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Abstract—Energy efficiency is of the utmost importance in
wireless sensor networks. The family ofLow-Power-Listening
MAC protocols was proposed to reduce one form of energy
dissipation—idle listening, a radio state for which the energy
consumption cannot be neglected. Low-Power-Listening MAC
protocols are characterized by a duty cycle: a node probes the
channel every ti s of sleep. A low duty cycle favors receiving
nodes because they may sleep for longer periods of time, but at
the same time, contention may increase locally, thereby reducing
the number of packets that can be sent. We propose two new
approaches to control the duty cycle so that the target rate of
transmitted packets is reached, while the consumed energy is
minimized. The first approach, called asymmetric additive duty
cycle control (AADCC), employs a linear increase / linear decrease
in the ti value based on the number of successfully received
packets. This approach is easy to implement, but it cannot
provide an ideal solution. The second approach, called dynamic
duty cycle control (DDCC) utilizes control theory to strike a
near-optimal balance between energy consumption and packet
delivery successes. We generalize both approaches to multi-hop
networks. Results show that both approaches can appropriately
adjust ti to the current network conditions, although the dynamic
controller (DDCC) yields results closer to the ideal solution. Thus,
the network can use an energy saving low duty cycle, while
delivering up to four times more packets in a timely manner
when the offered load increases.

I. I NTRODUCTION

Today more than ever, sensor network applications require
individual nodes to lower their energy consumption in orderto
support an application for longer periods of time. Every layer
in the protocol stack must reduce its own energy dissipation.
Low-Power-Listening (LPL) protocols form a family of MAC
protocols that drastically reduce idle listening, a state of the
node when its radio is turned on and in receive mode, but not
receiving any packets.

In a LPL protocol, nodes probe the channel everyti s, and
if they do not receive any data during this probe, they returnto
sleep for anotherti s. Aloha with preamble sampling (PS) [1],
WiseMAC [2], and B-MAC [3] were among the first random
access MAC protocols to be proposed1. All these protocols
send data packets with very long preambles so as to ensure that
the intended receiver will stay on upon probing the medium.
However, the protocols are not adapted to recent radios like

1In his taxonomy of MAC protocols [4], Langendöen identifiesLow-Power-
Listening and Preamble Sampling protocols as two branches of random access
MAC protocols, with the only difference that LPL MAC protocols need not
know anything about their neighbors and their wake-up schedules.

Fig. 1. Schedule for B-MAC, X-MAC, MX-MAC and SpeckMAC-D.

the IEEE 802.15.4 [5] compliant Chipcon CC2420 [6] radio.
Consequently, researchers introduced new compatible LPL
protocols such as X-MAC [7], SpeckMac-D [8], and MX-
MAC [9]. These protocols are based on repeating either the
data packet itself or an advertisement packet, in place of
long preambles. The transmission schedules (hereafter “MAC
schedule”) of some LPL MAC protocols are given in Figure 1.

Previous work [9] has shown that, along a one-hop link,
longerti values favor receiving nodes, because longerti values
lower a node’s duty cycle while switching toReceive mode
for the same period of time within the duty cycle. On the
other hand, nodes that are mostly sending can greatly reduce
their energy consumption if theti value is low: they can stay
in Sending mode for shorter periods of time. Consequently,
there is a trade-off between the nodes at the two ends of
a unidirectional wireless link. In addition, lower duty cycles
often cause contention in areas of the network experiencing
higher rates of packet transmissions. As Figure 1 shows, only
one data packet can be transmitted per cycle, which can cause
a node to miss the target ratem∗ of packet transmissions.

In [10], Jurdak et al. convincingly argue that a fixedti value
does not fit WSN deployments where the node locations and



traffic patterns are not uniform over the network. Because a
fixed ti value is decideda-priori, it would have to be set
conservatively to accommodate areas in the network where
traffic is expected to be heavy, thus forcing idle subregionsto
waste energy.

In this paper, we propose two adaptive solutions to adjust
the duty cycle. The first one is an intuitive linear increase /lin-
ear decrease scheme (AADCC). The second one (DDCC)
borrows from control theory to dynamically adjust the duty
cycle of the nodes based on a small set of parameters. We
begin with one-hop networks. The goal of our methods is to
minimize the energy consumed by the node with the lowest
remaining energy (or the node which the application deems
most important), referred to as nodeN , while exchanging a
target number of packets. IfN is mostly sending, loweringti
(increasing the duty cycle) will have no adverse effect on the
target ratem∗ of successfully sent packets, and it will reduce
the energy dissipation forN , so there is no need forti control.
However, whenN is mostly receiving, lowering the duty cycle
(increasingti), while reducing the energy dissipation forN ,
will cause packets to be dropped. This is the conflict that we
propose to arbitrate. DDCC can also be extended to control the
energy consumed by both the sending and receiving nodes on
a wireless link. More generally, we provide a methodological
framework that can be applied to control other aspects of the
network as well.

We generalize both methods to multi-hop networks, starting
with only one data source, as is often the case when source
selection is performed. For the dynamic controller (DDCC),
we must utilize a path synchronization scheme that, among
other many benefits, reestablishes linearity in the system.We
then lift the last restriction (only one source) through thestudy
of ti control for multi-hop networks with several sources.
To successfully control the duty cycle with several sources,
improvements to an existing path synchronization technique
are introduced to support multiple branches.

The remainder of this paper is organized as follows.
Section II presents related work. Section III introduces the
AADCC protocol and the theoretical foundations for DDCC
and expands on these to adapt to our specific problem of
ti control for channel-probing MAC protocols in a one-hop
network. Section IV presents simulation results using both
schemes AADCC and DDCC. Section V expands these results
to single-branch multi-hop networks. Section VI lifts thislast
constraint and presents results showing successfulti control
of a multi-hop network with several sources. Section VII
concludes this paper and discusses the results.

