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Abstract— In multi-hop wireless sensor networks that are
characterized by many-to-one (convergecast) traffic patterns,
problems related to energy imbalance among sensors often ap-
pear. When the transmission range is fixed for nodes throughout
the network, the amount of traffic that sensors are required to
forward increases dramatically as the distance to the data sink
becomes smaller. Thus, sensors closest to the data sink tend to die
early, leaving areas of the network completely unmonitored and
causing network partitions. Alternatively, if all sensors transmit
directly to the data sink, the furthest nodes from the data sink
will die much more quickly than those close to the sink. Network
lifetime can be improved to a limited extent by the use of a more
intelligent transmission power control policy that balances the
energy used in each node by requiring nodes further from the
data sink to transmit over longer distances (although not directly
to the data sink). However, transmission power control alone is
not enough to solve the hot spot problem. Rather, policies such
as data sink movement or data aggregation are necessary for
the network to operate in an energy efficient manner. Since the
movement of the data sink and the deployment of an aggregator
node may be significantly more expensive than the deployment of
an ordinary microsensor node, there is a cost tradeoff involved
in both of these approaches. This paper provides an analysis of
each of these policies for mitigating the sensor network hot spot
problem, considering energy efficiency as well as cost efficiency.

I. I NTRODUCTION

Large scale wireless sensor networks are an emerging tech-
nology that have recently gained attention for their potential
use in applications such as environmental sensing and mobile
target tracking. Since sensors typically operate on batteries and
are thus limited in their active lifetime, the problem of design-
ing protocols to achieve energy efficiency to extend network
lifetime has become a major concern for network designers.
Much attention has been given to the reduction of unnecessary
energy consumption of sensor nodes in areas such as hardware
design, collaborative signal processing, transmission power
control polices, and all levels of the network stack. However,
reducing an individual sensor’s power consumption alone may
not always allow networks to realize their maximal potential
lifetime. In addition, it is important to maintain a balance of
power consumption in the network so that certain nodes do
not die much earlier than others, leading to unmonitored areas
in the network.

Previous research has shown that because of the characteris-
tics of wireless channels, multihop forwarding between a data
source and a data sink is often more energy efficient than direct
transmission. Based on the power model of a specific sensor
node platform, there exists an optimal transmission range
that minimizes overall power consumption in the network.
When using such a fixed transmission range in general ad hoc
networks, energy consumption is fairly balanced, especially
in mobile networks, since the data sources and sinks are
typically assumed to be distributed throughout the area where
the network is deployed. However, in sensor networks, where
many applications require a many-to-one (convergecast) traffic
pattern in the network, energy imbalance becomes a very
important issue, as a hot spot is created around the data sink, or
base station. The nodes in this hot spot are required to forward
a disproportionately high amount of traffic and typically die
at a very early stage. If we define the network lifetime as
the time when the first subregion of the environment (or a
significant portion of the environment) is left unmonitored,
then the residual energy of the other sensors at this time can
be seen as wasted.

Intuition leads us to believe that the hot spot problem can be
solved by varying the transmission range among nodes at dif-
ferent distances to the base station so that energy consumption
can be more evenly distributed and the lifetime of the network
can be extended. However, this is only true to some extent,
as energy balancing can only be achieved at the expense of
using the energy resources of some nodes inefficiently [1]. We
conclude from our study that transmission power control can
alleviate the hot spot problem only to a limited degree, and
alternative solutions are necessary for the network to operate
in a more energy efficient manner.

In this paper, we formulate the transmission range distri-
bution optimization problem and analyze the limits of net-
work lifetime for uniformly deployed wireless sensor net-
works, which are easily obtained by using a practical energy-
associated heuristic solution. However, as optimal transmission
range distribution cannot fully solve the hot spot problem,
we explore two alternative strategies: the employment of
multiple data sink locations, implemented by using either a
mobile data sink or several sinks deployed during the initial
network deployment, and the formation of data aggregation



clusters. We investigate the effectiveness of these techniques
in combination with the optimization of transmission range
distribution to determine their effectiveness in extending net-
work lifetime. Since applying these strategies during network
deployment may introduce extra costs, we explore the tradeoff
between using these more advanced solutions and the cost,
and we propose cost efficient suggestions for practical sensor
deployments.

