Introduction to Ultra Wideband (UWB)

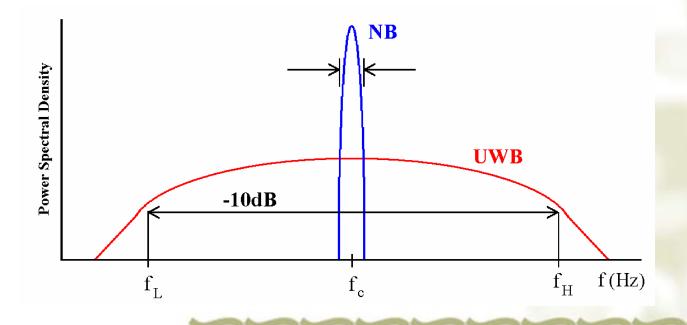
Ou Yang WCNG @ UR 4/2/2007

Outline

- What is UWB
- Why UWB
- How it works
 - Multiple Access
 - Modulation
 - Tx and Rx
 - Channel Model
- Regulations and PHY considerations
- Standardization and MAC issues

What is UWB

Principles of UWB


- Time Domain
 - Extremely short pulses
 - Very low duty cycle
- Frequency Domain
 - Ultra wide spectrum
 - Low power spectral density
 - Acceptable interference with other users

Definition of UWB

FCC Definition

$$B_{f} = 2 \frac{f_{H} - f_{L}}{f_{H} + f_{L}} > 0.2$$

- Total bandwidth >500MHz

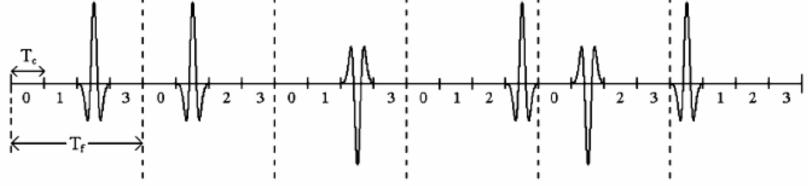
Why UWB

Why UWB - Advantages

- Spectrum reuse
 - 3.1-10.6 GHz, coexist with other users
- High data rate in short range
 - 500 Mbps at 10 feet
- Multipath immunity
 - Path delay >> pulse width
- Low power
 - Baseband modulation (no carrier)
- Low cost
 - Almost "all digital", simple analog module

Why UWB - Applications

- Communications
 - Wireless Personal Area Network
 - Military communications
- Radar
 - Ground penetrating radar
 - Through-wall radar
 - Buried victim rescue
- Intelligence Sensors
 - Telemetry
 - Intelligent airbag, driving and parking aids
 - Intelligent transport system
- Location finding


How UWB works

- Multiple Access Mechanism
 Modulation Schomos
- Modulation Schemes
- Transmitter and Receiver
- Channel Models

Multiple Access Techniques

- Time Hopping TH-UWB
- Direct Spread DS-UWB

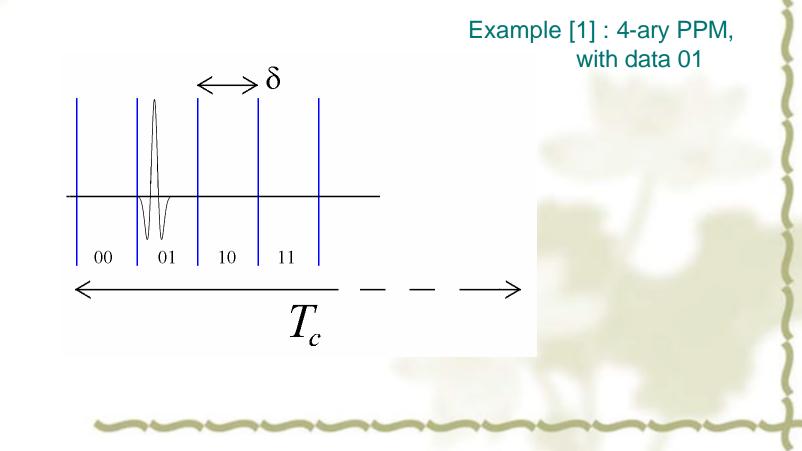
Ns=6 (6 frames per symbol)
TH sequence={2,1,2,3,1,0}
Tf=4Tc