II. RELATED WORK

The low-power-listening family is composed of many MAC
protocols [3] [7] [8] [9] [11]. All these protocols are character-
ized by a trade-off in terms of energy savings for the sending
and receiving nodes, although to varying degrees that depend
on each individual MAC schedule. WiseMAC [2], a Preamble
Sampling MAC, is a related channel probing protocol, but it is
not part of the narrower LPL family. Nodes running WiseMAC
must exchange scheduling information so that a node with

packets to send can start transmitting a short time before its
intended receiver wakes up. In this work, we consider only
LPL MAC protocols for their capacity to synchronize along
slowly changing paths.

While the idea of dynamic duty cycling for MAC protocols
was explored by Lin et al. [12], Jurdak et al. [10] introduced
the idea of adaptive duty cycles in LPL protocols. Because
a protocol designer must account for busy regions of the
network, a fixedti value would have to be set conservatively.
Consequently, many parts of the network would waste energy
by running at an unnecessarily high duty cycle. Adaptive Low-
Power-Listening, or ALPL, allows areas of the network to
run at a lower duty cycle. After forming their routing tree,
each individual node can evaluate the number of packets they
will transmit per second based on the expected number of
packets they and their descendant nodes will originate. These
values are periodically announced by the nodes. The further
away from the data sink, the fewer children a node has, and
consequently, the smaller the packet rate it is expected to carry.
Its duty cycle can thus be lowered to a smaller value than
that of nodes closer to the data sink. Contrary to ALPL, our
approaches do not use a heuristic and DDCC adapts the duty
cycle to meet the target rate of packets.

The idea of using control theory in sensor networks is not
a new one, especially because wireless sensor and actuator
networks require such solutions. In our unique approach,
DDCC optimizes the duty cycle for both energy use and packet
transmissions, which cannot be easily modeled. Examples of
existing methods that use results of control theory to adapt
parameters in a WSN include [13] and [14].

In [13], Vigorito et al. use control theory to adapt the duty
cycle of nodes capable of harvesting energy. Maintaining a
sufficient power supply level is a non-trivial problem because
of changing environmental patterns such as the weather. The
authors introduce a model-free approach to adapt the duty
cycle in dynamic conditions. Although they set out to control
only one parameter in the system (the energy supply level),
which constitutes a marked difference from our goals, much
of their underlying theoretical foundations are similar tothose
in the first part of our work.

In [14], Le et al. propose to optimize channel assignment to
increase the throughput in multi-channel WSNs using a control
theory approach. The throughput on individual channels can
be easily modeled with the nodes’ individual load, which
includes that of its descendant nodes. When the total load
Mi on channeli is above its optimal valueMr (one that
guarantees little contention for instance), nodes transmitting
on this channel may change to another channelj 6= i with a
probability proportional to the difference (error) between Mr

and Mi. Le et al. also account for delay, which can cause
overshooting and undershooting—instability of the system
response.

III. E STIMATION AND CONTROL FORMULTI -VARIABLE

SYSTEMS

Because low duty cycle schemes tend to create contention
and delays, a node wishing to sendm∗ packets may not be able



y(t) (output)
Controller

r(t) (reference) +

−

u(t) (command) Plant
(Network)

x(t) (state)

Fig. 2. Representation of the system with input / output and its controller.

to do so in a timely manner. Let us consider a one-hop network
with various flows among neighbors. Node A wants to send
m∗ packets to node B in a certain time periodT , where node
B is designated as nodeN , a critical node for the application,
or one with very low remaining energy. Unfortunately, the
medium is sometimes occupied by other transmissions. If node
A only gets to sendm < m∗ packets, it may elect to increase
its duty cycle. When the duty cycle is larger than its optimal
value, nodeN wastes precious energy, and may wish to scale
back its duty cycle (ti increased). The control of the duty cycle
to sendm∗ packets is the subject of this section. We useti(t)
to designate the time-varying nature ofti.

A. Asymmetric Additive Duty Cycle Control

The first proposed scheme is called asymmetric additive
duty cycle control (AADCC). Protocol designers could easily
find inspiration in the adaptive back-off scheme of the 802.11
MAC protocol. We chose to design our adaptive duty cycle
control based on the number of consecutive packet transmis-
sions. While 802.11 employs a multiplicative increase / linear
decrease back-off, multiplicative increase turned out to be too
disruptive in duty cycle control tests that we ran over the full
range ofti values. Thus, we made our additive controller an
asymmetric linear increase / linear decrease scheme. Whenever
five consecutive packets are successfully sent to the destina-
tion, ti is increased by100ms, or ti((k+1)T ) = ti(kT )+0.1.
Each failed packet is followed by a decrease of250 ms
in ti, or ti((k + 1)T ) = ti(kT ) − 0.25. While this simple
additive controller can produce better results than a static ti
value, it cannot provide the optimal solution, as it does not
consider energy dissipation or even try to approach a target
m∗. Therefore, our second scheme, DDCC, is based on control
theory to optimizeti such that the target number of packets
is sent while reducing energy dissipation.

B. Background for Dynamic Control

Here we provide the mathematical background for our
dynamic controller.

1) Generalities: We start by assuming that the system we
wish to represent and control is mostly linear. For instance, the
relationship between energy consumption andti is linear, as
energy consumption grows linearly with the number of probes
done per second. Likewise, the number of packets received is
mostly linearly related to energy consumption.