The rest of this paper is organized as follows. Section
II addresses related work. Section III reviews the transmis-
sion power control problem and explores its effectiveness in
mitigating the hot spot problem. Section IV investigates the
effectiveness and cost efficiency of data sink movement and
the deployment of multiple aggregator nodes, respectively,
as alternative solutions to the hot spot problem. Section V
concludes the paper.

II. RELATED WORK

A. Transmission Range Optimization

Early work in transmission range optimization assumed
that forwarding data packets towards a data sink over many
short hops is more energy efficient than forwarding over a
few long hops, due to the nature of wireless communication.
The problem of setting transmission power to a minimal
level that will allow a network to remain connected has been
considered in several studies [2], [3]. Later, others noted that
because of the electronics overhead involved in transmitting
packets, there exists an optimal non-zero transmission range,
at which power efficiency is maximized [4], [5]. The goal of
these studies was to find a fixed network-wide transmission
range. However, using such schemes may result in extremely
unbalanced energy consumption among the nodes in sensor
networks characterized by many-to-one traffic patterns. If we
define sensor network lifetime as the model presented in [6],
which is the network duration until the first node runs out
of energy, this unbalanced energy consumption will greatly
reduce the network lifetime.

An energy efficient routing scheme was proposed in [7].
The objective function of this scheme is to extend network
lifetime by routing outgoing traffic intelligently. Iterative al-
gorithms that are based on the formulation of the problem
as a concurrent maximum flow problem are presented as
well. Our transmission range distribution problem is similar
to this energy efficient routing problem in many aspects.
However, we propose a heuristic scheme that can easily be
implemented rather than only providing an upper bound on
network lifetime for specific topologies. Also, we extend the
solution to alternative strategies rather than attempting to solve
the problem using transmission range distribution alone.

B. Sensor deployment strategies

Several sensor deployment strategies exist that can help ex-
tend network lifetime. These strategies include the movement
of data sinks [8], [9], [10], [11], [12], the deployment multiple
base stations [13], and the formation of data aggregation
clusters [14], [15], [16]. However, some of the research related

to these strategies has primarily considered the case where
the strategies are specifically chosen around the application
requirements, while the others have focused only on the
feasibility of the proposed solution while ignoring the fact that
a more complex sensor deployment scheme may incur a larger
financial cost. In this paper, not only do we investigate and
compare the performance of each strategy using general terms
such as normalized network lifetime, but we also propose some
practical sensor deployment strategies from a cost efficient
perspective.

III. T RANSMISSIONPOWER CONTROL

In this section, we review our study of the transmission
range distribution optimization problem, which is solved by
determining how a node should distribute its outgoing data
packets over multiple distances, always using the minimum
transmission power necessary to send over each distance.
Given the energy constraints and data generation rate of each
sensor node, the lifetime of the network, which we define to
be the time at which the first sensor dies, can be maximized
by using this optimal distribution. In typical sensor network
applications, it may be true that the network can survive
node failures as long as neighboring sensors can assume the
failing nodes’ responsibilities; however, we expect neighboring
sensors to exhibit similar trends and attain similar lifetimes.
Thus, we consider our definition of network lifetime valid even
for such sensor network models. We refer to this problem as
a transmission range distribution optimization problem rather
than a transmission range optimization problem because we
assume that nodes may send packets over multiple transmis-
sion ranges instead of setting a fixed transmission range. In
our work, we have adopted the widely used power model from
[14], where the amount of energy to transmit a bit can be
represented asEbit,tx = Eelec+εdα and the amount of energy
to receive a bit can be represented asEbit,rx = Eelec. To
obtain a true upper bound on network lifetime, we have made
several simplifications in our network model. For a description
of our model and assumptions, the reader is referred to [1].

In order to show the effectiveness of optimizing transmis-
sion range distribution, we provide simulation results that
give the lifetime obtained using three different solutions: the
optimal solution as found in [1], the optimal fixed transmission
range solution and an energy-associated heuristic solution.
In the second solution, we use the ideal energy efficient
transmission ranged∗ = α

√
2Eelec

(α−1)ε from [4], [5], which is
optimal in the absence of the sensor network hot spot problem.
The third solution is obtained using our proposed energy-
associated heuristic scheme. In this scheme, we assign routing
costs to sensors to be the inverse of their residual energy. Link
costs are set equal to a weighted sum of the energy consumed
by the transmitting node and the receiving node, as given by
Equation 1. Minimum cost routes are updated throughout the
lifetime of the network through frequent routing updates. In
all simulations, we use values ofEelec = 50 nJ/bit and
ε = 100 pJ/bit/m2, resulting in a value ofd∗ = 32m.
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Fig. 1. One-dimensional modeling of a two-dimensional sensor field.

