-

bile device and the server that handle control and data transfer to implement

decisions on which methods to run remotely and which to run locally. Second,

the MAUI profiler and solver will characterize the device and the program, then

determine the methods to be executed remotely. On the server side, there is a

MAUI coordinator handling the authentications and resource allocations.

The mobile part of MAUI was implemented on an HTC Fuze smartphone

running Windows Mobile 6.5 with the .NET Compact Framework v3.5, and the

MAUI server was implemented on a desktop with a dual-core 3 GHz CPU and

4 GB RAM running Windows 7 with the .NET Framework v3.5. The main re-

sults measure energy consumption and execution time for three applications-face

recognition, 400 frames of a video game, and 30 moves in a chess game. The

results show that using remote execution on MAUI saves 5-12 times the energy

compared to the smartphone only case and reduces the execution time by more

than a factor of 6.

CloneCloud Utilizing Dalvik VM

CloneCloud [135, 136] allows a smartphone to partially offload its application to

the phone’s clone in the cloud. It migrates a modified version of the original appli-

cation executable to a virtual machine in the cloud. This algorithm allows thread

118

granularity migration, and therefore the User Interface (UI) or other essential

components can remain to be executed at the mobile. Additionally, native meth-

ods can execute at both the mobile device and its clones in the cloud/cloudlet.

One drawback of the CloneCloud approach is that local threads need to block

unless they are independent from the migrated threads.

Chun et al. developed a dynamic profiler to analyze the execution time and

energy cost of each method on a mobile device, which are then used by an opti-

mization solver to decide which method(s) should be migrated to the clone. The

profiler and optimization solver were implemented on a modified Dalvik VM on

Android, and this requirement may limit the scope of its application. CloneCloud

is tested on an unlocked HTC G1 Android phone and a server with a 3.0 GHz

Xeon CPU running the Android x86 virtual machine via VMware ESX 4.1. Three

applications - a virus scanner, image search, and privacy-preserving targeted ad-

vertising - were tested on the CloneCloud prototype. The results show that for the

tested applications, when connecting to the CloneCloud via Wi-Fi, the execution

time is shortened by 2.1x-20x and the energy consumption is reduced by 1.7x-20x.

When connecting to the CloneCloud via 3G, the execution time is shortened by

1.2x-16x and the energy consumption is reduced by 0.8x-14x.

Virtual Smartphone Over IP Utilizing Dalvik VM

Chen et al. [137, 138] introduce a framework that allows heavy backend tasks on

an Android phone to be offloaded to an Android virtual machine in the cloud.

Unlike MAUI or CloneCloud, the authors built an Android OS on an x86 cloud

server on which a virtual smartphone is executed. Two frameworks are proposed:

the first framework [138] offloads an entire application to the virtual smartphone

and controls the application through remote desktop sharing; the second one [137]

offloads only the compute-intensive components to the cloud. The former offers

heightened security and data leakage prevention as the entire application and

119

resulting data do not physically reside on the mobile, while the latter offers fast

GUI responsiveness and offline execution.

The major advantages of using this approach over MAUI and CloneCloud are

1) no use of additional APIs in the source code is required, and 2) no modifications

to the mobile device’s OS or root access are required. Note that these features

are useful for system deployment. To achieve the above features, the authors

replace the AIDL (Android Interface Definition Language) tool with a helper tool

so that the compiler automatically creates service wrappers that are offloaded to

the cloud by a service offloader. Offloading decisions may be made according to

the time and energy consumption required to perform a task. Once offloading is

done, the user needs to wait until the task is completed before the service offloader

re-evaluates the time and energy metrics.

OSGi Approach

In [143], Verbelen et al. introduced a different definition of a cloudlet. In their

cloudlet architecture, the unit of deployment is a component. Components are

managed by an Execution Environment that runs on top of an operating system

(OS). The OS is installed on a node that is either virtualized or real hardware,

and managed by a Node Agent. A cloudlet is a group of nodes (either mobile

devices and PCs or elastic cloud servers) that are physically proximate to each

other. A Cloudlet Agent optimizes the performance by deploying or configuring

the components within the cloudlet.

The proposed cloudlet framework is implemented on top of the OSGi frame-

work [144], allowing components to be installed, started, stopped, updated, and

uninstalled without a reboot. The authors use an OSGi bundle named R-OSGi

[145] to facilitate the distribution of components across different OSGi instances.

In other words, the R-OSGi allows components to be executed on different plat-

forms. The authors implement an augmented reality application to evaluate the

120

cloudlet framework. Results show that with components being offloaded to a local

laptop computer, the application on the mobile device can be improved to satisfy

the performance requirements. The experiment results also show that when the

cloudlet is running in a distant cloud, the performance decreases to an unsatis-

factory level due to the increased latency.

4.4.1 Other Middleware Designs

The above describes approaches that allow mobile devices to offload computational

tasks to the cloudlet/cloud. In general, these approaches can be categorized as

middleware that lies on top of the operating system and provide services to the

applications. More specifically, the offloading approaches described above enable

the communication and management of data and code between the client and the

cloudlet/cloud. Besides supporting code migration, a middleware framework may

also provide generic interfaces to handle the communication and input/output

functions, which will facilitate the design of software for these mobile-cloud and

mobile-cloudlet-cloud architectures.

One example of such a middleware framework design is given by Flores et

al. [146]. In their paper, a generic middleware framework named Mobile Cloud

Middleware (MCM) is introduced. MCM enables interoperability between the

mobile and the cloud/cloudlet. In MCM, a mobile application first sends an HTTP

or XMPP request to MCM, which processes this request and forwards the request

to the MCM manager. An interoperability API engine within the manager then

decides which API set to use to interact with the cloud/cloudlet. When the process

running on the cloud/cloudlet is finished, a notification is sent to the mobile device

using the push notification services (C2DM-Cloud to Device Messaging [147] for

the Android platform and APNS-Apple Push Notification Service [148] for the iOS

platform). This request-notification mechanism is processed asynchronously, so

that the mobile device can perform other tasks while waiting for the notification.

121

For some applications, it is important for the cloud/cloudlet to have the ca-

pabilities to dynamically capture and utilize contextual information from mobile

devices to improve QoS. Such contextual information may involve user profiles,

session quality, network conditions and environmental conditions such as temper-

ature, humidity, and location. In [149], Hoang et al. summarize the functions

that context-aware middleware is expected to incorporate, including 1) intelligent

monitored data analysis that preprocesses raw sensor data to improve its quality

and to update context repositories, 2) network auto-switch that monitors network

latency and automatically chooses the best network, and 3) energy consumption

management that aims to minimize energy consumption at the device level, the

communication level, or the collaborative level. This middleware layer constructs

a communication bridge between the data acquisition layers on both the mobile

and the cloud service ends.

4.4.2 Task Distribution Algorithms

With the support of middleware, the mobile devices are able to offload their

computationally-intensive application components to one or multiple of the resource-

rich cloudlets or cloud servers. In order to fully maximize the benefits of utilizing

the cloud resources, task distribution algorithms must be developed.

In the MAUI approach, a MAUI profiler is used to estimate the characteristics

of the device’s energy consumption, the program’s runtime and the resource needs,

as well as the characteristics of the wireless network such as bandwidth, packet

loss rates and delay. Then, the MAUI solver determines which methods can

be remotely executed based on the information computed by the MAUI profiler.

The solver uses integer linear programming (ILP) to solve an optimization problem

whose objective function is to maximize the energy savings given constraints about

latency penalty and methods that may be computed remotely. A similar profiler

and a similar solver were used by CloneCloud to determine the migration point.

122

When the network connectivity is intermittent, extra latency will be intro-

duced if the optimization algorithm uses the current communication condition

to determine the migration point, such as being used in CloneCloud. In Cirrus

Cloud [150], Shi et al. introduce an offloading algorithm that recursively chooses

the optimal migration points from the root of the profile tree of an application.

At every node within the tree, the algorithm computes the completion time to

decide whether to execute the entire subtree locally, migrate it to the cloud en-

tirely or migrate only parts of it. When migrating parts of the subtree, the same

algorithm is iteratively applied to all the children of this node. With the compu-

tation and future network connectivity accurately known, the algorithm is able to

find the optimal partitioning of the application and minimize the execution time.

In reality, it is obvious that future network connectivity is not known ahead of

time. However, using historical statistics may help to predict the connectivity and

therefore achieve a close-to-optimal code migration.

The above approaches consider the code offloading from one mobile client to

one server. In the cases when multiple servers may be used, the latency of each

individual server must be considered. As indicated by Table 4.2, the response

latencies of different cloud servers have significant variations. This diversity of

connectivity creates the potential for gains through the smart selection of cloud

servers for the offloading of computation. Motivated by this potential, the authors

of MOCHA developed two task distribution algorithms, namely the fixed and the

greedy algorithms, to optimize the mobile-cloud computing performance in terms

of result response time [6].

The fixed algorithm is used to evenly distribute the pending tasks to the cloud

servers (and the cloudlet if there is one). On the other hand, the greedy algorithm

continuously sends the next pending task to the server (or cloudlet) that is able

to return the result in a minimum amount of time. This process is repeated until

all the pending tasks are assigned. The authors conduct Monte-Carlo simulations

123

to analyze the effects of using the fixed algorithm and the greedy algorithm on a

mobile-cloud network with a cloudlet or without a cloudlet. In the simulations, a

computational job consisting of 5 identical and independent tasks is distributed

among available cloud servers (and a cloudlet) with varied processing capabilities

and communication latencies. As shown in [6], the greedy algorithm reduces the

overall response time by 50% over the fixed approach using the cloudlet, while

only a 20% gain is achieved without the cloudlet. The results demonstrate the

benefits of using the greedy task distribution algorithm as well as the benefits of

using the MOCHA architecture.

While the above approaches all try to maximize the performance of the mobile

device side, in [151], Hoang et al. introduce an admission control policy that stands

on the cloud server’s side. The authors propose an optimization model based on

a semi-Markov decision process to maximize the reward (e.g., revenue of service

provider) of the resource usage in the cloudlet under resource and bandwidth

constraints while meeting the QoS requirements (i.e., mobile users’ service requests

accept rate). The optimization model is transformed into a linear programming

model and can be easily solved by a standard linear program solver. In the paper,

the authors consider that the offloaded application partitions will be processed in

the cloudlet rather than forwarded to the cloud. Therefore, the bandwidth and

resource limitations at the cloud are not included in the model. According to the

model, the control policy decides whether the service request from a user should

be accepted or blocked. In the performance evaluations, the authors assume a

circumstance where two classes of users, i.e., members with higher priority and

non-members with low priority, are using the cloudlet. Two services with different

bandwidth and resource requirements are considered. The results show that using

the proposed control policy, under the bandwidth and resource constraints, the

cloudlet is able to satisfy the members’ QoS requirements while maintaining high

resource utilization rate.

124

4.5 Conclusions and Future Research Directions

In this chapter, we provided an extensive survey of the state-of-the-art mobile-

cloud computing techniques, some of which utilize cloudlets as the middle layer.

We provided a summary of the existing architectural designs and compared dif-

ferent approaches that enhance application performance via cloud-based execu-

tion. We also highlighted the research and technological challenges in different

approaches presented in the literature. While much work has been done to date,

mobile-cloud computing is still in its early research stages. Especially, the cloudlet

is a new topic in the cloud computing world. Before these mostly theoretical pro-

posals for the cloudlet find their place in practical applications, many research

challenges have to be overcome. In this section, we summarize the most impor-

tant challenges.

• Cloudlet design. Two main components of the cloudlet are its hardware

architecture and software management mechanism. In the literature, many

envision to extend a Wi-Fi access point into a more intelligent machine

equipped with cloudlet functionalities [1, 6, 139, 140, 152]. To support this

vision, a determination must be made as to what is a reasonable amount

of compute power and storage capacity that can be incorporated into the

cloudlet without exceeding the power consumption and equipment cost con-

straints. For example, a cloudlet that costs as much as a desktop PC and

consumes as much power is unlikely to be adopted by the masses. Alter-

natively, a cloudlet that does not have sufficient compute power will not

augment the mobile devices’ capabilities enough to make an impact on the

overall performance. Therefore, ideal cloudlet architecture parameters lie

between these two extremes. Such questions are closely related to the de-

ployment strategy that centers on the business model with incentives.

The primary questions regarding software are 1) support for a variety of

125

applications, 2) self-managing environments, and 3) efficient resource man-

agement. The system software environment should be generic enough so that

different kinds of applications can execute without major modifications; the

cloudlet resources should be managed automatically with minimal human

involvement; and the resource (processing, storage, and networks) usage

should be optimized so that cloudlet computation can support as many ap-

plications as possible at a given time and the overall execution time can be

minimized. We envision cloudlets incorporating modern processors, such as

GPUs [117].

• Task assignment. Current implementations such as MAUI [121] and

CloneCloud [135] have utilized offloading algorithms, where the code in

the mobile device runs in a virtual machine (VM) and the execution can be

migrated between the mobile and the cloud in real-time. However, there still

remain many techniques that can be explored for further performance im-

provements by migrating the execution across multiple cloud servers, pipelin-

ing the transmission of application partitions to hide the transmission delay,

and caching the reusable partitions to reduce the transmission load. As dis-

cussed previously, multiple cloud service providers or ad hoc cloud servers

may be employed for computational or storage resources. This increases

the complexity of the task distribution problem. Although the authors of

MOCHA consider the computation power and network latency of different

cloud servers when assigning the tasks [6, 139], it is necessary to develop

more generic task distribution algorithms that take into consideration the

resources and the constraints of the mobile devices, cloudlets and the cloud

servers. Using a more comprehensive cost model, such as the one shown in

Figure 4, is needed to develop better dynamic optimization algorithms to

further enhance the performance and robustness. With sufficient computa-

tion power, a cloudlet is a proper candidate to optimize the task distribution

126

Figure 4.3: The cost model of mobile cloud computing (adapted from [7,8]).

decision dynamically.