Figure 2 illustrates the system at hand. The network is
represented by a “plant” that reacts to an inputu(t) by
producing an outputy(t), which it tries to match to a reference
r(t). A controller modifiesu(t) so as to obtain the desired
output y∗(t) = r(t). In order to do so, the process under

control can be defined by its statex(t). A deterministic
noisy linear process can be represented in its discrete form
as follows:

x(t+ 1) = Ax(t) +Bu(t) + Cw(t) + w(t+ 1) (1)

wherex(t+1) designates the value of the system state at time
(k+1)T andw is the noise.T represents the period between
re-evaluations of the controlu(t).

For controllingti(t), we can sety(t) to m(t) (the number
of packets that are successfully sent at timet) andu(t) to the
ti(t) value at timet. The objective valuey∗(t + 1) becomes
m∗(t+1), the desired number of packets to be transmitted at
time t+ 1.

Because the fundamental characteristics of the system (A,
B and C) and its statex(t) cannot bea-priori known, the
system’s output must be estimated using an internal parameter
θ and a history ofp values of{x(t)} (or {y(t)}) and{u(t)}
values stored inφ.

C. The Dynamic Regulator

In this first part of our work, we would like to controlti to
send the target number of packetsm∗. We introduce a SISO
(single variable) estimator and controller.

1) Stochastic SISO Estimator and Controller: We begin
with the formulation of our goal,i.e. the minimization of
the expected error between the desired output at timet + 1,
y∗(t+1) and the actual output at timet+1, y(t+ 1), which
is mathematically represented by the following:

J = E[(y(t+ 1)− y∗(t+ 1))2] (2)

This control problem is referred to as linear-quadratic: the
system dynamics are linear (Equation 1), but the cost function
to be minimized (Equation 2) is quadratic. Because the system
response contains a random component (the exact wake-up
timing between two neighbors), we study a system estimator
and controller for the stochastic case.

First, and as suggested in [15], we introduce the following
notation for time delay:

x(t − 1) = q−1x(t)

We can write the system as:

y(t) = ay(t− 1) + bu(t− 1) + cw(t − 1) + w(t) (3)

⇔ (1 − aq−1)y(t) = bq−1u(t) + (1 + cq−1)w(t) (4)

From [15], Equation 3 can be put in the form:

C(q−1)y0(t+ 1|t) = α(q−1)y(t) + β(q−1)u(t) (5)

where






C(q−1) = 1− aq−1 + q−1g0 = 1 + (g0 − a)q−1

α(q−1) = g0
β(q−1) = b

and y0 represents the next value taken byy and g0 is a
constant.

The control law is thus shown to be:

u(t) =
y∗(t+ 1) + (g0 − a)y∗(t)− g0y(t)

b 6= 0



Let g0 − a = c,

u(t) =
y∗(t+ 1) + cy∗(t)− (a+ c)y(t)

b
(6)

which is also the control law used in [13]. It follows easily
that Equation 6 minimizes the mean-square error functionJ .

Next, we define theφ andθ vectors as:

φ(t)T θ(t) = ŷ(t+ 1)

where ŷ(t + 1) is the estimated system output at timet + 1.
As a starting point, we chose to keep only the previous values
of the input and output, orp = 1. From Equation 6, we use
the two vectors:

φ(t) =





y(t)
u(t)
y∗(t)



 θ(t) =





a+ c
b
−c





The estimator can be computed using the Normalized Least-
Mean-Square Algorithm (NLMS) [15] [16]:

θ(t+ 1) = θ(t) +
µ(t)φ(t)

φ(t)T φ(t) + ω
[y(t+ 1)− φ(t)T θ(t)] (7)

whereµ(t) is a scalar, andω should be chosen to avoid a
division by zero whenφ(t)T φ(t) is null. With our notations,
φ(t) is thus the values of the outputy(t) = m(t), the command
u(t) = ti(t) and the targety∗(t) = m∗(t). The tuple{a, b, c}
is estimated using Equation 7.

New ti values are computed periodically. During each
round (of durationT ), the number of packets successfully
transmitted since the lastti update (i.e.,m(t)) is recorded.

2) Application to Our Estimator: The system control can
be approached by estimating the system first, and using the
system model to find the input value that minimizes the
predicted output.

Preliminary results show that, while the estimator is able
to correctly predict the system output, the control law tends
to decrease the value ofti(t) whenm < m∗. This behavior
is in fact to be expected as the system should decrease its
duty cycle to increase the number of packet transmissions.
Unfortunately, sinceJ carries no consideration for energy use,
ti never increases, even after the number of packets to be sent
has reached the target (m = m∗). The reason is that the error
betweenm̂ andm∗ is zero, which does not modify the value
of the controlled inputu(t) = ti(t). Figure 3(a) illustrates
this problem. Att = 500 s, the packet rate increases to one
packet per second, causingti to decrease due to packet losses.
However, a few seconds later, the packet rate decreases to its
original value of0.5 packet per second, yetti does not increase
again.

Figure 3(b) shows the packet loss in this scenario, where the
number of dropped packets is13 for the dynamic controller
(DDCC), and8 for the additive controller (AADCC). The
number of dropped packets is higher for the dynamic controller
because it did not increase its duty cycle as aggressively.
However, it preserved more of the nodes’ energy (around 10%,
not shown). Compared to a case without any duty cycle control
(not shown), the number of dropped packets is reduced by over
94% by the duty cycle controller.
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Fig. 3. (a) Evolution ofti(t) as the packet rate increases and then decreases
when only packet loss is considered. (b) Packet loss in the same scenario.

Consideration must be given to the energy consumedǫ,
which is an incentive to lower the duty cycle. We noteǫ∗(t+1)
as a target energy consumption att+ 1.