Clink(si, sj) =
1

Eres(si)
Etx,bit(si, sj) +

1
Eres(sj)

Erx,bit(si, sj) (1)

For any given scenario, we can obtain the network lifetime
L and the transmission distributions using these three schemes.
Let us begin with a simple scenario, a densely deployed
uniform two-dimensional field, as a case study. We modeled
this deployment as a one-dimensional field with nonuniform
spacing. With very dense sensor deployment, we can assume
that sensors will always send their packets within an infini-
tesimally thin angle toward the data sink. Since the number
of nodesN within the distancer from the data sink satisfies
N ∝ r2 for two-dimensional networks, when mapped onto a
one-dimensional space, the distance of a node to the data sink
should be proportional to the square root of the node index,
as shown in Figure 1.

The network lifetime performance using the three schemes
are shown in Figure 2. Using a fixed network-wide transmis-
sion range results in a lower network lifetime, even when the
optimal fixed transmission range is used. This illustrates the
importance of varying the transmission range as a function of
a node’s location in the network. Because it incorporates two
important goals of lifetime maximization – power minimiza-
tion and energy balancing – the energy-associated heuristic
routing scheme is able to achieve close to the lifetime obtained
through the optimal transmission range distribution (the dotted
line almost overlaps with the solid line in Figure 2). Using this
scheme, minimum power routes are initially chosen, but as
the nodes closest to the data sink start to deplete their energy
resources, they are avoided as routers. However, even in the
later stages of the network, the power minimization goal is
not completely abandoned. Eventually, the routes converge
to those that are found through the optimization, and only
a small penalty is paid for not discovering the optimality of
these routes early enough.

While transmission range distribution optimization and our
heuristic scheme are somewhat effective in extending network
lifetime compared to the scheme that uses a fixed transmission
range, this improvement is limited because of the energy
inefficiency forced on the sensors farthest from the data sink
in order to evenly distribute the energy load among the nodes.
In fact, in order to achieve near-optimal network lifetimes, it
is only necessary to use a fraction of the energy available in
the network. Consider the two-dimensional network used in

50 100 150 200 250
0

1

2

3

4

5

6

x 10
6

Network radius (m)

N
et

w
or

k 
lif

et
im

e 
(s

ec
on

ds
)

Optimal
Heuristic
Fixed transmission range

Fig. 2. Case study: network lifetime as a function of network radius for a
two-dimensional deployment scenario.

the simulations of this section. Figure 3 shows how network
lifetime increases with the total energy used in the network
for different scenarios, when the energy consumption of each
individual sensor node is limited to1 J . If energy is to be
allocated among the nodes in any way in order to maximize
network lifetime (i.e., if only the total energy consumption, but
not individual energy consumption, is limited), network life-
time should increase proportionally with the energy consumed.
This lifetime is illustrated by the dotted line in the figure.
With the individual energy consumption constraints imposed
by our assumption of uniform node distribution and equal
energy allocation, however, the obtainable lifetime, illustrated
by the solid line in Figure 3, is found to be only a fraction of
this. The shape of the energy-lifetime curve implies that when
all of the network energy is completely used, network lifetime
improvement is minimal and energy is being used inefficiently.
Furthermore, this inefficiency becomes worse as the network
grows. In brief, the energy inefficiency is caused primarily by
nodes far from the data sink sending traffic directly to the
data sink rather than using multiple hops. For a more detailed
description of the reasons for this inefficiency, the reader is
referred to [1].

Finally, we observe the effect of setting a maximum
transmission range on network lifetime. Figure 4 illustrates
the obtainable lifetime as a function of network radius for
various maximum transmission ranges in a two-dimensional
network. Limiting the maximum transmission range severely
affects network lifetime, especially for large network radii.
The optimal transmission range distribution compensates for
high energy drain in the nodes surrounding the base station
by requiring the furthest nodes to send over longer distances.
If transmission range limitations prevent these transmissions
from being realized, it becomes very difficult to balance energy
appropriately. Thus, we observe that the hot spot problem
becomes even worse when considering the realistic limitations
of transmission range.