• Security and privacy. As many mobile devices and the cloudlet/cloud

collaborate and share data, security and privacy is always an important

issue. While WPA2 [153] and IPsec [154] provide layer-2 encryption of

the data, layer-6 encryption is still a requirement for some applications.

For example, layer-6 encryption is critical for pharmaceutical applications

such as those involving bioinformatics or computational chemistry that are

executed remotely on rented/commercial cloud platforms [113–115]. Homo-

morphic encryption can allow the computation to be performed without ever

decrypting the data, providing additional layers of security. Future work is

required to determine how layer-6 encryption, including homomorphic en-

cryption, can be applied when passing data between the mobile, cloudlet

and cloud.

127

• Energy efficiency. As more hand-held mobile devices are equipped with

sensing capabilities, collaborative sensing applications have become a real-

ity. These applications often require thousands of participating smartphones

that do opportunistic sensing with little user involvement. Since this oppor-

tunistic sensing may deplete the battery rather rapidly, it is crucial to imple-

ment effective resource management strategies to maximize the battery life

of these phones. We should consider interactions between mobiles and the

cloud as well since heavy communications consume large amount of battery

power. We can model this as an optimization problem for optimal resource

management and compute the best strategy for a given network topology,

battery power, and network conditions.

• Support for mobile developers. Developer tools such as software li-

braries with clearly defined APIs will increase the development productivity

of mobile-cloud computing systems. The libraries will also help improve the

system performance, efficiency, and compatibility while reducing the chances

of faulty design and implementation. These APIs and libraries should be

easily extensible, easy-to-use, and transparent to users so that users do not

have to have knowledge about implementation details.

128

5 Energy Savings for Mobile

Cloud Computing

5.1 Introduction

Cloud computing provides an approach to accessing shared computing resources

as a service. In our sensing and computing system, cloud computing plays an

important role in saving energy on a mobile device. Traditionally, the cloud is a

group of powerful computers, e.g., servers, workstations, personal computers, etc.

However, the traditional cloud computing system usually focuses on performance

rather than energy efficiency. As the use of energy resources has raised global

concerns, looking for more energy efficient approaches to providing computing

power is an urgent task for researchers.

Nowadays, mobile devices such as smartphones and tablets are becoming in-

creasingly powerful and rising quickly in popularity. According to International

Data Corporation (IDC)’s statistics [9], 1 billion smartphones were sold worldwide

in 2013, more than three times of the 315 million total sales of PCs. From 2012

to 2013, the sales of smartphones still have an annual growth of 39%, with ex-

pected continued increases in sales in the future. Tablet device sales are also rising

sharply, jumping from 19 million in 2010 to 217 million in 2013, getting closer to

the sales of PCs. These comparisons are illustrated in Fig. 5.1. With the contin-

129

uous growth of annual sales and the evolution of technology, it is reasonable to

expect that in the near future there will be enormous amount of computing power

available from tablets and smartphones all over the world.

In addition, unlike personal computers, mobile devices are rarely powered off,

even when the owners are sleeping, which translates into hours of unutilized com-

puting resources. There is great potential if we can make use of these idle comput-

ing resources. However, the approach to utilizing mobile devices for cloud com-

puting has not been researched extensively, leaving the question as to whether a

mobile computing system can be powerful and energy efficient at the same time.

In this chapter, we investigate and develop a system named GEMCloud (Green

Energy Mobile Cloud) that uses mobile devices to provide distributed computing

services to support computationally-complex and parallelizable applications. Be-

sides the implementation, our focus is on the evaluation of the computing capa-

bility and the energy efficiency of the system.

Figure 5.1: Computing device sales comparisons. Data are from [9].

130

The rest of this chapter is organized as follows. In Section 5.2, we review the

current state of the art in the area of mobile computing. Section 5.3 introduces

our mobile computing system followed by performance evaluations in Section 5.4.

Finally, Section 5.5 concludes the chapter and discusses future directions for this

research.

5.2 State of the Art

We propose an energy efficient cloud computing system that provides computa-

tional resources from distributed mobile devices to the users. The idea of applying

distributed computing and cloud computing to mobile devices has been developed

in recent years. However, limited by the traditionally low processing speed and

small storage space, the focus of much of this research has been on reducing the

computational burden of mobile devices.

One method of reducing the computational burden of mobile devices is to set

up an agent between the mobile devices and cloud computing resources to provide

mobile devices access to the cloud. For example, the Mobile Cloud Middleware

(MCM) [146] introduces a middleware framework that manages the connections

and communications between mobile phones and clouds. The MCM also provides

an asynchronous server-phone communication mechanism that specifically benefits

the mobile phone users.

Another approach to reducing the burden of mobile devices is to offload the

computationally-heavy executions to the cloud computing resources. For example,

CloneCloud [136] is a system that allows a smartphone device to partially offload

its application to the phone’s clone (an application-level virtual machine) in the

cloud. The authors test CloneCloud on an HTC G1 Android phone. Results

show that the CloneCloud approach provides savings in execution time and energy

consumption on the mobile devices. A similar idea was also investigated by Cuervo

131

et al. [121]. Another example from Chen et al. [137] introduces a framework that

allows heavy back-end tasks on an Android phone to be offloaded to an Android

virtual machine in the cloud.

Both of the above approaches require the computations to be executed in the

cloud, which is composed of dedicated computers. However, the mobile devices

themselves could be the source of computing power, too. Recent technological

advances have greatly improved the performance of smartphones/tablets in terms

of CPU/GPU speed, memory size, and storage space. As an example of one of the

fastest tablet on the market, the Asus Nexus 7 [155] is equipped with a 1.2GHz

quad-core CPU with 1GB RAM plus 8GB/16GB storage. A smartphone or tablet

similar to the Asus Nexus 7 can provide a considerable amount of computing power

that may be even comparable to the computing power of a desktop computer.

Hyrax [131] has demonstrated the concept of using smartphones as computing

resources. The author developed a mobile cloud computing system named Hyrax

by porting Hadoop Apache, an open-source implementation of MapReduce, to

Android smartphones. Hyrax allows computing jobs to be executed on networked

Android smartphones. However, the performance of Hyrax was poor compared

with Hadoop on traditional servers, not only because the smartphones were much

slower at that time, but also because Hadoop was not originally designed, nor

optimized, for mobile devices.

The NativeBOINC for Android project [132] is another example of utilizing

mobile devices as computing resources. BOINC (Berkeley Open Infrastructure

for Network Computing) [134] is an open-sourced volunteer computing software

originally developed for PC users to contribute their computing powers to scientific

projects. The NativeBOINC for Android project implemented a BOINC client

for Android devices that supports six BOINC projects so far. On the mobile

phone client, the user may select several projects to attend and start or stop

computing on demand. Eastlack [133] ported BOINC to 4 development boards

132

with various ARM-based mobile processors and compared their performances with

Intel processors. The results indicate that mobile processors have energy efficiency

advantages over desktop processors. However, this work does not consider system-

level performance comparisons. In this chapter, we develop a working prototype

of GEMCloud, a system that exploits the energy efficiency of mobile devices for

processing computationally-complex, parallelizable applications.

While the possibility of utilizing mobile devices as computing resources has

been demonstrated by researchers, designing and developing a system specific to

mobile devices is challenging and must take into account the characteristics of

mobile devices in terms of their relatively slow and unstable processing speed,

limited battery life, constrained and costly wireless bandwidth and dynamic net-

work topology, among others.

5.3 The GEMCloud System

In this chapter, we design and develop a mobile computing system prototype,

namely GEMCloud, that utilizes distributed mobile devices to cooperatively ac-

complish large parallelizable computational tasks. The main purpose of designing

such a system is to find a green approach to making use of the massive amount of

idle computing power that is potentially available to the public. In addition, in

this chapter we show that a mobile computing system has significant advantages

in energy efficiency over traditional desktop computing systems, and, therefore,

distributed computing on mobile devices should be explored through prototype

implementations.

133

Figure 5.2: The mobile computing system architecture.

5.3.1 System Architecture

Fig. 5.2 shows the system architecture we utilize to create a distributed mobile

computing system. The system consists of a network with users who need com-

puting power, a server that is in charge of the organization of the entire network,

a database that records the mobile clients’ information and task information, and

multiple clients of mobile devices that are the computing resource providers.

The role of the server is to organize the entire network and to coordinate mobile

clients to perform computational tasks. The server also maintains a database that

stores client information such as each client’s unique identification, IP address,

hardware capabilities, the tasks each client is performing, project data stored on

the device, etc. The server may assign the tasks based on the clients’ information.

For example, the size and number of tasks assigned to a mobile device may be

based on the speed and the number of CPU cores on the mobile device.

The clients are mobile devices that connect to the server via the internet and

provide computing resources to perform the tasks requested by the user. In our

prototype implementation, we use Android [156] smartphones and tablets as the

134

Figure 5.3: The server-client protocol flow chart.

mobile client devices. One of the most important reasons of choosing Android as

our development platform is its multi-tasking ability, which is lacking in the iOS

platform. Multi-tasking allows an application for mobile devices (i.e., an app) to

execute in the background without interfering with the device’s other function-

alities, which is especially beneficial as multi-core mobile devices are becoming

increasingly popular these days. Another important reason to choose the Android

platform is that the developer has more control of the mobile device. For exam-

ple, it is easier to set the percentage of CPU allowed to be used for distributed

computing in Android than in iOS.

135

5.3.2 Server-Client Protocols

In our prototype, the clients follow the server-client protocol flow chart described

in Fig. 5.3. Before connecting to the server, the mobile client’s application checks

the device’s status and decides if it should connect to the server and offer its

computing resources. For example, if the device is running other applications

that consume CPU and memory more than a preset threshold or if the battery is

low and not charging, the device will not connect to the server. Such preferences

are designed to avoid interfering with the mobile device’s normal usage.

After connecting to the server, the client will wait for a response from the

server. The server checks the database to determine whether the client’s applica-

tion needs an update. For each mobile client, the server’s database stores an entry

with a unique client identification, its IP address and other information such as

CPU speed, the tasks each client is performing, project data stored on the device,

etc. For the prototype we have developed, we are focusing on the evaluation of

its computing capability and energy efficiency. Therefore, database management

and clients’ information that may be used for task distribution are not of concern

for now.

Following the updating process, the server assigns tasks to the clients. In

our prototype implementation, the server simply assigns the next task on a pre-

determined list to the next available mobile device. Again, since our current

focus is not on task assignment mechanisms, we do not attempt to optimize task

distribution in this chapter.

In our prototype, the user’s application is a CPU-intensive computing job,

which can be split into multiple independent tasks. The user sends a request to the

server to complete a job. The server splits the job into small tasks and distributes

them to multiple clients. When there are more active clients to provide computing

power, the server assigns to each client fewer tasks, which means less time is

136

Figure 5.4: The prototype screen shot from an Android phone.

required for each client to finish the assigned tasks. Therefore, the turnaround

time for the job is reduced when more clients contribute to the computation.

Upon reception of the task assignment, the mobile client performs the compu-

tation and sends the results back to the server in a compressed file. The server

aggregates all the results and sends them back to the user once all the tasks are

completed.

137

5.4 Performance Evaluations

The main motivation of developing a mobile computing system in this chapter

is its potential advantage in energy efficiency. In this section, we evaluate the

energy efficiency and computing power of mobile devices and compare them with

conventional workstations.

5.4.1 Experimental Setup

In the energy efficiency tests, we evaluate the performance of both the mobile de-

vices and workstations in executing a computationally-complex application. The

application used for testing was a protein structure prediction algorithm written in

C++. The same algorithm and tasks are used to test on both the mobile devices

and the workstations. The mobile devices we tested all use the Android operating

system. Since Android applications are written in Java, we use the JNI (Java

Native Interface) to execute the native C++ code on the Android devices. The

testing code running on the workstations are directly compiled from the C++

code. This may cause the application for the Android platforms to be slower

than that for the workstations due to the overhead of Java and JNI integration.

However, this is unavoidable when porting C/C++ applications to mobile plat-

forms and thus represents a realistic situation. We used 3 mobile devices and 3

workstations for testing. Their specifications are listed in Table 5.1.

We measure the power consumed by the mobile devices or workstations using

the “Watts up? PRO ES” power meter [157]. According to its specifications,

the meter has an accuracy of ±1.5% in terms of wattage measurement. We set

the recording interval to the lowest value of 1s. This provides a good sampling

rate for our measurements as the test application takes at least 40s even on the

fastest workstation. We run the same task 10 times on each device and average

138

Table 5.1: Device specifications (Note: “* 2 (4)” means there are two (four)

physical CPUs in the workstation).

Device CPU Memory Release Date

Xiaomi

Mi-One

(MO)

Qualcomm

Snapdragon S3

Dual Core 1.5GHz

1GB 2011

Asus Nexus 7

(N7)

Nvidia Tegra 3

Quad Core 1.2GHz

1GB 2012

Samsung

Galaxy S3 (GS3)

Qualcomm

Snapdragon S4

Dual Core 1.5GHz

2GB 2012

Workstation1

(WS1)

Intel Xeon E7505 * 2

Single Core 3.06GHz * 2

8GB 2003

Workstation2

(WS2)

Intel Xeon X5355 * 2

Quad Core 2.66GHz * 2

24GB 2006

Workstation3

(WS3)

AMD Opteron 6276 * 4

16-Core 2.33GHz * 4

192GB 2011

the energy consumption readings. For multi-core devices, we run the same task on

multiple threads to evaluate the time and energy performance. For mobile devices,

we measure the device’s energy consumption while the screen is off. For the

workstations, we only measure the power consumption of the main unit without

the monitor.

139

5.4.2 Experimental Results

The experimental results are shown in Tables 5.2 - 5.7, corresponding to the

Xiaomi Mi-One (MO) Android phone, the Samsung Galaxy S3 (GS3) Android

phone, the Asus Nexus 7 (N7) Android tablet and the three Linux workstations

(WS1, WS2, WS3).