In this now multi-variable case, we decided to estimate
both the number of packets sent and the consumed energy
separately. Form andǫ, theφ andθ vectors are:

φm
k =

[

mk . . . mk−p tik . . . tik−p m∗
k

. . . m∗
k−p

]T

θmk =
[

am
0

. . . amp−1
bm
0

. . . bmp−1
cm
0

. . . cmp−1

]T

φǫ
k =

[

ǫk . . . ǫk−p tik . . . tik−p m∗
k

. . . m∗
k−p

]T

θǫk =
[

aǫ
0

. . . aǫp−1
bǫ
0

. . . bǫp−1
cǫ
0

. . . cǫp−1

]T

wherea, b, c ∈ R are the estimator coefficients. We chosep '
3, a value that allows the estimate forǫ andm to be accurate,
while being still manageable in limited memory space.

3) Cost Minimization: As per Section III-C2, the controller
should minimize a cost function with a packet loss and an
energy component. We tried to combine the two costs in
various ways, including taking the maximum, the sum, and the



weighted sum of the costs. The latter offered the swiftest and
most stable response from the network. Thus, the controller
attempts to minimize the following cost functionJ :

J = (m∗+ − m̂k+1)
2 +Kǫ(ǫ

∗+ − ǫ̂k+1)
2 (8)

where

{

m̂k+1 = φmT
k θmk

ǫ̂k+1 = φǫT
k θǫk

, m∗+ andǫ∗+ designate the tar-

get values ofm andǫ at time(k+1)T . Kǫ is a weight given to
the energy component of the cost function in order to indicate
a preference to save energy (largeKǫ) or to strictly meet the
number of packets to be sent (smallKǫ); for instance,Kǫ can
be chosen in[2; 20]. The control law finds the value ofti that
minimizesJ .

Taking the derivative ofJ at timekT (we omit thek index
notation for clarity), we obtain Equation 6 for our application:

ti =
θmp (m∗+

−

∑u

i6=p
φm
i θmi ) +Kǫθ

ǫ
p(ǫ

∗+
−

∑v

i6=p
φǫ
iθ

ǫ
i )

(θmp )2 +Kǫ(θǫp)2

where thei-index value onφi andθi are theith value of these
vectors, andu and v are the number of elements inφm

k and
φǫ
k (u = 2p andv = 3p).
In order to smooth the response of the system, we adopt

a conservative update policȳu for the duty cycle with the
following set of rules:

{

t̄ik+1 = t̄ik + α(ti − t̄ik)
ūk+1 = f∆

δ [t̄ik+1]
(9)

where t̄i is the smoothedti and

f∆
δ [x] =







δ if x < δ
∆ if x > ∆
x otherwise

δ and∆ are the minimum and maximum values thatti can
ever take, and can be set to0.1 s and5 s as reasonable values.
α ∈ R is the slope of the update ofti and helps stabilize the

system response, which would otherwise be unstable because
of steep variations of the referencer(t) (the desired number
of packets for instance) and delays in the feedback. A largeα
(i.e., close to 1) aggressively updatesti and incurs oscillations
before reaching a determined value. On the other hand, ifα
is close to 0, no oscillations can be discerned butti is slow to
reach its eventual value. Poor choices ofα may cause energy
waste or packet loss. The command used to control the duty
cycle is in factū as a smoothed output is critical to a physical
network.

D. Evaluating the Target Energy

1) The Evaluation of ǫ and ǫ∗: In some cases, the system
designer may want to minimize the consumed energy and
chooseǫ∗ = 0. The risk incurred by this approach is that the
duty cycle will tend to be lowered, even below a reasonable
value—one that strikes a balance between the number of lost
packets and energy consumption. This could be desirable when
designing a system that needs to respond faster to lower energy
consumption, and that can tolerate repeated packet losses.

In other systems, an acceptable energy consumption value
has to be evaluated so thatti(t) does not consistently increase

past a reasonable value. This target energy has critical impor-
tance as the system will have a tendency to stabilize around the
value of ti that yields this energy consumption, provided all
packets are correctly sent. The control problem thus becomes
a linear quadratic tracking (“LQ tracking”) problem where
the output of the network must match the energy (and packet
delivery) reference.

We chose to evaluate the target energy as the sum of several
basic operations (channel probe, packet reception, etc.) for
which we precisely measured the energy consumption via a
data acquisition board on the Tmote Sky platform. We evaluate
the target energy as the minimal energy that can be expended
during a round ofT seconds:

ǫ∗ = max(0,m∗E[ERx] + EPD(tT −m∗E[tRx])) (10)

whereE[ERx] is the expected energy spent to receive a packet,
EPD is the energy consumed by the radio for one second of
power down mode, andtT is the duration of a feedback round
T . The target energyǫ∗ assumes that each packet is sent every
ti s, and that no energy is wasted on probing a clear channel.
It contains no information about other transmissions in the
neighborhood as packet loss is taken into account in the first
element ofJ .

2) An Alternative Solution to Evaluating the Consumed
Energy: Because it may be impractical to evaluate the energy
consumption componentsǫ and ǫ∗, an alternative solution
is to use the linear increase of AADCC. This reduces the
complexity of the system to only one componentm.

The relative simplicity of linear increase is offset by the
slower nature of the response to increaseti when the data
load diminishes. For DDCC in general, we prefer evaluating
the energy, but we show in our later results that such a method
where energy is not evaluated does provide satisfactory results.

E. Dynamic Duty Cycle Control Algorithm

The controller described in the previous theoretical founda-
tions is called Dynamic Duty Cycle Control (DDCC). Algo-
rithm 3.1 presents the pseudo-code of DDCC. The initializa-
tion of the algorithm variables includes assigning a starting
value to theφ andθ vectors.φ can take the initial values of
m∗, ti and ǫ∗, while θ is initialized with values between−1
and1. For instance, an increase inti translates into a decrease
in m andǫ of nodeN , and thus the corresponding weights in
θ are negative.