In summary, the simulation results in this section show that
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Fig. 3. Lifetime vs. percentage of the total energy consumed in the network
for a two-dimensional sensor field with a radius of150m and with a radius
of 250m.
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Fig. 4. Network lifetime as a function of network radius for various maximum
transmission ranges in two-dimensional network deployments.

while optimizing the transmission range distribution increases
network lifetime when compared to using a fixed network-
wide transmission range, this optimal lifetime comes with a
cost of using the energy inefficiently, especially in very large
networks. While using nonuniform deployment is the simplest
solution to the problem, this may lead to poorer sensing
capabilities in the regions farthest from the data sink. Further-
more, this may be impossible in some applications. With this
motivation, we explore alternative strategies for improving the
lifetime of many-to-one wireless sensor networks in the next
section of this paper.

IV. SENSOR NETWORK DEPLOYMENT STRATEGIES

Since energy imbalance due to the many-to-one traffic
pattern is the root cause of energy inefficiency and corre-
sponding restricted network lifetime for sensor networks, we
must either compensate energy imbalance among the nodes
in order to improve network lifetime or alter the many-to-one
traffic pattern. To compensate for the energy imbalance, we
must either assign more energy to nodes around hot spots or
deploy more nodes around hot spots. However, it may not
always be feasible to compensate for the energy imbalance by
using these solutions, especially when sensors are randomly
deployed and sensors are manufactured to be of the same
capabilities. Therefore, in this section, we focus on the latter
category of solutions. To alter the many-to-one traffic pattern,
several strategies can be applied, including mobile data sinks,
multiple data sinks and clustering approaches. In addition,
since alternative deployment strategies may incur extra cost,
we study these strategies from the perspective of both energy
efficiency and cost efficiency.

A. Normalized Lifetime

Before we discuss these specific strategies, we first define
a general metric, normalized network lifetime, to describe the
efficiency of a network deployment plan. In short, normalized
network lifetime L̃ measures how many total bits can be
transported on the network per unit of energy. For a given
network scenario, we are able to find the optimal lifetime
Lopt. This lifetime can be arbitrarily increased by simply
increasing the energy density in the network (either by scaling
up the deployed sensor density or the average energy per
sensor). Also, since we assume that protocols that manage
the amount of traffic sent (e.g., [17], [18], [19], [20]) may be
used so that the density of active sensors does not necessarily
correspond to the density of deployed sensors, lifetime can
similarly be increased by decreasing the required active sensor
density. Similarly, lifetime can be increased by reducing the
bit rate among active sensors. To account for these factors, the
normalized network lifetimẽL is given as

L̃ = Lopt

(
Raλa

λe

)
(2)

whereλa represents the density of active sensors,Ra repre-
sents the average bit rate among active sensors,λe represents



the energy density of the network (we assume uniform distrib-
ution of energy), andLopt is the maximum lifetime achievable
with the given parameters.

B. Strategy 1: Moving the Data Sink Location

Since intelligent transmission power control policies require
inefficient operation to maximize network lifetime, we must
solve the hot spot problem by altering the many-to-one traffic
pattern. One solution is to allow the data sink to move within
the network. Two scenarios in which this is possible are

1) a network that employs a mobile data sink (e.g., a robot),
and

2) a network in which multiple aggregator-capable nodes
are deployed, only one of which collects all of the data
in the network at a given time1. This can be seen as a
virtual mobile data sink scenario.

These two scenarios are similar from the network routing
perspective since during a given period, all data is sent to
a single data sink. Although lifetime improvement is one
metric that we are interested in, we must realize that these
strategies require extra implementation costs compared to
schemes utilizing a single static sink. The extra costs may
be associated with the energy and extra hardware required to
move a data sink, or the hardware costs of deploying extra data
sinks. Furthermore, there may be certain energy costs incurred
by the microsensors themselves, as additional protocols are
needed to advertise the identity and location of the data sinks
(however, these can be made arbitrarily small and we ignore
their effect in this work). When exploring these schemes and
the lifetime extension that can be gained from their use, one
should carefully consider these cost tradeoffs for practical
sensor deployment.

In addition to moving the data sink’s location, network
lifetime can always be increased by simply deploying more
sensors in the network. While this does not solve the hot
spot problem and some data will still be sent over inefficient
routes, as shown in the previous section, at leastmoredata can
be sent. In this section, we analyze the tradeoff between the
costs associated with additional sensor deployment and those
associated with utilizing multiple data sinks. If the tradeoff is
balanced optimally, a desired network lifetime can be obtained
for a minimum total cost.