Our first interest on the mobile devices is the computing power they can pro-

vide. As expected, the mobile devices are slower than the workstation competitors.

The GS3 is equipped with a dual-core CPU and is able to finish 2 tasks in 217.1s.

This means, on average, the GS3 has a computing power of 33.2tasks/hr. With

the quad-core processor, the N7 has the best computing power among all the mo-

bile devices. It is able to complete 4 tasks within 312.4s, which translates into

46.1tasks/hr. This performance is close to the WS1’s 51.1tasks/hr, showing that

mobile devices now may have computing power comparable to some existing desk-

tops and workstations. The WS1 serves as a convenient benchmark for processing

speed. We ran the same task on the Amazon Web Services (AWS) and found that

each CPU of the WS1 is roughly equivalent to the AWS m1.small instance, which

has 1 EC2 Compute Unit. The very high-end WS3 can accomplish 64 tasks within

50.1s. In other words, it is able to complete 4598.8tasks/hr, which is about 98.8

times faster than the N7. The times required to complete the same number of

tasks for all devices are shown in Fig. 5.5.

When the devices are idle, the GS3 has the lowest power consumption (0.001W)

while the MO and N7 consume 0.6W and 0.5W , respectively. As for the worksta-

tions we tested, the WS1 has the lowest idle power consumption of 118W , while

the other two workstations consume over 350W even when idle. The idle power

is an important factor when considering energy efficiency because the power con-

sumed in this period of time is not used for anything productive and is wasted

140

Figure 5.5: Comparison of computing time.

energy. Therefore, in the cases of light utilization, the mobile devices can save a

significant amount of energy thanks to their low power consumption when idling.

Due to the fact that mobile device manufacturers build various user interfaces

(UIs) on top of the Android platform, the power management strategies vary

depending on the device and the manufacturer. For example, the N7 limits the

CPU clock while using 4 cores when the screen is turned off. Therefore, we observe

a significant increase in the amount of time (25% per core) needed to complete

1 task when all 4 cores are occupied. It is important to consider this power

management factor in our future work, as we cannot expect every mobile device

to allow applications to run in full speed when the screen is turned off.

As for the energy efficiency, the mobile devices have a clear edge over the

workstations. With only 1 task to compute, the GS3 has the best energy efficiency

among all the tested devices. It only consumes 288.5J to complete a task, while

141

Figure 5.6: Comparison of energy consumption.

the most energy efficient workstation WS3 requires 16, 322J to process the same

task, 57 times the energy required by the GS3. The WS1 and WS2 consume 75.8

and 92.5 times the energy required by the GS3. In other words, the GS3 saves

more than 98% of the energy required by the workstations when a single task is

computed.

Both the workstations and the mobile devices have their best energy efficiency

when their CPUs are fully loaded. Fig. 5.6 shows the amount of energy required

for each device to complete a certain number of tasks. All the mobile devices we

tested have better energy efficiency than the workstations. More specifically, to

complete 64 tasks, the GS3 only requires 15, 001.6J , or 234.4J per task, which is

the least among all the tested devices. The N7 and MO require 17, 110.4J and

21, 648J , respectively. As for workstations, the WS3 requires 32, 981.2J in total,

142

which is 515.3J per task, 2.2 times what the GS3 requires. The WS1 and WS2

consume 877, 721.6J and 273, 075.2J respectively, which is 58.5 and 18.2 times

what the GS3 consumes. In other words, the GS3 saves 98.3%, 94.5% and 54.5%

of the energy required by the WS1, WS2 and WS3, respectively, when the CPUs

of each device are at full load.

In cases where the computing job can be split into multiple independent tasks,

the energy efficiency is a performance metric more important than the computing

speed, as we can increase the system computing speed by recruiting more devices

to work cooperatively on the job. However, there is no easy way to improve the

energy efficiency. For example, if a job consists of 320 tasks similar to the ones

used in our test, a WS3 takes 250.5s to complete the job and consumes 164, 906J

in total. If we use the computing resources of 160 GS3, each processing 2 tasks,

the total amount of time required to complete the job is 217.1s while the energy

consumed is only 74, 992J , 45.5% of that consumed when using WS3.

It should be noted that the WS3 represents a class of high-end worksta-

tions/servers with significant hardware acquisition cost, which is rarely seen in

commercial cloud computing service offerings. The WS1 and WS2, which uses

58.5 and 18.2 times the energy of what the GS3 costs, respectively, are more

representative of servers deployed as part of cloud computing infrastructure. Fur-

thermore, the energy efficiency gap widens quickly as the device utilization level

decreases, which is due to the fact that, when being idle, workstations consume

hundreds of times more energy than do mobile devices. Therefore, using mobile

devices as a green computing resource alternative to a conventional server-based

cloud is promising and feasible.

143

Table 5.2: Performance results of the Xiaomi Mi-One (1 CPU, 2 Cores)

Idle
1 Core 2 Cores

1 Task 2 Tasks

Power (Watt) 0.6 1.8 2.9

Computing Time (Sec) N/A 235.0 236.1

Total Energy (Joule) N/A 424.1 676.5

Energy per Task (Joule) N/A 424.1 338.3

Table 5.3: Performance results of the Samsung Galaxy S3 (1 CPU, 2 Cores)

Idle
1 Core 2 Cores

1 Task 2 Tasks

Power (Watt) 0.001 1.3 2.2

Computing Time (Sec) N/A 214.4 217.1

Total Energy (Joule) N/A 288.5 468.7

Energy Per Task (Joule) N/A 288.5 234.4

Table 5.4: Performance results of the Asus Nexus 7 (1 CPU, 4 Cores)

Idle
1 Core 2 Cores 4 Cores

1 Task 2 Tasks 4 Tasks

Power (Watt) 0.5 2.1 2.8 3.3

Computing Time (Sec) N/A 233.7 234.3 320.7

Total Energy (Joule) N/A 492.3 661.8 1069.4

Energy Per Task (Joule) N/A 492.3 330.9 267.4

5.5 Conclusions

In this chapter, we introduce GEMCloud, a mobile cloud computing system that

provides computing resources to the user from energy efficient mobile devices. We

144

Table 5.5: Performance results of the workstation 1 (2 CPUs, 2 Cores)

Idle
1 Core 2 Cores

1 Task 2 Tasks

Power (Watt) 118.0 156.4 195.8

Computing Time (Sec) N/A 139.8 140.1

Total Energy (Joule) N/A 21,864.4 27,428.9

Energy per Task (Joule) N/A 21,864.4 13,714.4

Table 5.6: Performance results of the workstation 2 (2 CPUs, 8 Cores)

Idle
1 Core 2 Cores

1 Task 2 Tasks

Power (Watt) 362.6 377.9 393.0

Computing Time (Sec) N/A 70.6 70.6

Total Energy (Joule) N/A 26,687.8 27,755.1

Energy per Task (Joule) N/A 26,687.8 13,877.6

4 Cores 8 Cores

4 Tasks 8 Tasks

Power (Watt) 423.5 482.2

Computing Time (Sec) 70.6 70.8

Total Energy (Joule) 29,917.4 34,134.3

Energy per Task (Joule) 7479.4 4266.8

provide the design of the system and implement a prototype for testing. Our con-

tribution is mainly focused on the evaluation of the energy efficiency of this system

by providing comprehensive tests on the mobile devices. We provide performance

comparisons among various mobile devices and workstations. The results show

that the smartphones and tablets have lower individual computing power but

145

Table 5.7: Performance results of the workstation 3 (4 CPUs, 64 Cores)

Idle
1 Core 2 Cores

1 Task 2 Tasks

Power (Watt) 395.6 407.8 420.3

Computing Time (Sec) N/A 40.0 40.0

Total Energy (Joule) N/A 16,322.0 16,824.4

Energy Per Task (Joule) N/A 16,322.0 8412.2

4 Cores 8 Cores 16 Cores

4 Tasks 8 Tasks 16 Tasks

Power (Watt) 438.7 466.9 506.4

Computing Time (Sec) 40.1 40.2 40.6

Total Energy (Joule) 17,586.8 18,751.1 20,538.4

Energy per Task (Joule) 4396.7 2343.9 1283.7

32 Cores 64 Cores

32 Tasks 64 Tasks

Power (Watt) 588.8 658.1

Computing Time (Sec) 41.0 50.1

Total Energy (Joule) 24,150.8 32,981.2

Energy Per Task (Joule) 754.7 515.3

much higher energy efficiency. The lower computing power can be made up by

recruiting more devices, while the energy efficiency is harder to improve given the

same type of devices.

146

6 Volunteer Computing on

Mobile Devices

In Chapter5, we have demonstrated that using mobile devices as computing re-

sources in a cloud may provide adequate computing power while achieving higher

energy efficiency compared with traditional workstations. To form a mobile cloud,

the devices may be from the employees in a corporation, or the devices may be

from the crowd. In this chapter, we investigate the latter, using crowd-sourced

mobile devices for computing, namely, mobile volunteer computing.

6.1 Introduction

Volunteer computing is a form of distributed computing that utilizes an inter-

connected network of devices volunteered by public participants to cooperatively

complete computationally complex tasks. Traditional cloud computing usually

costs either a significant amount of money for the construction and maintenance

of the infrastructure or a subscription fee for using commercial cloud services. Vol-

unteer computing provides an alternative inexpensive approach, as the computing

resources are usually donated by volunteers. Since many of these devices are un-

derutilized, when properly designed, volunteer computing platforms are able to

harvest idle computing power without interfering with volunteers’ normal usage

of their devices.

147

Projects in physics, mathematics, molecular biology, medicine, chemistry, as-

tronomy and many other fields have taken advantage of existing volunteer com-

puting platforms such as JXTA [158], XtremeWeb [159], Berkeley Open Infras-

tructure for Network Computing (BOINC) [134], and GEMCloud [160]. Usually,

these projects require a large amount of computing power and are able to be split

into smaller tasks in order to be assigned to different volunteered devices. Among

the volunteer computing platforms, BOINC is the most successful one with more

than 200,000 volunteers and more than 400,000 computers active at the time of

writing this article [161]. Approximately 8000 PetaFLOPS of computing power

per day is contributed to the scientific projects supported by BOINC.

With the advances in semiconductor technology, mobile devices are becoming

more and more powerful. Some of the flagship smartphones such as Samsung

Galaxy S5 are equipped with 2.5GHz or higher frequency quad-core CPUs [162].

With 64-bit processors appearing on smartphones [163] and tablets [164], mobile

devices are getting closer to PCs in terms of computing capabilities. According

to IDC, over 1 billion smartphones and 70 million tablets have been shipped in

2013 [165] [166]. Since smartphones and tablets are usually idle rather than turned

off when they are not being used, these devices form a huge pool of idle computing

resources that could be potentially harvested for volunteer computing.

While volunteer computing projects have been successful on personal comput-

ers, there are only a few projects exploring the utilization of mobile devices as the

source of volunteer computing, such as [167] [168] [133] [132]. Currently, there are

only a few volunteer computing platforms running on Android devices that can be

publicly downloaded through the Google Play Store, including BOINC and two

re-packaged versions of BOINC: HTC power to give [169] and Samsung Power

Sleep [170], and GEMCloud [160].

Motivated by a desire to better guide future design and development of vol-

unteer computing platforms utilizing mobile devices, we have conducted a pub-

148

Figure 6.1: The architecture of the GEMCloud platform.

lic study using GEMCloud, a mobile volunteer computing platform described in

Chapter 5. The goals of the study included: 1. Analyze the participants’ avail-

ability for volunteer computing on mobile devices; 2. Analyze the participants’

behavior when using different types of devices; and 3. Analyze the factors that

impact mobile device users’ participation in volunteer computing.

The rest of this chapter is organized as follows. In Section 6.2, we briefly re-

view the design and development of the GEMCloud mobile volunteer computing

platform (for a full description of the GEMCloud architecture, see Chapter 5).

Section 6.3 describes the set-up of the public study. Section 6.4 provides anal-

ysis of the study participants’ availability for volunteer computing. Section 6.5

analyzes the behavior of the participants. Several factors in the mobile volunteer

computing system that have impact on the volunteers’ normal usage of the devices

are analyzed in Section 6.6. Finally, Section 6.7 concludes the chapter.

149

6.2 GEMCloud Platform

We use GEMCloud (described in Chapter 5) as the mobile volunteer computing

platform for this study. The GEMCloud system architecture is shown in Fig.

6.1. There are three roles in the system: task provider, task distributor, and

task executor. A task provider is the one who needs computing resources for

a distributed computing project. The project must be parallelizable, such that

it can be divided into smaller pieces of tasks that will be uploaded to the task

distributor. Each task should be properly sized so that it can be finished by a

mobile device within a reasonable amount of time. A task distributor is a set of

programs running on a server that continuously listen for task requests. The tasks

will be distributed to mobile clients (task executors) that have announced their

availability and requested tasks.

To minimize interference with mobile device users’ normal usage of the device,

GEMCloud provides preference settings to the users to customize when and how

they want GEMCloud to utilize their devices’ computing resources. The settings

include:

• Whether the GEMCloud app can communicate with the server using cellular

data or only WiFi (default: WiFi only).

• Whether GEMCloud can perform computation while the mobile device is

operating on battery (and the minimum battery charge level) or only when

plugged in to wall power (default: Only when plugged in).

• The number of CPU cores that may be used for computation (default value:

1) and the total CPU capacity that must be retained (default value: 65%)

• The maximum storage that can be used by GEMCloud (default value:

160MB).

150

• The maximum value of phone temperature (to prevent overheating) (default

value: 38◦C).

• Motion detection that allows GEMCloud to reduce its CPU usage temporar-

ily when detecting motion of the device, which may indicate that the user

has started using the device (default: enabled).

The default settings as shown above only allow the app to run computation

while charging and communicate with the server under Wi-Fi connection, which

minimizes interference to the normal device usage. However, users with larger

battery life devices (e.g., tablets) or those who do not care about the resource

usage can dedicate more computing time to the project by modifying the settings

to fit their preferences. There is also a resource tab to allow users to monitor

GEMCloud’s usage of the battery, CPU, memory, and data traffic.