In our implementation, we chose an initialα = 0.01 and
then adjustα to be0.2 after three iterations of the controller
to prevent large oscillations during the first rounds of the
estimators. Our network consists of 10 nodes, all in range
of one another (the medium can be occupied by only one
node at a time). We evaluate the new commandū every T
= 5

packetRateseconds: for instance, if a node sends packets
at a rate of 2 packets per second, the controller will run
every 2.5 seconds. The feedback periodT can be increased
to reduce overhead, although a large value could cause the
network adaptation to be sluggish—or worse, instable.



Variable initialization:
φm =

[

m∗ 0 0 ti 0 0 m∗ 0 0
]T

φǫ =
[

ǫ∗ 0 0 ti 0 0 m∗ 0 0
]T

θm =
[

0.95 0.1 0.1 − 0.5 − 0.1 − 0.1 0.3 0.1 0.1
]

5: θǫ =
[

0.95 0.1 0.1 − 0.5 − 0.1 − 0.1 0.3 0.1 0.1
]

for everdo
m∗ = f(packetRate, T )
ǫ∗ = f(radio,m∗)
θm+=µm

rm
φm(m− φmT θm)

10: θǫ+=µǫ

rǫ
φǫ(ǫ − φǫT θǫ)

u =
θm
p (m∗+

−
∑

u
i6=p

φm
i θm

i )+θǫ
p(ǫ

∗+
−
∑

v
i6=p

φǫ
iθ

ǫ
i )

(θm
p )2+(θǫ

p)
2

ū = f5
0.1[ū+ α(u − ū)]

φm =
−→
φm +

[

m ū m∗
]

φǫ =
−→
φǫ +

[

ǫ ū m∗
]

15: Where−→. is a matrix shift operator
rm+=φmTφm

rǫ+=φǫTφǫ

end for

algorithm 3.1: DDCC pseudo-code forp = 3.

F. Observations for an Implementation of the One-Hop Case

For an implementation on real platforms in one-hop scenar-
ios and for both controllers AADCC and DDCC, nodes need
to periodically exchange information about their newti values.
For DDCC, nodes additionally need to exchange information
about their remaining energy, using broadcast packets for
instance, in order to determine the nodeN whose energy
should be spared. If nodes A and B are possible choices for
nodeN , node A can elect to minimize the consumed energy
at both nodes. DDCC works equally well by estimating the
energy consumption at both A and B, although theti value
tends to be noisier.

If a node is the receiving end of multiple links, it should
adopt the smallestti value tiL calculated by its descendants
in order to receive all packets successfully. The amounts of
energy wasted on the links using a lower duty cycle are
negligible because the sending nodes will stop their packet
transmissions after halftiL s on average—protocols like X-
MAC and MX-MAC can interrupt their sending streams after
receiving an ACK frame.

Finally, if a node has multiple unicast destinations, a rare
case in WSNs, which tend to have only one data sink, node
A calculates the appropriateti values for each link and sends
them to the intended receivers individually. Support for multi-
hop networks is introduced in Section V.

IV. SIMULATION RESULTSFOR ONE-HOP NETWORKS

First, we observe the case when two nodes compete for
the medium to send packets and only one node can modify
its duty cycle. Then, we validate the duty cycle control when
more than one node concurrently adjusts theirti values.

A. Method

The radio behavior was modeled not only after the CC2420
data sheet, but more importantly after the energy use of the
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Fig. 4. Evolution ofti(t) as the packet rate varies.

whole Tmote Sky platform running a TinyOS implementation.
Although we present simulation results, our model closely
resembles a real-life deployment, typically within 3% of the
measured energy consumption [9]. Here, the term simulation
designates an accuratereconstruction of the reality. The choice
of running simulations rather than an actual implementation
was prompted by the difficulty in measuring energy consump-
tion in real implementations: for LPL schemes, energy use
does not degrade rapidly enough to collect usable and accurate
data. An additional reason came with the objective of this
work, which was to set the theoretical background for, and
prove the feasibility of,ti control. In our discussion of the
results, we often refer to a “fixed duty cycle” case, which is
the scenario when theti value is set at the beginning of the
simulation and never changes (no duty cycle control). We ran
such scenario simulations, but did not include their results on
our graphs for clarity and space considerations.

B. Lowering the Duty Cycle to Save Energy: Demonstration
of Principle

Without the ability to adaptti, nodes running a LPL MAC
protocol would force designers to select a high duty cycle at
deployment to ease contention in busy areas of the network.
Consequently, we start with ati value of 300 ms, with two
nodes sending packets at an initial rate of0.5 packet per
second.

Figure 4 presents the evolution ofti as well as the scenario
of the simulation. Because a lower duty cycle can comfortably
accommodate concurrent packet rates of0.5 pkt.s−1, the value
of ti increases from300 ms to around900 ms in under
1, 500 s (25 min) for both AADCC and DDCC controllers.
At this point, the other packet source is turned off, and the
packet rate of the remaining node is increased to1 pkt.s−1.
Theti value remains around950 ms, as thisti value translates
into an energy consumption within close range of the target
energy. After2, 000 s, the packet rate is halved to0.5 pkt.s−1.
This allows the duty cycle to decrease further, asti goes
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from 950 ms to 1.2 s. Only 10 packets were lost during this
scenario, in spite of the vigorous increase inti.

When compared to AADCC, DDCC helped reduce energy
consumption by close to 3% (not shown) at the end of the
simulation (close to a 19% reduction when compared to the
fixed duty cycle case). As the later part of this scenario
continues (after2, 000 s), this number will increase.