1) Lifetime Improvement:To find the value of̃L (given in
bits per Joule) of a scheme utilizing multiple data sinks for
a given number of data sink locationsNl, we ran lifetime
optimization programs while varying the data sink locations.
In these simulations, only one data sink operated at a given
time, and all of the active sensors reported to this sink during
this time. The sensors were deployed in a two-dimensional

1This scenario may occur if an aggregator node needs a complete picture
of the network in order to make any decisions. These aggregator nodes could
conceivably collect all data in their region and forward these data to another
aggregator node for analysis; however, this would be extremely costly for the
aggregator nodes and we cannot assume that they arecompletelyunconstrained
by energy. Furthermore, unless these aggregator nodes can communicate
directly with each other on another channel, this data will need to be forwarded
between aggregator nodes by the ordinary microsensors in the network.

rectangular grid and were again subject to the same power
model as in the previous section. The transmission range of
each node was limited to75m.

First, we must determine the optimal data sink locations.
Although we conjecture that the data sinks should be located
where the average distance between sensors and the data sink
is minimum, it becomes difficult to find the location pattern
for more than four data sinks. Therefore, we only show the
lifetime performance of the optimal data sink locations for up
to 4 data sinks, and we focus on the lifetime improvement
for random data sink deployments. Figs. 5(a) and 5(b) show
plots of the normalized lifetimẽL(Nl) as a function of the
number of data sink locationsNl for a 150m radius network
and a250m radius network, respectively. Plots ofL̃(Nl) using
randomly chosen data sink locations are given by the solid
lines with standard deviation bars in these figures, and the
optimal positioned data sinks are plotted by dashed lines.2

With the random data sink deployment, the network lifetime
shows an improvement of about 67% for the150m radius
network and 91% for the250m radius network when using
three data sink locations instead of just one. This improvement
increases to 86% for the150m radius network and 121% for
the 250m radius network for six locations. However, using
more than six data sink locations does not provide significant
lifetime improvement since the hot spot problem is already
effectively solved at this point. The simulation results show
that larger gains in network lifetime can be obtained as the
network size grows. This is because the hot spot problem
becomes worse as the network becomes larger.

2) Cost Analysis:As shown in these figures, moving the
data sink provides longer network lifetime. However, there are
extra costs associated with this strategy, specifically the cost
of deploying aggregator nodes or moving the data sink. Thus,
when these costs are very high, it is wise to simply deploy
more sensors and use their energy inefficiently. However, when
these extra costs are low, it makes sense to deploy more
aggregator nodes or move the data sink multiple times. Given
a desired network lifetimeL, if we deploy a network withNl

data sink locations, we can calculate the number of sensors
Ns(L,Nl) that are required to be deployed in order to achieve
lifetime L. If we denote the cost of data sink deployment for a
scheme usingNl data sink locations asCds(Nl) and the cost
of deploying one sensor asCs, the total costC of deploying
such a sensor network to operate for a lifetime ofL can be
expressed as

C(L,Nl) = Cds(Nl) + CsNs(L,Nl) (3)

whereNs(L, Nl) represents the number of sensors necessary
to achieve the lifetimeL for a configuration usingNl data
sinks. Ns(L,Nl) can be found by rearranging Equation 2,
using the relationshipλe = Ns∗Es

A (whereEs represents the

2The optimal lifetime for scenarios with more than four data sink locations
is hard to determine since the optimal pattern of the data sink locations is not
obvious. Nevertheless, we can assume that the optimal pattern would be able
to achieve a lifetime comparable to the upper bound seen in the simulations
utilizing randomly chosen locations.
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Fig. 5. Normalized lifetime vs. number of data sinks deployed for networks
with a radius of150m (a) and250m (b). Increasing the number of sink
locations improves lifetime until a certain threshold is met and the hot spot
problem has effectively been solved. Much larger gains in network lifetime
can be achieved for a given number of data sink locations for a larger network,
since the hot spot problem becomes worse.

initial energy of a single sensor node andA represents the
area of the network), and substitutingL for Lopt.