Besides preference settings, another potential concern for volunteers is the

energy cost for participating in the volunteer computing and performing the com-

putation. It has been shown that using smartphones and tablets for distributed

computing can perform the same computing tasks as on PCs with better energy

efficiency compared with high performance workstations in Chapter 5. For each

volunteer, the extra electricity for performing the computing costs very little. A

common scenario for mobile volunteer computing is when the mobile device user

is sleeping, the device is plugged in to the wall charger and performing volunteer

computations. For a Samsung Galaxy S3 smartphone, once the phone is charged,

the power consumption for performing computation without turning on the screen

is 1.3W when using 1 core (at its full capacity) and 2.2W when using 2 cores. As-

suming the extra energy cost for doing the computation while charging the battery

has negligible difference compared with when the battery is fully charged and still

plugged in, the total energy used for 8 hours of volunteer computing per night is

10.4Wh for 1 core and 17.6Wh for 2 cores. According to the U.S. Energy Informa-

151

tion Administration, the national average electricity price in the United State for

residential usage in 2013 was 12.12 cents/kwh [171]. Using this rate as a guide,

the total electricity cost for participating in volunteer computing on a Galaxy S3

smartphone is only 0.13 cents/night when using 1 core and 0.21 cents/night when

using 2 cores. Therefore, the monetary cost for each volunteer to participate in

the mobile volunteer computing project is very low and should not be a factor

that discourages volunteers.

6.3 Volunteer Computing on Mobile Devices Study

Details

As we have discussed in Section 6.1, the massive number of underutilized mo-

bile devices can potentially provide a significant amount of computing power for

volunteer computing projects. However, it is not known whether people will em-

brace this concept and join volunteer computing projects in their daily lives. It

is also crucial for volunteer computing project designers to understand how the

volunteers may behave and what is important to retain the volunteers’ loyalty. To

evaluate the feasibility of using mobile devices for volunteer computing, and to

analyze the behavior of the volunteers and the factors that impact their behavior

while participating in the volunteer computing project, we conducted a public

study using the GEMCloud platform.

6.3.1 Study Set-up

Using flyers as our main approach for soliciting volunteers, we attracted volunteers

from among the students, staff and faculty at the University of Rochester to

run the GEMCloud app on their Android mobile devices. Others who learned

about the study from family or friends and did not have any affiliation with the

152

University of Rochester also participated in the study. For each participant, we

asked them to respond to a pre-study survey when the participant joined the

study and a post-study survey after participating in the study for one month. We

awarded a $20 Amazon gift card to each participant who finished both surveys

and successfully installed the GEMCloud app and created an account using the

same email address as the two surveys. The prize was provided to award the

participants for their time and effort on filling out the surveys and providing their

feedback. To associate the survey data with the volunteer computing results, we

asked each participant to create an account within the app using the same email

address as that used to complete the surveys. However, there is no requirement for

a participant to finish any computing tasks in order to be awarded the gift card.

Hence, we expect to collect computing results based on participants’ volunteering

activities.

6.3.2 Task Distribution

The computing tasks used for the study are protein structure prediction tasks.

The algorithm to perform the computation is installed along with the GEMCloud

app. There are three different types of tasks. According to their sizes, we name

them as small, medium and large tasks. As a reference, a Samsung Galaxy S3

can finish a small task in 170 s, a medium task in 280 s and a large task in 469 s.

Each type of task requires a set of files that will be transmitted from the server to

the mobile device the first time the mobile device receives the type of task. These

files do not need to be transmitted again if the mobile device receives the same

type of task again. For each type of task, a task description file that includes

a sequence of atoms will be sent to the mobile devices. For this study, when a

mobile device requests a task, a randomly selected type of task (small, medium

or large) was sent.

153

6.3.3 Data Collection

We gathered information from the devices of the participants (e.g., processor ca-

pabilities, type of wireless connections used) as well as requesting participants to

complete surveys that informed us of their expectations (pre-survey) and experi-

ences (post-survey) with having GEMCloud on their Android mobile devices. For

all the participants, there were at least 30 days between when they filled out the

pre-survey and when they received the post-survey, and we continued collecting

data from the participants even after they completed the post-survey. The first

participant joined the study on Oct. 31, 2013. The last date that a participant

filled out our post-study survey was on Mar. 17, 2014. We set the last day of

data collection to be Apr. 17, 2014, the day our last participant had been partic-

ipating for a month after completing the post-survey. Therefore, although each

participant joined the study on a different day, we have collected data from each

participant for at least 60 days. In the later analysis, when we analyze the in-

dividual behavior of the participants, we use the first 60 days of data for each

participant in order to have comparable data for each participant.

6.3.4 Participant Demographics

As of Apr. 17, 2014, 132 participants finished the pre-study and post-study sur-

veys as well as installed the app since the study started on Oct. 31, 2013. The

majority of the participants were students, who account for 60% of the total

participants. University employees account for another 11%. 28% of all the par-

ticipants were not affiliated with the University of Rochester. In terms of the age

distribution of the participants, 86% of the participants were between 18 to 29

years old. The participants for this study were generally a representation of the

university community. The details of the participant demographics are shown in

154

Figure 6.2: Participant affiliations.

Figure 6.3: Participant age distribution.

155

Fig. 6.2 and Fig. 6.3.

6.4 Participants’ Availability

One of our goals for conducting this study was to verify the feasibility of using

mobile devices for volunteer computing. From the survey, only 8 out of the 132

participants (6%) indicated they were not willing to contribute the idle time of

their devices for volunteer computing to support scientific discovery and medical

research. As shown in Fig. 6.4, among the 132 participants, 120 or 91% of the

total participants finished at least 1 task during their first 60 days of participation

in the study. 94 or 74% of the participants finished more than 100 tasks. 12

participants, or 9% of the total, however, did not complete any tasks. This means

they uninstalled the app before completing any tasks. In total, 322,689 tasks

including 189,814 small tasks, 95,095 medium tasks and 37,780 large tasks have

been completed by the participants. These equal to a total of 68 days of full

running on an Amazon EC2 large instance. Given the duration of this study and

the number of participants, the completed results indicate a significant amount of

computing power provided by each participant.

6.4.1 Geographical Distribution of Participants

We only advertised the study on the University of Rochester campus through

flyers. However, through social networks and word of mouth, participants from

all over the world learned about the study and installed the GEMCloud app and

contributed their computing resources. Based on the IP address from which each

task result was sent, we were able to approximately localize where the result was

from by using the GeoIP web service provided by MaxMind Inc. [172]. Fig. 6.5

shows a Google map with all the task results pin pointed on their approximate

156

Figure 6.4: Histogram of the number of tasks finished by each volunteer during

the first 60 days.

locations. Task results from similar locations are grouped together. As of the

last day of data collection, we received results from 13 different countries all over

the world. It should be noted that the task results here also include those that

were not generated by the study participants, i.e., from participants who did not

complete the surveys.

6.4.2 Active Participants During the Study

Fig. 6.6 shows the numbers of daily active participants since the study began on

Oct. 30, 2013 until Apr. 17, 2014, a month after the last participant received

the prize. We define a daily active participant as a participant who successfully

returns at least one task result back to the server on that day. As we can see

from Fig. 6.6, after 27 days, the number of daily active participants reached its

peak value of 53 active participants per day. Since day 36, the number of daily

active participants started to decrease. As shown in Fig. 6.7, the number of task

157

Figure 6.5: Map showing where volunteer computing users are located.

results all participants returned each day is in general consistent with the number

of active participants per day. The drop in the number of active participants is

after the first group of participants received their prizes, an indication of the role

of the prize as one of the motivations for participants volunteering their devices

for scientific computing. In Section 6.6, we will provide detailed analysis of the

effect of prizes in our volunteer computing study.

6.4.3 Active Duration of Participants

We are interested in how long each participant may engage in a volunteer com-

puting project similar to GEMCloud. Therefore, we analyze the active duration

of each participant starting from the day he/she joined our study. As Fig. 6.8

indicates, on the first day after each participant joined the study, there are 120

active participants. This number drops to 82 after 5 days of participation, since

there is no requirement for participants to continuously uses the GEMCloud app.

After that, the number of active participants decreases at a slower rate. After 30

158

Figure 6.6: Number of active participants since the study started.

Figure 6.7: Number of daily task results returned since the study started.

159

Figure 6.8: Number of active participants since joining the study.

days, there are still more than 50% of the participants who remain active.

Since every participant may join the study on a different day, the total partici-

pation duration of each volunteer is different. In order to compare the behavior of

each participant, we analyze the active ratio of the participants during the first 60

days of their participation. Fig. 6.9 shows a histogram of this active ratio, which

is defined as the number of days of active participation out of the first 60 days

of participation. As we can see, 35 participants or 26.5% of all 132 participants

have an active ratio lower than 20% during their first 60 days of participation.

On the other end, 13 participants or 9.9% of all 132 participants were active for

more than 90% of the days during their first 60 days of participation. 52 partici-

pants or 39.4% of all participants, have an active ratio of more than 50%, showing

again that a significant portion of the participants stay active for at least a month

during their participation.

160

Figure 6.9: Active ratio for the first 60 days.

6.5 Analysis of Participants’ Behavior

According to our surveys, among all 120 participants who have successfully re-

turned at least one task result, 112 of them claim to have at least 1 Android

smartphone and 40 of them claim to have at least 1 Android tablet. Based on

the task results we collected, there were 134 devices used by these participants to

provide computing resources, 111 of them are smartphones and 23 are tablets.

In general, mobile devices are different than desktop devices such as PCs or

workstations, as mobile devices are almost always on and are powered by batteries

when they are carried around, and will be charged periodically or at their owners’

convenience. Since mobile devices have limited battery lifetime, it is usually not

desirable to the device’s owner to sacrifice the device’s battery life for volunteer

computing. The GEMCloud app is designed with preference settings allowing

the user to decide when GEMCloud can perform computing tasks. The default

settings only allow GEMCloud to request and process tasks when the device is

161

charging and connected to WiFi so that running GEMCloud will not utilize bat-

tery energy and will not utilize mobile data. On the other hand, the user may

change the default settings to allow the app to run when the device is using cel-

lular data or when the device is operating on battery power. Obviously, allowing

the device to run volunteer computing projects on battery and use mobile data

will improve the availability of the device. We are interested to see how many

participants were willing to use their device for volunteer computing on battery

or with cellular data.

6.5.1 Comparing Smartphone and Tablets Use

Smartphones and tablets have both different hardware and different uses/purposes.

For example, smartphones usually have cellular connectivity and have battery life-

times of less than a day, while tablets usually only have Wi-Fi connectivity and

may last longer than one day on a fully-charged battery. The participants may

use a smartphone or tablet in our study, and the type of device affects the usage

behavior. Our survey data show different usage styles among the smartphone

users and the tablet users. Specifically, from the survey data shown in Table 6.1,

Table 6.2 and Table 6.3, the smartphone users tend to use the devices longer ev-

eryday and, due to the more limited battery life, charge them more frequently.

This is very important to volunteer computing, as in general, volunteer computing

is aimed at harvesting free computing cycles without interfering with the mobile

device users’ normal activities.

162

Table 6.1: Survey Stats: Daily usage time of smartphones and tablets

Daily Usage
Smartphones Tablets

of

participants

% of

participants

of

participants

% of

participants

<1 hour 6 5% 11 28%

1-3 hours 39 35% 17 43%

4-6 hours 39 35% 11 28%

7-10 hours 19 17% 0 0%

>10 hours 9 8% 1 3%

6.5.2 Usage Patterns for Smartphone and Tablet Devices

We collected the model name of each device along with the returned task results.

Based on the model of the device, we can classify the type of that device, i.e.,

smartphone or tablet. We analyze the numbers of tasks completed per minute

according to the time of day by smartphone users and tablet users. As shown in

Fig. 6.10 and Fig. 6.11, the behaviors of smartphone users and tablet users are

different. The number of tasks completed by smartphone users reaches its peak

during the night (03:00 - 07:00) and falls to its minimum during the afternoon

(14:00 - 20:00). Since most participants set the GEMCloud app to run computa-

tions only when the device is charging and connected to WiFi, it is expected that

participants charge their devices during the night and use the devices off battery

throughout the day. On the other hand, for tablet users, the tablet devices don’t

always need to be charged on a regular basis as the battery lives for tablets are

usually longer than a day. Therefore, we do not see any peak hour in the tablet

users’ data.

163

Table 6.2: Survey Stats: Charging frequency of smartphones and tablets

Charging

Frequency

Smartphones Tablets

of

participants

% of

participants

of

participants

% of

participants

Multiple times

per day
29 26% 4 10%

Once per day 76 68% 15 38%

Once every 2 days 7 6% 10 25%

Twice a week 0 0% 7 18%

<= Once a week 0 0% 4 10%

6.5.3 GEMCloud Preference Settings

People use smartphones and tablets for their everyday purposes. The intention of

volunteer computing on mobile devices is to make use of these mobile devices’ free

computing cycles without interfering with their original usage. To accomplish this

goal, we set the default setting of the GEMCloud app to only allow task processing

when the device is charging and connected to WiFi, so that the GEMCloud app

will not consume any battery energy or cost any cellular data to its user. We also

allow the user to change the settings according to their preferences. We collect

the preference setting data so that we can understand more about what settings

meet the most users’ needs. Since one participant may use multiple devices for

volunteer computing, we analyze preference settings per device rather than per

participant. In total, we have collected preference data from 134 unique devices

from 120 participants.

The first thing we are interested to see is how frequently GEMCloud users

change their devices’ preference settings. As shown in Fig. 6.12, 47% of all the

active devices have preference setting changes on the first day the app is installed.

164

Table 6.3: Survey Stats: Charging time of smartphones and tablets

Charging

Time

Smartphones Tablets

of

participants

% of

participants

of

participants

% of

participants

Morning 25 22% 9 23%

Afternoon 25 22% 9 23%

Evening 42 38% 20 50%

Overnight 87 78% 25 63%

After the first day, the percentage of devices that change the preference settings

drops to less than 10% per day.