TH-UWB

*	$S^{(k)}(t^{(k)}) =$	$=\sum_{j=-\infty}^{\infty}w(t^{(k)}-jT_{f}-c_{j}^{(k)}T_{c}-\boldsymbol{d}d^{(k)}\lfloor j/N_{s}\rfloor)$
*	$S^{(k)}$	the kth user's tx signal
*	$t^{(k)}$	the kth tx's clock
*	w(t)	pulse wave
*	T_{f}	pulse repetition time
*	T_{c}	TH chip duration
*	$C_j^{(k)}$	TH sequence
*	N_s	the number of frames per symbol
*	$d^{(k)} \lfloor_{j/N_s} \rfloor$	data sequence
*	d	modulation index

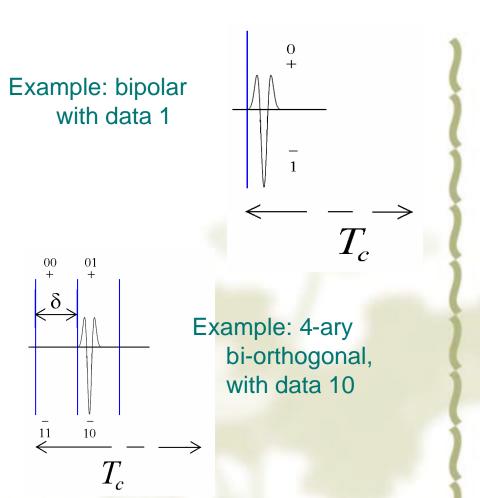
$$S^{(k)}(t^{(k)}) = \sum_{j=-\infty}^{\infty} \Gamma_j^{(k)} d^{(k)} \lfloor_{j/N_s} \rfloor w(t^{(k)} - jT_f)$$

 $\Gamma_j^{(k)}$ $T_f = T_m$ N_s

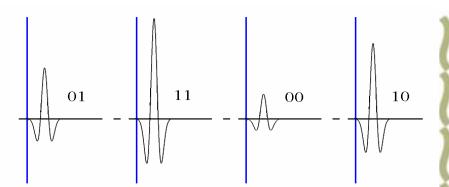

Direct spreading code Pulse width Spreading factor

Modulation Schemes

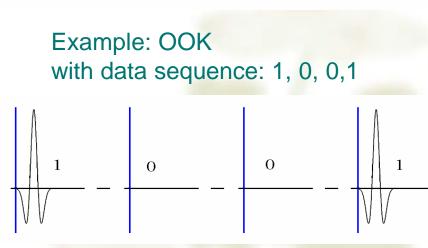
- Pulse Position Modulation (PPM)
 - Binary/M-ary
- Bipolar Signaling (BPSK)
- Pulse Amplitude Modulation (PAM)
- On/Off Keying (OOK)
- Pulse-Shape Modulation
 - Orthogonal pulses
 - Using Hermite Polynomials