C. Effect of the Feedback Period T

We ran the same scenario as before for DDCC only, and
changed the number of packets that are scheduled to be sent
between evaluations ofti to test their impact. We doubled and
quadrupled the value ofT , or evaluatedti every 10 and 20
packets. Figure 5 shows that there is little difference between
periods of 5 and 10 packets. For 10 packets, the evolution of
ti appears to be smoother because of fewer updates. There is
a greater difference between theti values calculated between
transmissions of 5 and 20 packets: the error on the estimation
of the target energy is multiplied fourfold, and causes the duty
cycle to often be higher than needed.

D. Packet Loss Minimization

We now study the other variable of interest by observing the
number of lost packets. This example differs from the previous
one in the initial value ofti (now 1.5 s) and in the number
of neighbors transmitting over time. While it is unlikely that a
protocol designer would choose such a high value forti in a
“fixed” case (no available control at all), this part of our work
shows the behavior of our control schemes when packet loss
occurs.

Figure 6(a) shows a decreasingti as packets are dropped
in both control cases. Repeated packet losses cause the duty
cycle using DDCC to be increased by a greater amount. The
ti value can be observed to increase slightly between two
feedback periodsT in the first 25 min of the runtime as
the energy component (approximately equal to the packet
loss component) pushes the energy consumption down and
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Fig. 6. Evolution of (a)ti and (b) energy over time under a changing
scenario: from a low duty cycle to a higher one.

the ti value up. In the second part of the runtime, packet
losses become more frequent as theti value is unrealistically
high compared to the packet rate, until it reaches less than
1 s. Design choices could allow for a more aggressiveti
descent, which would prevent the “spikes” onti, but this
would slightly compromise the rate of theti increase once
the packet rate declines again. This illustrates once againthe
trade-off between energy consumption and packet loss that the
dynamic scheme balances.

DDCC was able to limit packet loss by 88% over the “fixed”
(no-control) scenario. As the duty cycle is iteratively modified,
the frequency of dropped packets diminishes. Compared to
AADCC, DDCC dropped44 more packets (or 146% more)
because it increased the duty cycle very aggressively. Thisis
transposed on the energy side, shown in Figure 6(b), where
DDCC reduced energy consumption by 9.2% compared to
AADCC. Over the non-controlled case, the energy increased
by 7% (not shown). The reason is that, in general, the
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increase in packet deliveries is compensated by an increasein
energy consumption. The fixed scheme consumes less energy
because of two reasons: its duty cycle remains at a low value,
and contention around the nodes forces both the sender and
the receiver to sleep for longer periods of time instead of
transmitting packets—a behavior that results in lower energy
consumption.

E. Multiple Controllers

A legitimate concern ofti control deals with the implemen-
tation of several nodes adapting their duty cycles at the same
time, particularly for a dynamic controller: the modifications
of one should not destabilize the others.

Figure 7 shows that this is not the case as two sending nodes
(nodes 1 and 2) correctly adapt their duty cycles to conditions
in the local area. The “cumulativeti” is the sum of theti
values of the sending nodes and can be seen as a measure of
the busyness of a local area.

V. ti CONTROL FOR MULTI -HOP NETWORKS

The previous section validates the principle behindti con-
trol for one-hop networks. In this section, we expand this work
to single-branch multi-hop networks: only one data source
sends packets to one data sink several hops away.

In this part of the work, the source (node0) intends to
sendm∗ packets to the destination (noden). Each packet
travels along the same slowly changing path (i.e., constant for
a long period of time, corresponding to our simulation time
for instance) overh = n hops. Each node keeps a queue of a
maximum of100 packets.

A. Challenges Introduced By Multi-Hop Control

Although it is fairly inconsequential for the additive con-
troller AADCC, the introduction of several hops along a
source-destination path complicates key aspects of dynamic
ti control (DDCC): the delay between the beginning of a
transmission at the source and its reception at the destination
greatly increases. This delay is exacerbated by the nature of

LPL MAC protocols because they rely on duty cycling. One
consequence for dynamicti control is that instability increases,
although it can be compensated by a smaller updating slope
α of the commandu(t)—we lower it to0.1 or less.

Most importantly, the larger number of hops on the path
induces non-linearities in the system. Before a packet can be
transmitted, a node must wait for the packet’s next-hop to
wake up. At every link along the path, the packet is held
for a varying amount of time (although on average equal to
ti/2 s). Since the duty cycle is usually reevaluated every 5 to
10 packets, the packet delay (and its corollary, the number
of transmitted packetsm) show wide variations from one
feedback to the next, with little correlation to theti value.

In addition to this problem, two approaches to control the
duty cycle can be considered: a per-link strategy and a per-
path strategy. The former strategy offered the appeal of simply
replicating the work done in Section III for every link alongthe
path, and we tried it first. Investigative work rapidly showed
that this approach could not be successful because queueing
would happen at one point in the path, deceiving other nodes
into increasing theirti because they correctly transmitm∗

packets. In general, this solution offered many untractable
problems such as keeping a set of two values ofti at every
node (one for the node itself, one for its next-hop so that the
first one could send to the second), coordinating together to
avoid queuing, etc.

Instead, the simple observation was made that since only
one packet may be transmitted by a nodek every ti s, the
nodes farther along the path (> k) would witness the same
packet rate. Conversely, nodes placed beforek would need to
send at the same rate ask in order to maintain a constant queue
at k. Therefore, we opted for a common duty cycle among all
the nodes of a path, avoiding queuing whenever possible.

B. Node Synchronization Along a Path

While per-pathti control eased many of the challenges we
faced, non-linearities remained the main obstacle to multi-
hop duty cycle control. We solved this problem through node
synchronization along a path.