The survey responses indicate that before starting the study, 96% of the par-

ticipants would be willing to contribute the idle time of their devices when the

devices are being charged, while 71% of the participants would be willing to use

their devices for volunteer computing while operating off battery, including 26%

that specified the battery usage limits. After 30 days, the number of participants

who are willing to use their devices for volunteer computing when the devices are

being charged reduces to 93%, and those who are willing to use their devices when

they are operating off battery reduces to 61%, including 29% of whom specified

the battery usage limit.

Fig. 6.13 shows the number of devices that allow GEMCloud to run tasks when

they are on battery and the number of devices that allow GEMCloud to run tasks

only when charging. At the beginning of joining the study, 34% of smartphones

and 35% of tablets allow the GEMCloud app to run tasks on battery. 66% of

smartphone and 65% of tablets only allow the app to run tasks when the device

is charging. As time goes on, the percentage of active devices that run tasks on

165

Figure 6.10: Smartphone users usage pattern.

battery gradually reduces to 15% for smartphones and 20% for tablets on the 60th

day since the device joins the study. These results indicate that although in the

survey, 61% of participants specified their willingness to contribute their devices’

idle computing cycles when they are on battery, however, in practice, using mobile

devices for volunteer computing on battery is not desirable for most participants.

As for network connectivity, before joining the study, 94% of participants were

willing to contribute the idle time of their devices when connected via WiFi, while

56% of participants were willing to contribute when their devices are connected

via cellular network, including 18% who specified the cellular data usage limit.

After 30 days of participation, the same 94% of participants remain willing to

contribute their devices’ idling time when connected via WiFi, while the number

of participants who are willing to contribute when their devices are connected

via cellular networks drops slightly to 51%, which includes 13% who specified the

166

Figure 6.11: Tablet users usage pattern.

cellular data usage limit.

According to the collected preference data, at the beginning of their participa-

tion, 84% of active devices 82% of smartphones and 96% of tablets allow GEM-

Cloud to run tasks only when the device is connected to WiFi, while only 8% of

smartphones and 4% of tablets allow GEMCloud to run tasks when the devices

are connected through cellular networks. As time goes on, the percentage of active

devices that allow GEMCloud to run when connected to WiFi rise slightly to 89%

of smartphones and 100% of tablets. These results indicate that, in practice, most

participants prefer not to use cellular data of their mobile devices for volunteer

computing.

167

Figure 6.12: Number of preference changes per device.

6.6 Factors that Impact a Volunteer’s Behavior

One of the goals of our study is to analyze the factors that impact users’ behaviors

while participating in the volunteer computing projects. In this study, we identify

three important factors that influenced the behavior of participants.

6.6.1 Prizes

The first factor is the prizes. Although in the consent form that participants

needed to sign before participating in our study we clearly stated that the vol-

unteers do not need to complete any task in order to be qualified for the prizes,

we still observed a large difference in the number of active users and completed

tasks before and after the prize was awarded. As we can see from Fig. 6.15 and

Fig. 6.16, where the data are aligned according to the day each volunteer receives

the prize, clearly there is a drop in the number of active users and daily completed

168

Figure 6.13: Number of devices that allow computing on battery vs. charging

only.

tasks on the day that the volunteers receive the prizes.

6.6.2 Negative Impacts to Volunteers’ Devices

In the post-survey, we asked the volunteers if they have noticed that the GEM-

Cloud app brought any negative impact to their normal usage of the device. As

we may expect, if the volunteer allows GEMCloud to run tasks when the device is

on battery, the battery life will be noticeably shortened. Aside from battery drain,

there are other negative impacts that may be noticeable to volunteers, including

the following.

• When a device is continuously running CPU heavy tasks, even while it is

169

Figure 6.14: Number of devices that allow computing on cellular data vs. Wi-Fi

only.

charging, its temperature may rise higher than its normal charging temper-

ature when no CPU heavy task is running continuously. Therefore, the time

for the device to be fully charged may take longer.

• The device may become sluggish if the volunteer uses it while it is running

CPU heavy tasks, especially when using all of its CPU cores. GEMCloud has

a mechanism to allow GEMCloud to adjust its computing load adaptively

(e.g., reduce the tasks’ CPU load by pausing the task thread(s) for a short

period of time) in order to guarantee the percentage of idle CPU according

to the user’s preference settings. However, this may not totally avoid some

users finding their device sluggish when GEMCloud was running tasks.

• In the early version of GEMCloud, when a device’s battery condition was

changed from charging to discharging, GEMCloud would continue to finish

170

Figure 6.15: Number of daily active volunteers according to the day the users

received the prizes.

the current task regardless of the preference setting being that GEMCloud

is permitted to work on battery or not. This will cost a small amount of

battery energy depending on the device’s specifications.

To some volunteers, some of the above negative impacts may be noticeable.

We are interested to see whether any negative impacts were perceived by the vol-

unteers and how the negative impacts influence the behavior of those volunteers.

We identify 46 volunteers who only used GEMCloud when their devices were

charging and 74 volunteers who have completed tasks on battery. The volunteers

who have never completed any tasks on battery finished 1840 tasks on average.

The volunteers who have completed tasks on battery finished 2266 tasks on aver-

age, 23% more than the former. This is possibly because compared with volunteers

who only use their devices for volunteer computing while charging, volunteers who

are willing to use their devices for volunteer computing on battery have stronger

motivation and therefore are able to contribute more. Allowing volunteer com-

171

Figure 6.16: Number of tasks finished each day according to the day they received

the prizes.

puting on battery may also lead to longer duration per day for each device to

contribute.

Within these 46 volunteers who have never completed any tasks on battery,

volunteers who did not notice any negative effect have many more active days

(29 vs. 20 days) and have completed many more tasks (2150 vs. 960 tasks)

than volunteers who noticed some negative impacts, as shown in Table 6.4. This

indicates that the volunteers who are not willing to use their devices’ battery

for volunteer computing projects probably care more about their mobile devices’

performance and therefore negative impacts to the device play an important role

in determining the amount of the volunteers’ contributions.

For the remaining 74 volunteers, each of them has finished at least 1 task while

their devices were operating on battery. Since the default settings do not allow

GEMCloud to run tasks when the device is operating on battery, this means that

these 74 volunteers have changed that setting at some point in the study and

are possibly aware of the battery drain resulting from GEMCloud operating on

172

Table 6.4: Volunteer performance with regard to negative impact

Only when charging On battery

Negative impact No Yes No Yes

Number of volunteers 34 12 50 24

Avg. active days 29 20 28 31

Avg. computing hours 269 128 221 427

Avg. completed tasks 2150 960 1845 3144

Hours per day 9.3 6.6 7.9 13.8

Tasks per day 74 49 66 102

Tasks per hour 8.0 7.5 8.4 7.4

battery. Within these 74 volunteers, 24 of them noticed that GEMCloud had

some negative impacts to their devices and 50 of them did not notice GEMCloud

had any negative impacts to their devices. The volunteers who noticed negative

impacts from GEMCloud to their devices had an average of 31 active days during

their first 60 days after joining the study in comparison to 28 active days for vol-

unteers who did not notice any negative impacts. The users who noticed negative

impacts completed 3144 tasks on average, 70% more than the users who did not

notice any negative impacts, who finished 1845 tasks on average. It is possible

that to some volunteers who are willing to use their devices’ battery for volun-

teer computing projects, negative impacts to their devices’ performance are not

their concern or they have higher tolerance for the negative impacts. Therefore,

although some of them noticed the negative impacts, these volunteers were still

willing to contribute.

173

6.6.3 User-app Interaction Frequency

In the post-study survey, we also asked each volunteer how many times on aver-

age he/she interacted with the GEMCloud app. In the app, once the volunteer

has set up an account and modified the preference settings, they may leave the

app running in the background and the app will only perform computations when

it is allowed. This ensures that the app does not require any user intervention.

However, on the other hand, the volunteer may check GEMCloud’s activity log,

the number of tasks that have been completed and his/her ranking among all the

volunteers. The volunteer may also change the preference settings, as well as turn

the app on or off according to their need at the moment. These user-app interac-

tions may be related to the volunteer’s involvement with the volunteer computing

project. The more the volunteer interacts with GEMCloud may indicate higher

user involvement, which may lead to longer participation. We correlate the sur-

vey responses with task results in order to understand the relationship between

user-app interaction and the user’s contribution for volunteer computing.

Table 6.5: The impact of user-app interaction frequency

User-app interaction frequency < Once per day > Once per day

Number of volunteers 39 81

Average active days 25 29

Average computing hours 195 301

Computing hours per day 7.7 10.3

Average completed tasks 1459 2413

Tasks Per Day 57 83

The results, shown in Table 6.5, clearly demonstrate that volunteers who inter-

act with the GEMCloud app more than once per day have 15% more active days

and finished 65% more tasks within the first 60 days after joining the study com-

174

pared with volunteers who interact with the app less than once per day. This indi-

cates a connection between high user-app interaction frequency and high volunteer

computing performance in terms of more active days and more tasks completed.

The reason could be that people who interact with the app more frequently are

more involved with the app and therefore stay in the volunteer computing study

longer and donate more computing power. Or it could be that people who truly

want to contribute to volunteer computing projects have more user-app interac-

tion based on their interest in the project. If the former is true, designing the

volunteer computing app to allow volunteers to have more user-app interactions

may prolong volunteers’ participation and the number of finished tasks. If the

latter is true, then improving the user experience will benefit those who truly

want to contribute to volunteer computing projects and therefore may prolong

their duration of participation and the number of completed tasks.

6.7 Conclusions

Volunteer computing on mobile devices not only provides inexpensive computing

resources to solve complex computing projects in addition to volunteer computing

on PCs, but also saves energy, which helps to reduce greenhouse gas emissions due

to the generation of electricity from fossil fuels and therefore could potentially

benefits the environment [160].

We have shown that people, at least from within the university community,

are willing to participate in volunteer computing projects and provide a significant

amount of computing power from their mobile devices. Participants’ behaviors

with using the volunteer computing app vary based on the device type and their

personal preferences. The user experience with the volunteer computing app may

have a significant impact on volunteers’ participation and should be one of the

most important things to consider when designing and developing volunteer com-

175

puting platforms for mobile devices. In addition, monetary prizes can be used

for attracting more volunteers. This could introduce a different model compared

with traditional volunteer computing.

176

7 Conclusions and Future

Directions

7.1 Conclusions

This dissertation envisions an energy-efficient sensing and computing system.

Health-monitoring and emotion-recognition applications were introduced as ex-

amples to demonstrate the potential practical value of such a system. To address

the challenges in the design and development of such systems, we propose the

WISP-Mote passive radio wake-up sensor device to reduce the energy consump-

tion of wireless sensors, the BaNa pitch detection algorithm to improve the pitch

data accuracy for emotion classification, and the GEMCloud platform to provide

energy efficient cloud computing resources. To evaluate the feasibility of using

mobile devices for cloud computing purposes and to guide future design of a mo-

bile cloud computing system, we also conduct a public study using the GEMCloud

platform.

The main contributions of this dissertation can be summarized as follows:

1. We develop WISP-Mote, a passive radio wake-up sensor node. WISP-Mote

can be put into sleep mode for ultra low energy consumption and can be

awakened remotely by a wake-up transmitter only when necessary. The

performance evaluation of a network of WISP-Mote sensor nodes is provided.

177

Comparison of a WISP-Mote network and a network with traditional sensor

nodes with different duty cycles shows using WISP-Mote can provide at

least 4 times better energy efficiency with other performance metrics similar

or better than a 0.5% duty-cycling network. Simulations of two example

applications are also provided to show the benefits of using WISP-Mote in

specific scenarios.

2. We develop BaNa, a noise resilient hybrid F0 detection algorithm for speech

and music. Evaluations on both speech and music data show that BaNa

achieves the lowest GPE rate for most cases among the algorithms inves-

tigated for different types of background noise, and under different SNR

levels from -10 dB to 20 dB. An implementation of the BaNa algorithm on

Android is also provided. The tests of the BaNa Android app show that it

is possible to use BaNa for real-time pitch detection on a mobile platform.

3. An extensive survey of the state-of-the-art mobile-cloud computing tech-

niques is provided with summarization of the existing architectural designs.

Different approaches that enhance application performance via cloud-based

execution are compared. Research and technological challenges in different

approaches are also highlighted.

4. We design and develop a mobile volunteer computing platform named GEM-

Cloud. We evaluated the energy efficiency of using GEMCloud by providing

comprehensive tests on various mobile devices and compared with the re-

sults of traditional workstations. The test results showed that using mobile

devices as computing resources results in higher energy efficiency while pro-

viding similar computing power if enough devices can be harvested.

5. A public study on mobile volunteer computing using the GEMCloud plat-

form is conducted. We showed the feasibility of using mobile devices for vol-

unteer computing and studied volunteers’ behavior based on the device type

178

and their personal preferences. Our study also showed that user experience

is crucial for retaining the user loyalty and should be carefully considered

when designing a mobile volunteer computing system. Monetary prizes can

be used for attracting volunteers and in a different model of crowd-sourced

computing system.

7.2 Future Directions

While several important technical challenges have been addressed in the disserta-

tion, there are a few research directions that may lead to additional benefits for

energy-efficient sensing and computing systems.

7.2.1 Passive Wake-up Radio

The range of the WISP-Mote wake-up radio is short, which limits its potential

applications. Multiple energy harvesters or different types of energy harvesting

techniques can be used to increase the wake-up range for wake-up radio sensor

nodes [173, 174]. In addition, as mentioned in Chapter 2, a directional antenna

and use of beam forming may also improve the range of passive wake-up radios.

On the protocol side, in this dissertation, we introduced a simple but effective

CSMA-based MAC protocol. According to the application scenario, a different

MAC protocol may be needed in order to provide better performance.