Modulation Examples

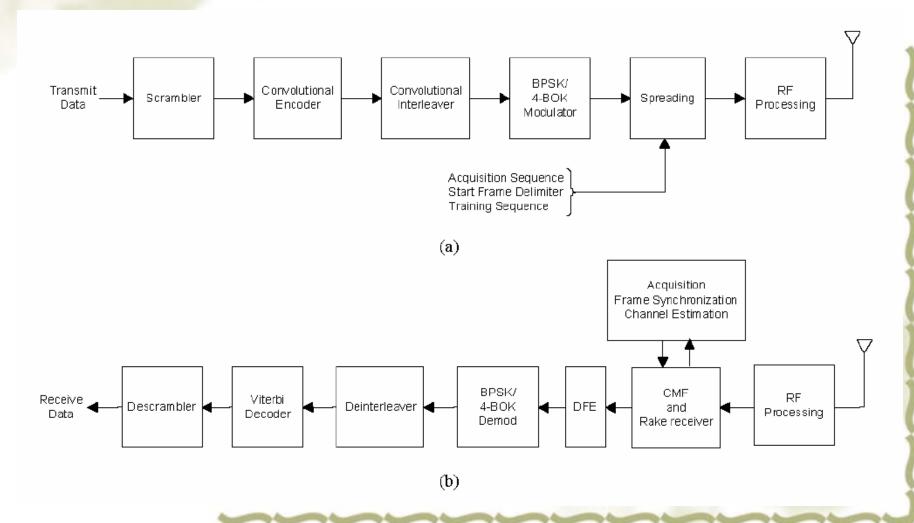
Pulse Position Modulation (PPM)
 Usually used with TH-UWB


Modulation Examples

- Bipolar signaling (BPSK)
 very energy efficient
 Usually used in TH-UWB and DS-UWB
- Bi-orthogonal Keying (BOK)
 - PPM + BPSK
 - Used in Std 802.15.3


Modulation Examples

 PAM
 Poor energy efficiency. Example: 4-ary PAM with data sequence: 01, 11, 00, 10

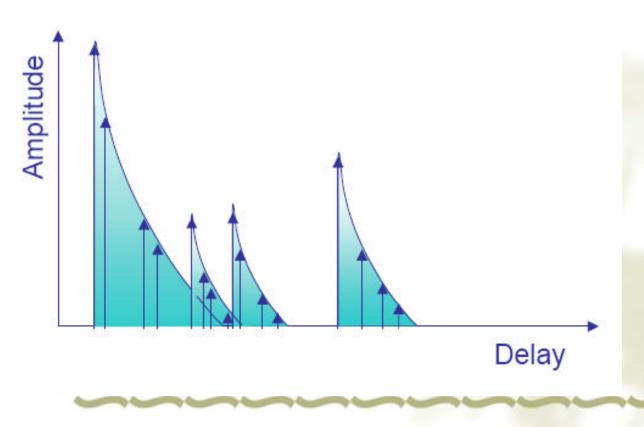


OOK

 Simple
 implementation
 Poor energy
 efficiency.

Transmitter and Receiver [2]

IEEE UWB Indoor Channel Model [3][4]


Modified Saleh-Valenzula channel model

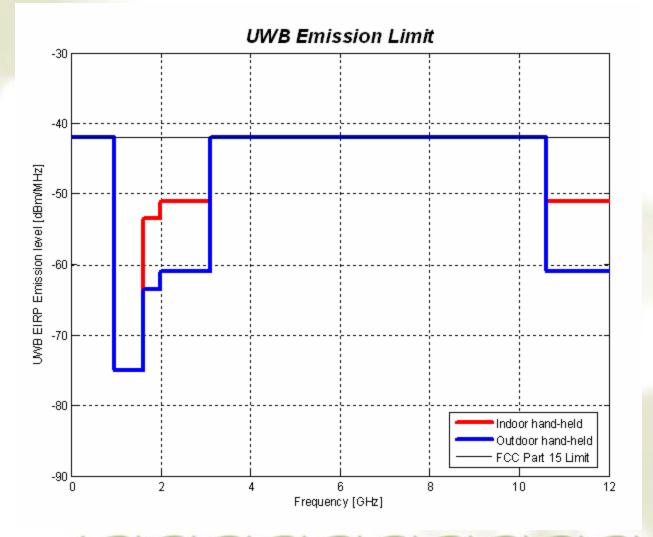
- cluster arrival rate
- ray arrival rate within a cluster
- cluster decay factor
- ray decay factor