Certain LPL MAC protocols have the unique ability to syn-
chronize without explicit notification (i.e., without overhead)
along a slowly-changing one-branch path. These protocols
are X-MAC [7], C-MAC [11] and MX-MAC [9]; a nodek
following the schedule of either one of these protocols learns
of its next-hop neighbork + 1’s wake-up time at the end
of every unicast transmission, that is, when it receives an
acknowledgement frame. It follows that a nodek can decide
to back-off by a smalltS time so that it may wake-up right
before nodek + 1 during the next cycle. Done at every node
along a path ofh hops, nodes are automatically synchronized
after thehth packet has been successfully received. The details
of node synchronization along a path are presented in [17].

Among other features, path synchronization allows urgent
packets to be received and forwarded immediately (within the
sameti period) without loss of synchrony. Broadcast packets
do not break node synchronization either.

More importantly, this technique reintroduces linearity in
the system since nodes’ wake-up times are separated by a



constant amount of timetS s. Packet delays are equal to
tRx+ tS +(h− 1)(ti+ tS) for regular packets, andhtS + tRx

for urgent ones, wheretRx is the time to receive a packet,
approximately14 ms on average for our packet size.

Furthermore, path synchronization significantly reduces
congestion by staggering node wake-up schedules. Because
nodes wake-up sequentially along the path, a packet transmis-
sion interferes with next-hop nodes only, and not previous-
hop nodes. This greatly reduces the chance for collisions and
back-off, which increases the accuracy of energy estimation at
remote nodes.

C. Impact on the Energy Component of J

Because the wake-up schedules of nodes are staggered, the
time to transmit a packet is predictable and almost constant
(tS+tRx), whatever the duration ofti. In addition, since there
is only one data source per path, each relay node must receive
and send the same number of packets. Therefore, the expected
energy consumption is the same at every relay node along the
path since both the energies to send and receive a packet are
equal at every hop. This reinforces the decision to utilize path-
long duty-cycles.

In the case of only one data source on the network, saving
the energy of one particular node on a multi-hop path no
longer applies since all relays are expected to consume the
same energy. Consequently, to lower the energy consumption
of every relay node, the number of probes must be lowered
such that a node may only wake-up to send or receive a
packet. The data source or the data sink are notable exceptions,
since the originator of the data does not receive packets. The
data sink, which does not send packets, is generally a node
with larger resources and is less likely to request its energy
be spared. Unless specified otherwise, we discuss the more
general results of the relay nodes, although similar techniques
can be applied for the nodes at the extremities of the path, as
is done in Section III.

Along synchronized paths, the energy consumption is thus
the lowest whenti is the highest but still allows the target
number of packetsm∗ to be received. Hence, the controller
arbitrates the trade-off between lower energy consumptionand
the objective to sendm∗ packets.

D. Observations for an Implementation of the Multi-hop Case

The control of the duty cycle using DDCC requires informa-
tion now located more than one-hop away. In this section, we
discuss possible practical solutions for implementing multi-
hop duty cycle control.

1) Target Number of Packets: In all cases, we set packets
to the same high priority. This meant that for path synchro-
nization, they were all treated as urgent, and could thus be
delivered within the sameti period (htS + tRx s later). In
this section, we discuss where to close the feedback loop,i.e.,
which node should be theti controller.

a) Calculation at Node 0: The target number of packets
m∗ now depends on the packet rate of the data source, located
at the beginning of a multi-hop path. To calculate the newti
value every feedback periodT , a node must knowm∗, as well

as the actual number of packetsm received by the destination
n. Because all nodes are sharing the sameti value and because
they are synchronized along the path, the number of packets
sent by node0 is equal tom, provided none of the packets
are dropped for unforseen reasons (a bad radio state, localized
noise spike, etc.).

b) Calculation at Node n − 1: The previous technique
does not guarantee proper delivery ofm∗ packets at the
destination if some of the links along the path are faulty.
Because noden − 1 receives an ACK frame every time the
destination receives a packet, it can easily calculatem. For
this reason, the next-to-last node can be chosen to performti
control.

This method may be preferred by programmers who suspect
that nodes may fail and that detection of such failures will be
slow. However, there is an inherent trade-off between packet
overhead to spread the newti value and delivery reliability.

2) New ti Value Dissemination: After ti(k + 1) has been
calculated, the duty cycle controlling node should commu-
nicate this newti value to nodes on the transmission path
usingti(k) and by piggy-backing the new value onto broadcast
packets. For the family of LPL MAC protocols, bigger packets
incur no extra energy consumption since the radio remains in
sending mode for the same period of time (ti s) regardless
of the packet length. Nodes can then start using the new
calculated duty cycle. The cost of this operation is at most
that of transmitting one broadcast packet everyT s on the
active data path. In order to be the most energy efficient,
this dissemination on the path should coincide with other
network maintenance events. In WSNs, the directions of data
packets is usually fixed over a small period of time (e.g.,
∼ 10T ) and centripetal: packets tend to travel from peripheral
nodes (with valuable information to report) toward the base
station (with compute power). Conversely, broadcast packets,
generally used for network maintenance such as route repairor
service discovery, tend to flow in the opposite direction. Cross-
layer optimizations could join other maintenance packets with
our ti updates. It should be noted that the problem ofti
dissemination is not unique to our proposed schemes, but
common to the whole family of adaptive duty cycle proto-
cols. In fact, this work benefits from path synchronization,a
very energy-efficient technique for multi-hop unicast packet
transmissions [18].

3) Energy Estimation: The node running dynamic duty
cycle control needs to estimate the energy consumed by other
nodeswithout requiring them to report it. The reasons to
proceed in this way are threefold:

• Good modeling: we were able to closely measure and
model LPL MAC protocol energy consumption. Our
model was found to be typically within 3% of test-bed
measurements.