7.2.2 Mobile Volunteer Computing

In a volunteer computing system, due to the heterogeneity of all the volunteered

devices, to maintain a high quality of service is challenging. Depending on the

requirements of the task provider, the task results may be needed in a timely

manner. When assigning tasks to devices, the task scheduler needs to consider the

179

computing power and availability of the devices and the latency of the networks.

With this information, a cost model may be built and used to determine the

optimal strategy to assign tasks to volunteer computing devices. In cases when

a task result may contain errors, a reliability control mechanism is needed. One

solution would be sending redundant tasks to multiple devices and collecting at

least two identical results before the system stops sending redundant tasks. The

number of copies of each task to be sent is an important parameter that needs to

be tuned ahead of time or on the fly in order to balance redundancy and reliability.

In cases where multiple client devices connect to the server via one device,

e.g., a local cloudlet providing Wi-Fi connection, data processing techniques can

be applied. One example is to use the cloudlet to buffer the returned results,

preprocess them and send them to the GEMCloud server as a bundle. The total

amount of time and energy cost to transmit all the results to the server may be

reduced by using this approach.

In addition, the security of the system must be investigated to protect the

privacy of mobile device owners and to guard against unauthorized access to

the computing data and results. Unlike traditional cloud systems, as a resource

provider, each individual mobile device in a volunteer computing system is not

shared by multiple users. Only the app has control of the computing and com-

munications. Therefore, similar to other available commercial apps, the volunteer

computing app developer must convince the users that the app is not harmful.

Making sure the app only has necessary accesses to the devices and making all

accesses as transparent as possible will be helpful. In terms of the security of

communications, strong encryptions and well-designed communication protocols

are important to guarantee the security of data transfer and must be considered

while designing the system.

180

Bibliography

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-

based cloudlets in mobile computing,” Pervasive Computing, IEEE, vol. 8,

pp. 14 –23, oct.-dec. 2009.

[2] “Emotional prosody speech and transcripts database from Linguis-

tic Data Consortium (LDC).” http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2002S28.

[3] “Background noise samples used to construct the AURORA noisy speech

database.” http://www.ee.columbia.edu/~dpwe/sounds/noise/.

[4] P. C. Bagshaw, S. M. Hiller, and M. A. Jack, “Enhanced pitch tracking and

the processing of F0 contours for computer aided intonation teaching,” in

Proceedings of Eurospeech, pp. 1003–1006, 1993.

[5] F. Plante, G. Meyer, and W. A. Ainsworth, “A pitch extraction reference

database,” in Proceedings of Eurospeech, pp. 837–840, 1995.

[6] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,

“Cloud-Vision: Real-Time face recognition using a Mobile-Cloudlet-Cloud

acceleration architecture,” in Proceedings of the 17th IEEE Symposium

on Computers and Communications (IEEE ISCC 2012), (Cappadocia,

Turkey), pp. 59–66, Jul 2012.

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2002S28
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2002S28
http://www.ee.columbia.edu/~dpwe/sounds/noise/

181

[7] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an elas-

tic application model for augmenting the computing capabilities of mobile

devices with cloud computing,” Mobile Networks and Applications, vol. 16,

no. 3, pp. 270–284, 2011.

[8] D. Kovachev, Y. Cao, and R. Klamma, “Mobile cloud computing: a com-

parison of application models,” arXiv preprint arXiv:1107.4940, 2011.

[9] “International Data Corporation (IDC).” http://www.idc.com/.

[10] “Motorola Backflip Specifications.” http://www.gsmarena.com/motorola_

backflip-3079.php.

[11] “Samsung Galaxy Nexus Specifications.” http://www.gsmarena.com/

samsung_galaxy_nexus_i9250-4219.php.

[12] “HTC One X Plus Specifications.” http://www.gsmarena.com/htc_one_

x+-4976.php.

[13] “Verizon Network Coverage.” http://network4g.verizonwireless.com/

#/coverage.

[14] “AT&T Network Coverage.” http://www.att.com/network/.

[15] “PCMag.com tests of network speeds of major wireless carriers.” http:

//www.pcmag.com/article2/0,2817,2405658,00.asp.

[16] H. Ba, N. Yang, I. Demirkol, and W. Heinzelman, “Bana: A hybrid approach

for noise resilient pitch detection,” in Statistical Signal Processing Workshop

(SSP), 2012 IEEE, pp. 369–372, 2012.

[17] H. Ba, L. Chen, W. Heinzelman, Z. Ignjatovic, and M. Sturge-Apple,

“A Method For Signal Detection and Quantification of Heart Rate

Data in Human Research: Insights From Engineering and Psychology.”

http://www.idc.com/
http://www.gsmarena.com/motorola_backflip-3079.php
http://www.gsmarena.com/motorola_backflip-3079.php
http://www.gsmarena.com/samsung_galaxy_nexus_i9250-4219.php
http://www.gsmarena.com/samsung_galaxy_nexus_i9250-4219.php
http://www.gsmarena.com/htc_one_x+-4976.php
http://www.gsmarena.com/htc_one_x+-4976.php
http://network4g.verizonwireless.com/#/coverage
http://network4g.verizonwireless.com/#/coverage
http://www.att.com/network/
http://www.pcmag.com/article2/0,2817,2405658,00.asp
http://www.pcmag.com/article2/0,2817,2405658,00.asp

182

SRCD Themed Meetings 2012. Link:http://www.ece.rochester.edu/

~ba/publications/SRCD2012_He%20Ba.pdf.

[18] H. Ba, I. Demirkol, and W. Heinzelman, “Feasibility and benefits of passive

RFID wake-up radios for wireless sensor networks,” in Proceedings of the

IEEE Global Telecommunications Conference, pp. 1 –5, Dec. 2010.

[19] H. Ba, I. Demirkol, and W. Heinzelman, “Passive wake-up radios: From

devices to applications,” Elsevier Ad Hoc Networks, 2013.

[20] H. Ba, J. Parvin, L. Soto, I. Demirkol, and W. Heinzelman, “Passive rfid-

based wake-up radios for wireless sensor network,” in Wirelessly Powered

Sensor Networks and Computational RFID (J. R. Smith, ed.), pp. 113–129,

Springer, 2013.

[21] R. Muraleedharan, I. Demirkol, O. Yang, H. Ba, S. Ray, and W. Heinzelman,

“Sleeping techniques for reducing energy dissipation,” in The Art of Wireless

Sensor Networks (H. M. Ammari, ed.), Springer, 2013.

[22] N. Yang, H. Ba, W. Cai, I. Demirkol, and W. Heinzelman, “Bana: A

noise resilient fundamental frequency detection algorithm for speech and

music,” Audio, Speech, and Language Processing, IEEE/ACM Transactions

on, vol. 22, pp. 1833–1848, Dec 2014.

[23] T. Soyata, H. Ba, W. Heinzelman, M. Kwon, and J. Shi, “Accelerating

mobile cloud computing: A survey,” in Communication Infrastructures for

Cloud Computing (H. T. Mouftah and B. Kantarci, eds.), Hershey, PA, USA:

IGI Global, 2013.

[24] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing - a

green computing resource,” in 2013 IEEE Wireless Communications and

Networking Conference (WCNC): SERVICES & APPLICATIONS (IEEE

http://www.ece.rochester.edu/~ba/publications/SRCD2012_He%20Ba.pdf
http://www.ece.rochester.edu/~ba/publications/SRCD2012_He%20Ba.pdf

183

WCNC 2013 - SERVICES & APPLICATIONS), (Shanghai, P.R. China),

pp. 4418–4423, Apr. 2013.

[25] Texas Instruments, “Application report for texas instruments cc430

wake-on-radio functionality.” http://www.ti.com/lit/an/slaa459a/

slaa459a.pdf, 2012. accessed: 07/2013.

[26] R. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling a

three-tier architecture for sparse sensor networks,” in Proceedings of the

2003 IEEE International Workshop on Sensor Network Protocols and Ap-

plications, pp. 30 – 41, May 2003.

[27] A. Sample, D. Yeager, P. Powledge, A. Mamishev, and J. Smith, “Design of

an RFID-based battery-free programmable sensing platform,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 57, pp. 2608 –2615, Nov.

2008.

[28] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power

wireless research,” in Fourth International Symposium on Information Pro-

cessing in Sensor Networks (IPSN), pp. 364 – 369, April 2005.

[29] I. Demirkol, C. Ersoy, and E. Onur, “Wake-up receivers for wireless sen-

sor networks: benefits and challenges,” Wireless Communications, IEEE,

vol. 16, no. 4, pp. 88–96, 2009.

[30] B. Otis, Y. Chee, and J. Rabaey, “A 400 µW-RX, 1.6 mW-TX super-

regenerative transceiver for wireless sensor networks,” in 2005 IEEE In-

ternational Solid-State Circuits Conference (ISSCC), pp. 396 –606 Vol. 1,

Feb. 2005.

[31] N. Pletcher, S. Gambini, and J. Rabaey, “A 65 µW, 1.9 GHz RF to digi-

tal baseband wakeup receiver for wireless sensor nodes,” in IEEE Custom

Integrated Circuits Conference, (CICC), pp. 539–542, Sept. 2007.

http://www.ti.com/lit/an/slaa459a/slaa459a.pdf
http://www.ti.com/lit/an/slaa459a/slaa459a.pdf

184

[32] P. Le-Huy and S. Roy, “Low-power 2.4 GHz wake-up radio for wireless

sensor networks,” in IEEE International Conference on Wireless and Mobile

Computing, pp. 13 –18, Oct. 2008.

[33] S. von der Mark, R. Kamp, M. Huber, and G. Boeck, “Three stage wakeup

scheme for sensor networks,” in SBMO/IEEE MTT-S International Con-

ference on Microwave and Optoelectronics, pp. 205 – 208, July 2005.

[34] J. Ansari, D. Pankin, and P. Mahonen, “Radio-triggered wake-ups with ad-

dressing capabilities for extremely low power sensor network applications,”

in IEEE 19th International Symposium on Personal, Indoor and Mobile Ra-

dio Communications (PIMRC), pp. 1 –5, Sept. 2008.

[35] B. V. d. Doorn, W. Kavelaars, and K. Langendoen, “A prototype low-

cost wakeup radio for the 868 MHz band,” International Journal on Sensor

Networks, vol. 5, pp. 22–32, Feb. 2009.

[36] Austria Microsystems, “AS3933 3-D low frequency rf wake-up receiver.”

http://www.austriamicrosystems.com/Wake-up-receiver/AS3933,

2010.

[37] L. Gu and J. A. Stankovic, “Radio-triggered wake-up for wireless sensor

networks,” Real-Time Systems Journal, vol. 29, pp. 157–182, March 2005.

[38] A. G. Ruzzelli, R. Jurdak, and G. M.P. O’Hare, “On the RFID wake-up im-

pulse for multi-hop sensor networks,” in 1st ACM Workshop on Convergence

of RFID and Wireless Sensor Networks and their Applications (SenseID),

ACM, Nov. 2007.

[39] R. Jurdak, A. Ruzzelli, and G. O’Hare, “Multi-hop RFID wake-up radio:

Design, evaluation and energy tradeoffs,” in Proceedings of 17th Interna-

tional Conference on Computer Communications and Networks (ICCCN),

pp. 1 –8, Aug. 2008.

http://www.austriamicrosystems.com/Wake-up-receiver/AS3933

185

[40] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for

wireless sensor networks,” in Proceedings of the 2nd international conference

on Embedded networked sensor systems, SenSys ’04, (New York, NY, USA),

pp. 95–107, ACM, 2004.

[41] “IEEE 802.15.4MAC/Phy standard for low-rate wireless personal area

networks(LR-WPANs).” http://www.ieee802.org/15/pub/TG4.html.

[42] “Impinj RFID reader.” http://www.impinj.com/products/rfid-reader.

aspx.

[43] EPCglobal, “UHF class-1 generation-2 standard.” http:

//www.epcglobalinc.org/standards/uhfc1g2/\uhfc1g2_1_2_

0-standard-20080511.pdf.

[44] R. Want, “An introduction to RFID technology,” IEEE Pervasive Comput-

ing, vol. 5, pp. 25 – 33, Jan.-March 2006.

[45] “Tmote Sky datasheet.” http://sentilla.com/files/pdf/eol/

tmote-sky-datasheet.pdf.

[46] M. Holland, R. Aures, and W. Heinzelman, “Experimental investigation of

radio performance in wireless sensor networks,” in 2nd IEEE Workshop on

Wireless Mesh Networks, pp. 140 –150, Sept. 2006.

[47] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,

“Energy-efficient computing for wildlife tracking: design tradeoffs and early

experiences with zebranet,” in Proceedings of the 10th international con-

ference on Architectural support for programming languages and operating

systems, ASPLOS-X, (New York, NY, USA), pp. 96–107, ACM, 2002.

[48] R. Murty, G. Mainland, I. Rose, A. Chowdhury, A. Gosain, J. Bers, and

M. Welsh, “Citysense: An urban-scale wireless sensor network and testbed,”

http://www.ieee802.org/15/pub/TG4.html
http://www.impinj.com/products/rfid-reader.aspx
http://www.impinj.com/products/rfid-reader.aspx
http://www.epcglobalinc.org/standards/uhfc1g2/\uhfc1g2_1_2_0-standard-20080511.pdf
http://www.epcglobalinc.org/standards/uhfc1g2/\uhfc1g2_1_2_0-standard-20080511.pdf
http://www.epcglobalinc.org/standards/uhfc1g2/\uhfc1g2_1_2_0-standard-20080511.pdf
http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf

186

in IEEE Conference on Technologies for Homeland Security, pp. 583 –588,

May 2008.

[49] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, “Dissemina-

tion and harvesting of urban data using vehicular sensing platforms,” IEEE

Transactions on Vehicular Technology, vol. 58, pp. 882 –901, Feb. 2009.

[50] F. Gil-Castineira, F. Gonzalez-Castano, R. Duro, and F. Lopez-Pena, “Ur-

ban pollution monitoring through opportunistic mobile sensor networks

based on public transport,” in IEEE International Conference on Com-

putational Intelligence for Measurement Systems and Applications, pp. 70

–74, July 2008.