Ns(L, Nl) =
LRaλaA

L̃(Nl)Es

(4)

Consider the scenario in which we would like to plan a sensor
network to operate for 1 year with sensors activated at a
density of 0.0001sensors/m2 and sending data at a rate of 1
bit per second. All sensors initially contain 1 Joule of energy as
they are deployed, and the cost of a sensor is fixed at a single
unit. Using the data from Figure 5 and applying Equation 4,
we have plotted the number of sensors that are required to be
deployed in a network with a radius of150m in Figure 6(a)
and a network with a radius of250m in Figure 6(b). Recall
that we have assumed that the data sinks are unconstrained by
energy. The actual energy consumption of the data sink was
found to be 11.1 Joules and 30.0 Joules for the150m radius
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Fig. 6. Number of sensors required vs. number of data sinks deployed for
networks with a radius of150m (a) and250m (b). The required sensor
density is inversely proportional to normalized lifetime.

network and the250m radius network, respectively. These are
reasonable values to assume for several data sink nodes.

a) Deployment of Multiple Aggregator Nodes:After we
determine the number of sensors and data sinks that are
required to complete a sensing task, we can calculate the cost
of each deployment plan and determine which plan is the best.
The choice of the best plan depends on the cost ratioCa

Cs
of

the aggregator node and the normal sensor. In the case that
we are deploying multiple static aggregator nodes, the cost
functionCs

ds(Nl) should be linear and depend on the costCa

of an aggregator node.

Cs
ds(Nl) = CaNl (5)

Using Equations 3 and 5, the total cost of deploying a network
for the multiple data sink scenario is given as

Cs(L,Nl) = CaNl + CsNs(L,Nl) (6)

and plotted in Figures 7(a) and 7(b) for a150m radius network
and a250m radius network, respectively. Note that the cost of
deploying a network with a single static data sink is given as
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Fig. 7. Network deployment cost vs. number of data sinks deployed for
networks with a radius of150m (a) and250m (b). When the relative cost
of an aggregator node is high, it is most cost efficient to increase network
lifetime by scaling up the number of sensors deployed. When the cost is
relatively low, however, there is an optimal number of aggregator nodes that
should be deployed so that the network deployment is optimally cost efficient.
The most cost efficient number of aggregator nodes increases as the cost of
an aggregator node becomes smaller and the network becomes larger.

the cost value when the number of data sink locations equals
1 (i.e.,Cs(L, 1)). As the figures show, for a very high relative
cost of an aggregator node, it is most cost efficient to simply
increase the number of sensors deployed even in spite of the
energy inefficiency caused by the hot spot problem. However,
for lower relative costs, it is cost efficient to use two or more
data sink locations. However, the returns eventually diminish
as the hot spot problem becomes solved and a finite optimal
number of deployed data sink nodes exists.

b) Deployment of a Mobile Data Sink:We will now
consider the scenario in which a mobile base station is
deployed, using the same approach as above. If there is a
cost associated with each movement of the mobile station, the
problem can be modeled similarly as the scenario in which
multiple data sinks are deployed. More likely, however, the
most significant costs associated with a mobile data sink’s
deployment are the hardware necessary for the base station to
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Fig. 8. Cost of deploying a network with a mobile and with a static base
station for a network with a radius of150m.

move. In other words, there may be a single cost associated
with the deployment of a mobile base station (which we will
define asCm), which accounts for its deployment and all
subsequent movements throughout the field. As our simulation
results have shown, only several movements are needed to
significantly improve lifetime over the scenario of a static data
sink. We will say that the mobile data sink movesNm times
throughout the lifetime of the network. The costCs(L, 1) of
deploying a network with a static data sink is just a special
case of the first scenario.

Cs(L, 1) = Ca + CsNs(L, 1) (7)

Meanwhile, the cost of deploying a mobile data sink is simply

Cm(L,Nm) = Cm + CsNs(L,Nm) (8)

The cost of deploying a mobile data sink and the cost of
deploying a static data sink (for several values ofCa) are
plotted in Figure 8 (a) for a150m radius network. We used
Nm = 7 for these simulations (i.e., the data sink moves 7
times during the data gathering) since out simulation results
showed that network lifetime does not increase significantly
beyond this point. To interpret this plot, consider a network
where a mobile data sink has a cost of 300. The total cost of
deploying as network with a mobile data sink is approximately
503, as indicated by the diagonal solid line. Now consider the
deployment of a network with a static sink. If the cost of
the static sink is 100, the total cost of network deployment,
considering the extra sensor that must be added to compensate
for the inefficiency caused by the hot spot, is approximately
476. In this case, it makes sense to deploy a network with a
static data sink. However, if a static sink costs 200, then it is
wiser to deploy a static data sink since its cost rise to 576. A
network planner can use this data when deciding if it is more
cost efficient to deploy a static or mobile data sink.