Channel Characteristics	CM1	CM2	CM3	CM4
Distance (m)	0-4	0-4	4-10	_
Line of Sight	yes	no	no	no
Mean Excess Delay (ns)	5.05	10.38	14.18	
RMS Delay	5.28	8.03	14.28	25
NP _{10db}	_		35	_
NP _{85%}	24	36.1	61.54	-

Multi-path Arrives in Clusters [5]

- O.3m distance -> 1ns apart receiving signals
- 7.5GHz UWB has resolution at 133ps
- Cluster -> reflection from different obstacles

Modifications to S-V Model


Amplitude

- No Rayleigh
- But lognormal or Nakagami distribution

Shadowing term added Account for total received multi-path energy variation

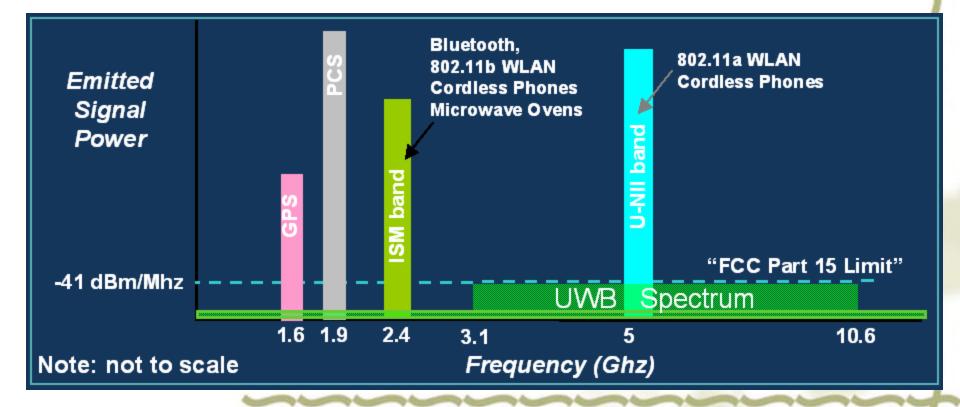
Regulation and PHY Considerations

FCC Regulations [6]

PHY Considerations

- Pulse spectrum design
 Fit FCC regulations
- Spectrum spreading sequence design
 Reduce multiple-access interference (MAI)
- Synchronization
 - Reduce long acquisition time

Pulse Spectrum


- Pulse generator
 - Close to FCC regulation
- Spectrum spreading sequence
 - Smooth but not eliminate spectral line
 - Violate FCC regulation
 - Power back-off
- Modulation

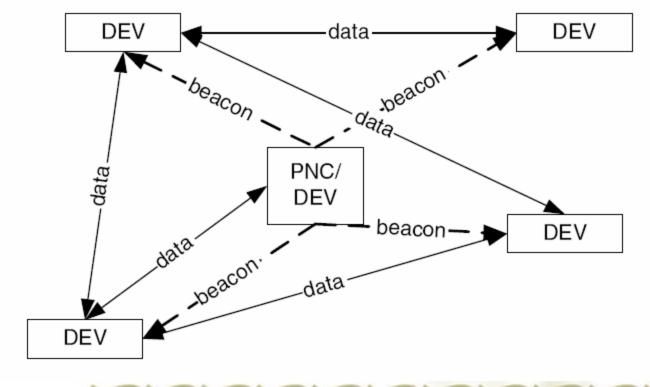
- Carefully design can eliminate spectral line

Pulse Spectrum Design [7]