[51] Omni-ID, “Omni-ID RFID tags.” http://www.omni-id.com/.

[52] T. Vogt and E. Andre, “Comparing feature sets for acted and spontaneous

speech in view of automatic emotion recognition,” in Multimedia and Expo,

2005. ICME 2005. IEEE International Conference on, pp. 474–477, 2005.

[53] B. Cardozo and R. Ritsma, “On the perception of imperfect periodicity,”

Audio and Electroacoustics, IEEE Trans. on, vol. 16, no. 2, pp. 159 – 164,

1968.

[54] J. H. Jeon, W. Wang, and Y. Liu, “N-best rescoring based on pitch-accent

patterns,” in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics, pp. 732–741, 2011.

[55] C. Wang, Prosodic Modeling for Improved Speech Recognition and Under-

standing. PhD thesis, Massachusetts Institute of Technology, 2001.

[56] Z.-H. Ling, Z.-G. Wang, and L.-R. Dai, “Statistical modeling of syllable-level

F0 features for hmm-based unit selection speech synthesis,” in Proceedings of

http://www.omni-id.com/

187

International Symposium on Chinese Spoken Language Processing, pp. 144–

147, 2010.

[57] S. Sakai and J. Glass, “Fundamental frequency modeling for corpus-based

speech synthesis based on a statistical learning technique,” in Proc. of IEEE

ASRU, pp. 712–717, 2003.

[58] J. Woodruff and D. L. Wang, “Binaural detection, localization, and segre-

gation in reverberant environments based on joint pitch and azimuth cues,”

Audio, Speech, and Language Processing, IEEE Trans. on, vol. 21, pp. 806–

815, 2013.

[59] O. W. Kwon, K. Chan, J. Hao, and T. W. Lee, “Emotion recognition by

speech signals,” in Eighth European Conference on Speech Communication

and Technology, 2003.

[60] F. Al Machot, A. H. Mosa, K. Dabbour, A. Fasih, C. Schwarzlmuller, M. Ali,

and K. Kyamakya, “A novel real-time emotion detection system from au-

dio streams based on bayesian quadratic discriminate classifier for adas,” in

Nonlinear Dynamics and Synchronization 16th Intl Symposium on Theoret-

ical Electrical Engineering, 2011.

[61] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth,

and A. Aucinas, “EmotionSense: a mobile phones based adaptive platform

for experimental social psychology research,” in Proceedings of the 12th int.

conference on Ubiquitous computing, pp. 281–290, 2010.

[62] K. Chang, D. Fisher, and J. Canny, “AMMON: A Speech Analysis Library

for Analyzing Affect, Stress, and Mental Health on Mobile Phones,” in 2nd

Intl Workshop on Sensing Applications on Mobile Phones, 2011.

188

[63] Y. Yang, C. Fairbairn, and J. F. Cohn, “Detecting depression severity from

vocal prosody,” Affective Computing, IEEE Trans. on, vol. 4, no. 2, pp. 142–

150, 2013.

[64] J. P. Bello, G. Monti, and M. Sandler, “Techniques for automatic music

transcription,” in Intl Symposium on Music Information Retrieval, pp. 23–

25, 2000.

[65] M. Antonelli, A. Rizzi, and G. Del Vescovo, “A query by humming system for

music information retrieval,” in Intelligent Systems Design and Applications

(ISDA), 10th Intl Conference on, pp. 586 – 591, 2010.

[66] S. Kim, E. Unal, and S. Narayanan, “Music fingerprint extraction for clas-

sical music cover song identification,” in Multimedia and Expo, 2008 IEEE

Intl. Conference on, pp. 1261 –1264, 2008.

[67] P. Cariani, “Neural Representation of Musi-

cal Pitch - MIT OpenCourseWare.” http://ocw.

mit.edu/courses/health-sciences-and-technology/

hst-725-music-perception-and-cognition-spring-2009/

lecture-notes/MITHST_725S09_lec04_pitch.pdf, 2009.

[68] A. M. Noll, “Cepstrum pitch determination,” Journal of the Acoustical So-

ciety of America, vol. 41, pp. 293–309, 1967.

[69] M. R. Schroeder, “Period histogram and product spectrum: New methods

for fundamental frequency measurement,” Journal of the Acoustical Society

of America, vol. 43, pp. 829–834, 1968.

[70] P. Boersma, “Accurate short-term analysis of the fundamental frequency

and the harmonics-to-noise ratio of a sampled sound,” in Proceedings of the

Institute of Phonetic Sciences 17, pp. 97–110, 1993.

http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725-music-perception-and-cognition-spring-2009/lecture-notes/MITHST_725S09_lec04_pitch.pdf
http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725-music-perception-and-cognition-spring-2009/lecture-notes/MITHST_725S09_lec04_pitch.pdf
http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725-music-perception-and-cognition-spring-2009/lecture-notes/MITHST_725S09_lec04_pitch.pdf
http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725-music-perception-and-cognition-spring-2009/lecture-notes/MITHST_725S09_lec04_pitch.pdf

189

[71] H. Ba, N. Yang, I. Demirkol, and W. Heinzelman, “BaNa: A hybrid ap-

proach for noise resilient pitch detection,” in IEEE Workshop on Statistical

Signal Processing, pp. 369 –372, 2012.

[72] M. J. Ross, H. L. Shaffer, A. Cohen, R. Freudberg, and H. J. Manley,

“Average magnitude difference function pitch extractor,” Audio, Speech,

and Language Processing, IEEE Trans. on, pp. 353 –362, 1974.

[73] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency esti-

mator for speech and music,” Journal of the Acoustical Society of America,

vol. 111, pp. 1917–1930, 2002.

[74] J. Liu, T. F. Zheng, J. Deng, and W. Wu, “Real-time pitch tracking based

on combined SMDSF,” in Proc. of Interspeech, pp. 301–304, 2005.

[75] D. Talkin, “A robust algorithm for pitch tracking (RAPT),” Speech Coding

and Synthesis, 1995.

[76] L. R. Rabiner and R. W. Schafer, Theory and Application of Digital Speech

Processing. Pearson, 2011.

[77] T. W. Parsons, “Separation of speech from interfering speech by means of

harmonic selection,” Journal of the Acoustical Society of America, vol. 60,

pp. 911–918, 1976.

[78] X. Chen and R. Liu, “Multiple pitch estimation based on modified har-

monic product spectrum,” in Proceedings of Intl Conference on Information

Technology and Software Engineering, pp. 271–279, 2013.

[79] S. Gonzalez and M. Brookes, “A pitch estimation filter robust to high levels

of noise (PEFAC),” in Proc. European Signal Processing Conf., Barcelona,

Spain, 2011.

190

[80] Z. Jin and D. Wang, “HMM-based multipitch tracking for noisy and rever-

berant speech,” Audio, Speech, and Language Processing, IEEE Trans. on,

vol. 19, no. 5, pp. 1091–1102, 2011.

[81] F. Huang and T. Lee, “Pitch estimation in noisy speech using accumulated

peak spectrum and sparse estimation technique,” Audio, Speech, and Lan-

guage Processing, IEEE Trans. on, vol. 21, no. 1, pp. 99 –109, 2013.

[82] M. Wu, D. Wang, and G. J. Brown, “A multipitch tracking algorithm for

noisy speech,” Speech and Audio Processing, IEEE Trans. on, vol. 11, no. 3,

pp. 229–241, 2003.

[83] W. Chu and A. Alwan, “SAFE: A statistical approach to F0 estimation

under clean and noisy conditions,” Audio, Speech, and Language Processing,

IEEE Trans. on, vol. 20, no. 3, pp. 933 –944, 2012.

[84] A. von dem Knesebeck and U. Zölzer, “Comparison of pitch trackers for

real-time guitar effects,” in Proc. of the 13th Int. Conference on Digital

Audio Effects, 2010.

[85] P. De La Cuadra, A. Master, and C. Sapp, “Efficient pitch detection tech-

niques for interactive music,” in Proceedings of the Int. Computer Music

Conference, La Habana, 2001.

[86] Thomas O’Haver, Command-line findpeaks MATLAB function. http://

terpconnect.umd.edu/~toh/spectrum.

[87] P. van Alphen and D. van Bergem, “Markov models and their application

in speech recognition,” in Proceedings of the Institute of Phonetic Sciences

of the University of Amsterdam, pp. 1–26, 1989.

[88] D. Iskra, B. Grosskopf, K. Marasek, H. van den Huevel, F. Diehl,

and A. Kiessling, “SPEECON - speech databases for consumer devices:

http://terpconnect.umd.edu/~toh/spectrum
http://terpconnect.umd.edu/~toh/spectrum

191

Database specification and validation,” in Proceedings of International Con-

ference on Language Resources and Evaluation (LREC), pp. 329–333, 2002.

[89] B. Kotnik, H. Höge, and Z. Kacic, “Evaluation of pitch detection algorithms

in adverse conditions,” in Proceedings of the Third International Conference

on Speech Prosody, pp. 149–152, 2006.

[90] I. Luengo, I. Saratxaga, E. Navas, I. Hernáez, J. Sanchez, and I. naki Sainz,

“Evaluation of pitch detection algorithms under real conditions,” in Pro-

ceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing, pp. 1057–1060, 2007.

[91] G. Seshadri and B. Yegnanarayana, “Performance of an event-based instan-

taneous fundamental frequency estimator for distant speech signals,” Audio,

Speech, and Language Processing, IEEE Trans. on, vol. 19, pp. 1853–1864,

2011.

[92] “CMU Arctic Database.” http://www.festvox.org/cmu_arctic/.

[93] “Generated noisy speech data and BaNa source code, WCNG website.”

http://www.ece.rochester.edu/projects/wcng/project_bridge.

html.

[94] A. P. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, “NOISEX-

92 study on the effect of additive noise on automatic speech recognition.”

http://spib.ece.rice.edu/spib/data/signals/noise/, 1992.

[95] L. R. Rabiner, M. J. Cheng, A. E. Osenberg, and C. A. McGonegal, “A com-

parative performance study of several pitch detection algorithms,” Acous-

tics, Speech, and Signal Processing, IEEE Trans. on, vol. 24, pp. 399 – 418,

October 1976.

http://www.festvox.org/cmu_arctic/
http://www.ece.rochester.edu/projects/wcng/project_bridge.html
http://www.ece.rochester.edu/projects/wcng/project_bridge.html
http://spib.ece.rice.edu/spib/data/signals/noise/

192

[96] M. Wohlmayr, M. Stark, and F. Pernkopf, “A probabilistic interaction

model for multipitch tracking with factorial hidden Markov models,” Audio,

Speech, and Language Processing, IEEE Trans. on, vol. 19, no. 4, pp. 799–

810, 2011.

[97] O. Babacan, T. Drugman, N. d’Alessandro, N. Henrich, and T. Dutoit, “A

comparative study of pitch extraction algorithms on a large variety of singing

sounds,” in Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, pp. 7815–7819, 2013.

[98] “Download page for the SAFE toolkit.” http://www.ee.ucla.edu/

~weichu/safe/.

[99] X. Huang, A. Acero, and H.-W. Hon, Spoken language processing, vol. 15.

Prentice Hall PTR New Jersey, 2001.

[100] D. Pearce, H.-G. Hirsch, and E. E. D. Gmbh, “The AURORA experimental

framework for the performance evaluation of speech recognition systems

under noisy conditions,” in ISCA ITRW ASR2000, pp. 29–32, 2000.

[101] “Source code for the YIN algorithm.” http://audition.ens.fr/adc/.

[102] “Source code for the Praat algorithm.” http://www.fon.hum.uva.nl/

praat/.

[103] “Source code for the PEFAC algorithm included in the VOICEBOX toolkit.”

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

[104] “Source code for the Wu algorithm.” http://www.cse.ohio-state.edu/

pnl/software.html.

[105] M. G. Christensen and A. Jakobsson, Multi-Pitch Estimation. Morgan &

Claypool Publishers, 2009.

http://www.ee.ucla.edu/~weichu/safe/
http://www.ee.ucla.edu/~weichu/safe/
http://audition.ens.fr/adc/
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.cse.ohio-state.edu/pnl/software.html
http://www.cse.ohio-state.edu/pnl/software.html

193

[106] S. A. Raczynski, E. Vincent, and S. Sagayama, “Separation of speech from

interfering speech by means of harmonic selection,” Audio, Speech, and Lan-

guage Processing, IEEE Trans. on, vol. 21, pp. 1830–1840, 2013.

[107] M. Wu, D. L. Wang, and G. J. Brown, “A multipitch tracking algorithm for

noisy speech,” Audio, Speech, and Language Processing, IEEE Trans. on,

vol. 11, pp. 229–241, 2003.

[108] J. Wu, E. Vincent, S. A. Raczynski, T. Nishimoto, N. Ono, and S. Sagayama,

“Polyphonic pitch estimation and instrument identification by joint model-

ing of sustained and attack sounds,” IEEE Journal of Selected Topics in

Signal Process., vol. 5, pp. 1124–1132, 2011.

[109] “Freesound website for short pieces of music download.” http://www.

freesound.org/.

[110] Z. Duan, B. Pardo, and C. Zhang, “Multiple fundamental frequency estima-

tion by modeling spectral peaks and non-peak regions,” Audio, Speech, and

Language Processing, IEEE Trans. on, vol. 18, no. 8, pp. 2121–2133, 2010.

[111] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud

computing: architecture, applications, and approaches,” Wireless Commu-

nications and Mobile Computing, pp. n/a–n/a, 2011.

[112] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A

survey,” Future Gener. Comput. Syst., vol. 29, pp. 84–106, Jan. 2013.

[113] “Amazon Web Services.” http://aws.amazon.com.

[114] “Windows Azure: Microsoft Cloud Platform.” http://www.microsoft.

com/windowazure.