C. Strategy 2: Clustering Approach

In the network deployment plans outlined in the previous
section, only one node serves as the data sink for the entire



network at one time, even if multiple aggregator-capable nodes
have been deployed. In this section, we consider a clustering
approach in which multiple aggregator-capable nodes are
deployed and each sink collects data from only part of the
sensor network for the entire network lifetime. Such clustering
schemes have been proposed for wireless sensor networks in
[14], [15], [16]. Previous work in this area deals primarily
with homogeneous networks, in which any of the deployed
nodes is capable of acting as cluster head. In this section, we
consider heterogeneous networks, where nodes equipped with
the capability of acting as cluster head (e.g., those with larger
batteries, more processing power and memory, and possibly
a second radio to link back to a central base station) are
significantly more expensive than ordinary microsensors. In
our model, a sensor may send its traffic to whichever cluster
head it chooses (typically, but not necessarily, the closest
cluster head). The analysis methods in this section are very
similar to those in the previous section.

1) Lifetime improvement:We used similar simulation pa-
rameters and the same deployment pattern as in the previous
section to find the relationship between the normalized lifetime
(again given in bits per Joule) and the number of cluster heads
that are deployed. The results are shown in Figures 9(a) and
9(b) for a150m radius network and a250m radius network,
respectively. In both figures, the normalized lifetime is given
for optimal cluster head placement as well as random place-
ment. As expected, when more cluster heads are deployed,
the network lifetime improves significantly in both cases. It is
obvious that for a smaller network, fewer number of cluster
heads are enough to solve the “hot spot” problem, and the
figures verify this.

2) Cost Analysis: We can find the number of sensors
Ns(L,Nc) that need to be deployed to achieve a lifetimeL
whenNc cluster heads are deployed, as we did in the previous
section when we considered the necessary number of sensors
when Nl data sink locations are used. For the scenario in
which we plan a sensor network to operate for one year with
active sensors sending data at 1 bit per second and activated
at a density of 0.0001sensors/m2, the required number of
sensors are shown in Figures 10(a) and 10(b), respectively.

If the cost of a cluster head node isCa, the total cost of
deploying a heterogeneous clustering network is

C(L,Nc) = CaNc + CsNs(L,Nc) (9)

This cost is plotted in Figures 11(a) and 11(b) for a150m
radius network and a250m radius network, respectively. As
expected, the most cost efficient number of cluster heads
deployed becomes larger as the price of a cluster head becomes
smaller. Also, for the same cost of a cluster head, more cluster
heads should be deployed in the larger network than in the
smaller network since the hot spot problem is worse in large
networks.

V. CONCLUSIONS

We have studied multiple strategies that can compensate for
the hot spot problem seen in sensor networks using many-to-
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Fig. 9. Normalized lifetime vs. number of cluster heads deployed for
networks with a radius of150m (a) and 250m (b). Very large gains in
network lifetime can be achieved when even a few extra cluster heads are
deployed, especially when their locations are optimized.

one traffic patterns. First, we found the optimal transmission
range distribution that allows the lifetime of sensor networks
to be maximized. Based on this model, we revealed the upper
bound of the lifetime of a typical scenario and demonstrated
the inability to make good use of the energy of nodes furthest
from the base station, even when utilizing the optimal distrib-
ution and our quasi-optimal heuristic routing scheme. Thus,
varying the transmission power of individual nodes cannot
alone solve the hot spot problem. In addition to transmis-
sion power control, we have investigated several alternative
strategies for solving the hot spot problem and analyzed the
gains that can be obtained from their use. Specifically, we have
considered the deployment of multiple base stations, where
each node aggregates all of the network’s data at one time,
the deployment of a mobile robot, and the use of a clustering
hierarchy, where heterogeneous sensors are deployed, some
of which can act as data aggregators/compressors. When
analyzing the use of each strategy, we also considered the
necessary extra costs incurred and show how the network
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Fig. 10. Number of sensors required vs. number of data sinks deployed
for networks with a radius of150m (a) and250m (b). The required sensor
density is inversely proportional to normalized lifetime.

configuration can be optimized for cost efficiency in each
case.
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