Notch the pulse spectrum
 avoid existing narrowband interference

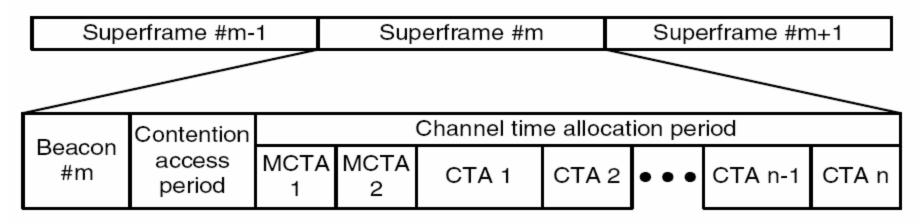
Soft Spectrum Adaptation

Standardization and MAC Issues


Standardization

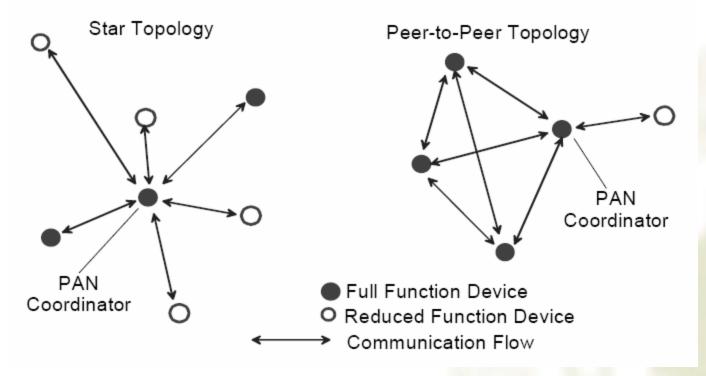
- Wireless Personal Area Networks using UWB as PHY options
 - IEEE Std of 802.15.3a for high data rate
 - IEEE Std of 802.15.4a for low data rate
- ✤ IEEE802.15.3a
 - DS-UWB vs. MB-OFDM-UWB
 - Proposal withdrawn on Jan 2006
 - Market will decide the surviving technology
- IEEE802.15.4a (Draft)
 - Communications
 - High precision ranging and location
 - In progress

IEEE 802.15.3 MAC [8]


Concept of Piconet - PNC

- DEV

IEEE 802.15.3 MAC [8]


- Beacon
 - synchronization, time allocation, power control
- Contention Access Period (CAP)
 - commands and asynchronous data
- Channel Time Allocation Period (CTAP)
 - MCTA: management
 - CTA: isochronous streams, asynchronous data

IEEE 802.15.4 MAC [9]

Topology
 Star Topology
 P2P Topology

- Beacon-enabled
 slotted CSMA/CA
- Non beacon
 - unslotted CSMA/CA

MAC Issues

- Rate Adaptation
 - Modulation order
 - Spreading gain
 - Channel code rate
- Power Control
 - Ranging accuracy
- Pulse Shape Adaptation
 - Combined with Soft Spectrum Adaptation

Q & A Thank You

References

- [1] Dr. Jeffrey Reed, Dr. R. Michael Buehrer, Dr. Dong S. Ha, "Introduction to UWB: Impulse Radio for Radar and Wireless Communications".
- [2] Oh-Soon, Saeed S. Ghassemzadeh, Larry J. Greenstein, Vahid Tarokh, "Performance Evaluation of MB-OFDM and DS-UWB Systems for Wireless Personal Area Networks".
- [3] Anderas F. Molisch, Jeffrey R. Foerster, Marcus Pendergrass, "Channel Models for Ultrawideband Personal Area Networks", IEEE Wireless Communications, Dec 2003.
- [4] Eduardo Cano, Sean McGrath, "TH-UWB and DS-UWB In Lognormal Fading Channel and 802.11a Interference".
- [5] Jari linatti, "Ultra Wideband Systems", UWB_251103linatti.pdf.
- [6] Lic.Tech. Matti Hämäläinen, "Introduction to existing ultra wideband (UWB) technologies", UWB_070406.ppt.
- [7] Fred Bhesania, Brad Hosler, "UWB: A High-Speed Wireless PAN Technology", TWMO05003_WinHEC05.ppt.
- [8] IEEE Computer Society, Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), 2003.
- [9] IEEE Computer Society, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), 2006.