[115] “Google Cloud Platform.” https://cloud.google.com/.

http://www.freesound.org/
http://www.freesound.org/
http://aws.amazon.com
http://www.microsoft.com/windowazure
http://www.microsoft.com/windowazure
https://cloud.google.com/

194

[116] “Nvidia Tegra 3.” http://www.nvidia.com/object/tegra-3-processor.

html.

[117] “GeForce 600 Series.” http://en.wikipedia.org/wiki/GeForce_600_

Series.

[118] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: Avoiding the power

wall with low-leakage, STT-MRAM based computing,” in Proceedings of the

International Symposium on Computer Architecture, vol. 38, (Saint-Malo,

France), pp. 371–382, Jun 2010.

[119] “DOCSIS.” http://en.wikipedia.org/wiki/DOCSIS.

[120] “Qualcomm Snapdragon.” http://www.qualcomm.com/snapdragon.

[121] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chan-

dra, and P. Bahl, “Maui: making smartphones last longer with code offload,”

in Proceedings of the 8th international conference on Mobile systems, appli-

cations, and services, MobiSys ’10, (New York, NY, USA), pp. 49–62, ACM,

2010.

[122] “Internet of things.” http://en.wikipedia.org/wiki/Internet_of_

Things.

[123] “HIPAA.” http://www.hhs.gov/ocr/privacy/index.html.

[124] C. S. Pattichis, E. Kyriacou, S. Voskarides, M. S. Pattichis, R. Istepanian,

C. N. Schizas, and C. S. Pattichis, “Wireless telemedicine systems: An

overview,” IEEE Antennas & Propagation Magazine, vol. 44, pp. 143–153,

2002.

[125] U. Varshney, “Pervasive healthcare and wireless health monitoring,” Mob.

Netw. Appl., vol. 12, pp. 113–127, Mar. 2007.

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://en.wikipedia.org/wiki/GeForce_600_Series
http://en.wikipedia.org/wiki/GeForce_600_Series
http://en.wikipedia.org/wiki/DOCSIS
http://www.qualcomm.com/snapdragon
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Internet_of_Things
http://www.hhs.gov/ocr/privacy/index.html.

195

[126] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan,

Y. Wu, L. Fang, and R. Stoleru, “Context-aware wireless sensor networks

for assisted living and residential monitoring,” Netwrk. Mag. of Global In-

ternetwkg., vol. 22, pp. 26–33, July 2008.

[127] “Microchip’s 32-bit Microcontrollers.” http://www.microchip.com/

pagehandler/en-us/family/32bit/.

[128] Wikipedia, “Advanced encryption standard,” 2012. http://en.wikipedia.

org/wiki/Advanced_Encryption_Standard.

[129] NIST, “Advanced encryption standard (aes),” 2001. http://csrc.nist.

gov/publications/fips/fips197/fips-197.pdf.

[130] M. Ali, “Green cloud on the horizon,” in Proceedings of the 1st Interna-

tional Conference on Cloud Computing, CloudCom ’09, (Berlin, Heidelberg),

pp. 451–459, Springer-Verlag, 2009.

[131] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapre-

duce,” Master’s thesis, Carnegie Mellon University, 2009.

[132] “Native Boinc for Android.” http://nativeboinc.org/site/uncat/

start.

[133] J. R. Eastlack, “Extending volunteer computing to mobile devices,” Master’s

thesis, New Mexico State University, 2011.

[134] D. P. Anderson, “Boinc: A system for public-resource computing and stor-

age,” in Proceedings of the 5th IEEE/ACM International Workshop on Grid

Computing, GRID ’04, (Washington, DC, USA), pp. 4–10, IEEE Computer

Society, 2004.

[135] B.-G. Chun and P. Maniatis, “Augmented smartphone applications through

clone cloud execution,” in Proceedings of the 12th conference on Hot topics

http://www.microchip.com/pagehandler/en-us/family/32bit/
http://www.microchip.com/pagehandler/en-us/family/32bit/
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nativeboinc.org/site/uncat/start
http://nativeboinc.org/site/uncat/start

196

in operating systems, HotOS’09, (Berkeley, CA, USA), pp. 8–8, USENIX

Association, 2009.

[136] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

elastic execution between mobile device and cloud,” in Proceedings of the

sixth conference on Computer systems, EuroSys ’11, (New York, NY, USA),

pp. 301–314, ACM, 2011.

[137] E. Chen, S. Ogata, and K. Horikawa, “Offloading android applications to

the cloud without customizing android,” in Pervasive Computing and Com-

munications Workshops (PERCOM Workshops), 2012 IEEE International

Conference on, pp. 788 –793, march 2012.

[138] E. Y. Chen and M. Itoh, “Virtual smartphone over ip,” in World of Wireless

Mobile and Multimedia Networks (WoWMoM), 2010 IEEE International

Symposium on a, pp. 1 –6, june 2010.

[139] T. Soyata, R. Muraleedharan, S. Ames, J. H. Langdon, C. Funai,

M. Kwon, and W. B. Heinzelman, “Combat: mobile cloud-based com-

pute/communications infrastructure for battlefield applications,” in Pro-

ceedings of SPIE, vol. 8403, May 2012.

[140] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets

on interactive mobile cloud applications,” in Enterprise Distributed Object

Computing Conference (EDOC), 2012 IEEE 16th International, pp. 123 –

132, sept. 2012.

[141] M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, “To-

ward proximity-aware internetworking,” Wireless Communications, IEEE,

vol. 17, pp. 26 –33, december 2010.

197

[142] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation

offloading for mobile systems,” Mob. Netw. Appl., vol. 18, pp. 129–140, Feb.

2013.

[143] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: bringing

the cloud to the mobile user,” in Proceedings of the third ACM workshop

on Mobile cloud computing and services, MCS ’12, (New York, NY, USA),

pp. 29–36, ACM, 2012.

[144] T. O. Alliance, “Osgi - the dynamic module system for java,” 2012. http:

//www.osgi.org/.

[145] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: distributed

applications through software modularization,” in Proceedings of the

ACM/IFIP/USENIX 2007 International Conference on Middleware, Mid-

dleware ’07, (New York, NY, USA), pp. 1–20, Springer-Verlag New York,

Inc., 2007.

[146] H. Flores, S. N. Srirama, and C. Paniagua, “A generic middleware frame-

work for handling process intensive hybrid cloud services from mobiles,”

in Proceedings of the 9th International Conference on Advances in Mobile

Computing and Multimedia, MoMM ’11, (New York, NY, USA), pp. 87–94,

ACM, 2011.

[147] “Android Cloud to Device Messaging Framework.” https://developers.

google.com/android/c2dm/.

[148] “Apple Push Notification Service.” http://developer.apple.com/

library/mac/#documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/ApplePushService/ApplePushService.html.

[149] D. B. Hoang and L. Chen, “Mobile cloud for assistive healthcare (mocash),”

in Proceedings of the 2010 IEEE Asia-Pacific Services Computing Confer-

http://www.osgi.org/
http://www.osgi.org/
https://developers.google.com/android/c2dm/
https://developers.google.com/android/c2dm/
http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html

198

ence, APSCC ’10, (Washington, DC, USA), pp. 325–332, IEEE Computer

Society, 2010.

[150] C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik, “Computing in cirrus

clouds: the challenge of intermittent connectivity,” in Proceedings of the

first edition of the MCC workshop on Mobile cloud computing, MCC ’12,

(New York, NY, USA), pp. 23–28, ACM, 2012.

[151] D. T. Hoang, D. Niyato, and P. Wang, “Optimal admission control policy

for mobile cloud computing hotspot with cloudlet,” in Wireless Communi-

cations and Networking Conference (WCNC), 2012 IEEE, pp. 3145 –3149,

april 2012.

[152] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satya-

narayanan, “The impact of mobile multimedia applications on data center

consolidation,” Technical Report CMU-CS-12-143, School of Computer Sci-

ence, Carnegie Mellon University, October 2012.

[153] W.-F. Alliance, “WPA2.” http://www.wi-fi.org/knowledge-center/

glossary/wpa2%E2%84%A2.

[154] B. Technologies, “Security Architecture for the Internet Protocol,” 2005.

http://tools.ietf.org/pdf/rfc4301.pdf.

[155] “Asus Nexus 7 Android tablet.” http://www.asus.com/Tablet/Nexus/

Nexus_7/.

[156] “Android.” http://www.android.com/.

[157] “Watts up? PRO ES Watt meter.” https://www.wattsupmeters.com/

secure/products.php?pn=0.

[158] L. Gong, “Jxta: a network programming environment,” IEEE Internet

Computing, vol. 5, no. 3, pp. 88–95, 2001.

http://www.wi-fi.org/knowledge-center/glossary/wpa2%E2%84%A2
http://www.wi-fi.org/knowledge-center/glossary/wpa2%E2%84%A2
http://tools.ietf.org/pdf/rfc4301.pdf
http://www.asus.com/Tablet/Nexus/Nexus_7/
http://www.asus.com/Tablet/Nexus/Nexus_7/
http://www.android.com/
https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.wattsupmeters.com/secure/products.php?pn=0

199

[159] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremweb: a generic

global computing system,” in Proc. of IEEE/ACM CCGrid, 2001.

[160] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing - a

green computing resource,” in Wireless Communications and Networking

Conference (WCNC), 2013 IEEE, pp. 4451–4456, April 2013.

[161] “BOINC website.” http://boinc.berkeley.edu/index.php.

[162] “Samsung Galaxy S5.” http://www.samsung.com/us/

galaxy-s-5-the-next-big-thing-is-here/.

[163] “Apple iPhone 6.” https://www.apple.com/iphone-6/.

[164] “Nexus 9 Android tablet.” http://www.google.com/nexus/9/.

[165] “IDC Press Release - worldwide smartphone shipments, Jan. 27, 2014.”

http://www.idc.com/getdoc.jsp?containerId=prUS24645514.

[166] “IDC Press Release - worldwide tablet shipments, Jan. 29, 2014.” http:

//www.idc.com/getdoc.jsp?containerId=prUS24650614.

[167] M. Arslan, I. Singh, S. Singh, H. Madhyastha, K. Sundaresan, and S. Kr-

ishnamurthy, “Cwc: A distributed computing infrastructure using smart-

phones,” Mobile Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1–1,

2014.

[168] M. Black and W. Edgar, “Exploring mobile devices as grid resources: Using

an x86 virtual machine to run boinc on an iphone,” in Grid Computing,

2009 10th IEEE/ACM International Conference on, pp. 9–16, Oct 2009.

[169] “HTC Power To Give web page.” http://www.htc.com/us/go/

power-to-give/.

http://boinc.berkeley.edu/index.php
http://www.samsung.com/us/galaxy-s-5-the-next-big-thing-is-here/
http://www.samsung.com/us/galaxy-s-5-the-next-big-thing-is-here/
https://www.apple.com/iphone-6/
http://www.google.com/nexus/9/
http://www.idc.com/getdoc.jsp?containerId=prUS24645514
http://www.idc.com/getdoc.jsp?containerId=prUS24650614
http://www.idc.com/getdoc.jsp?containerId=prUS24650614
http://www.htc.com/us/go/power-to-give/
http://www.htc.com/us/go/power-to-give/

200

[170] “Samsung Power Sleep web page.” http://www.samsung.com/at/

microsite/powersleep/.

[171] “Average Retail Price of Electricity to Ultimate Customers.” http://www.

eia.gov/electricity/monthly/pdf/epm.pdf.

[172] “Maxmind GeoIP web services.” http://dev.maxmind.com/.

[173] L. Chen, H. Ba, W. Heinzelman, and A. Cote, “RFID range extension with

low-power wireless edge devices,” in 2013 International Conference on Com-

puting, Networking and Communications, Wireless Ad Hoc and Sensor Net-

works Symposium (ICNC’13 - WAHS), (San Diego, USA), pp. 524–528, Jan.

2013.

[174] L. Chen, S. Cool, H. Ba, W. Heinzelman, I. Demirkol, U. Muncuk,

K. Chowdhury, and S. Basagni, “Range extension of passive wake-up radio

systems through energy harvesting,” in IEEE ICC 2013 - Ad-hoc and Sensor

Networking Symposium (ICC’13 AHSN), (Budapest, Hungary), pp. 1534–

1539, June 2013.

http://www.samsung.com/at/microsite/powersleep/
http://www.samsung.com/at/microsite/powersleep/
http://www.eia.gov/electricity/monthly/pdf/epm.pdf
http://www.eia.gov/electricity/monthly/pdf/epm.pdf
http://dev.maxmind.com/

	List of Tables
	List of Figures
	Introduction
	The Growth of Personal Mobile Devices
	The Envisioning of Energy Efficient Sensing and Computing Systems
	Design and Development Challenges
	Dissertation Contributions and Organization

	Energy Savings for Sensors Using Passive Wake-Up Radios
	Introduction
	State of The Art In Radio Wake-up
	RFID Wake-up Sensor Device
	Characterization of WISP-Mote
	Simulations
	Applications That Can Benefit From WISP-Motes
	Conclusions

	Noise Resilient Pitch Detection from Speech Data
	Introduction
	Related Work
	BaNa F0 Detection Algorithm for Speech
	Experimental Settings for BaNa F0 Detection For Speech
	F0 Detection Performance For Speech Signals
	BaNa F0 Detection Algorithm for Music
	Implementation Issues
	Conclusions

	Mobile Cloud Computing - A Survey
	Introduction
	Technological Challenges in Mobile-Cloud Computing
	Architectural Design
	Task Management Among Mobile, Cloudlet, and Cloud
	Conclusions and Future Research Directions

	Energy Savings for Mobile Cloud Computing
	Introduction
	State of the Art
	The GEMCloud System
	Performance Evaluations
	Conclusions

	Volunteer Computing on Mobile Devices
	Introduction
	GEMCloud Platform
	Volunteer Computing on Mobile Devices Study Details
	Participants' Availability
	Analysis of Participants' Behavior
	Factors that Impact a Volunteer's Behavior
	Conclusions

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Bibliography