• Energy evaluation in isolation: nodes wouldalso have
to evaluate the energy consumed only by their own
LPL MAC protocol because they may be running other
processes (packet processing, sensing activity, packet
aggregation) that draw energy but are not relevant to the
MAC links.

• Poor measuring tools: platforms like the Tmote Sky can



only measure their battery voltage, which can be mapped
to remaining energy but does not yield a sufficient pre-
cision when energy consumption is small (as is typically
the case in LPL MAC protocols).

Errors made in the evaluation of the energy consumption are
modeled in the noise component of the system.

E. Simulation Results

We used Matlab to simulate these different strategies for
a four-hop network with only one source. The control of the
duty cycle was strikingly similar, whetherti was calculated
at node0 or noden − 1. However, our simulation did not
model unforseen congestion at nodes> 1 (caused by other
transmissions in the vicinity of a node for instance), thus
allowing the controller at node0 to perform equally well.

In this section, we present results obtained when noden−1
is the controller, as in Section VI.

We first present results that were obtained through the direct
evaluation of the consumed energy. Figure 8(a) shows the
evolution of the duty cycle of the nodes when the packet rate of
the source changes over time. When the packet rate of source
node0 doubles after400 s, it fails to sendm∗ packets per
T period. Both controllers are successful in bringing the duty
cycle to a value that allows the target number of packets to
be reached (0.9 s for AADCC and1 s for DDCC). Because
DDCC has an energy component in its command computation,
it is sometimes too eager to increaseti; we see an example of
this here. When the packet rate returns to0.5 pkt.s−1, the duty
cycle decreases again, providing ati around1.2 s. Because
we opted for a small update rateα = 0.1, the dynamically
controlledti value increases slowly.

Figure 8(b) shows thatti control reduces the number of
packets failing to be delivered. Compared to the case without
a controller, this reduction reaches a factor of four (not shown).
The packets transmitted by node0 to node1 are delivered to
the destination within the same cycle. For the fixed duty cycle
case however, packets must be queued between400 s and
1, 250 s. While queued packets can be eventually sent to the
destination after the packet rate decreases, stale information
is of little use to the application. Compared to AADCC, the
number of dropped packets is similar for DDCC (13 vs. 17,
or 40%) with no queuing happening in either case.

The energy consumption of DDCC is comparable, although
lower than that of AADCC by 2% (not shown). Compared to
the non-controlled case, the improvement in packet delivery is
obtained by a relative increase in energy consumption of 10%
at relay nodes after2, 000 s, although the eventual energy
consumption at the relay node can be eased when the duty
cycle returns to a low value.

The second set of results is presented for the case when the
energy consumption is not evaluated at the dynamic controller,
and the commandu(t) is automatically increased by0.1 s
when 5 T have passed without packet loss (like the linear
increase of AADCC).

Figure 9(a) shows the correct reduction ofti to accommo-
date sending more packets with either controller. When the
network is favorable to ati increase, the response of DDCC

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
i
 over Time − Node 0

t i (
s)

Time (s)

 

 
AADCC
DDCC
Failed Packet(s)
Packet Rate

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

Number of Packets Send Failed in Evaluations | 37 (AADCC) vs. 45 (DDCC) − Node 0

N
um

be
r 

of
 F

ai
le

d 
P

ac
ke

ts

Time (s)

 

 
AADCC

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

N
um

be
r 

of
 F

ai
le

d 
P

ac
ke

ts

Time (s)

 

 
DDCC

(b)

Fig. 8. Comparison of (a) the evolution ofti and (b) the dropped packets for
the dynamic controller and additive controller when the energy is evaluated.

is much more sluggish than in the regular and the additive
controller cases (in fact, the dynamic controller opposes arti-
ficial ti increases). However, this translates in fewer dropped
packets (reduced by a factor of three in Figure 9(b), or a factor
of nine compared to the fixed duty cycle case), and in a lower
energy consumption of 3% (higher by 8% over the fixed duty
cycle case).

These results illustrate the trade-off existing between the
two techniques for utilizing energy information in DDCC, de-
scribed in Section III-D2: the speed of the response translates
into different energy consumption and packet delivery ratios.
The decision to implement one technique or the other depends
on the application needs and constraints.

VI. ti CONTROL FORMULTI -HOP NETWORKSWITH

MULTIPLE SOURCES

While adaptation of our controllers to multi-hop networks
has greatly expanded the applications ofti control, the
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Fig. 9. Comparison of (a) the evolution ofti and (b) the dropped packets
for the dynamic controller and additive controller cases when the energy is
not evaluated as per Section III-D2.

limitation imposed by only one data source limits its use
to networks performing source selection—target tracking or
building monitoring networks are instances of these networks.

In this section, we modify bothti control strategies to sup-
port multi-hop networks with multiple data sources: while the
control engine remains the same as in the previous section, our
synchronization technique was upgraded to support multiple
sources converging into one branch.

A. Path Synchronization With Multiple Sources

The greatest challenge posed by the use of multiple sources
does not directly fall onto the theory behindti control, but
rather concerns how path synchronization can be maintained
when several sources are converging at one node.

Let Figure 10 represent a three-hop network with two
sources (marked by∗) sending packets to a common desti-
nationh = 3. First, we define several terms used throughout

Fig. 10. A multi-hop network with two sourcesk−10 andk−11 (∗ denotes
a source).

in this section: abranch node refers to nodek, as the location
where several flows meet. Nodes from a packet source to the
branch node form abranch. The nodes placed after the branch
node are part of theroot of the path.

The current synchronization technique staggers node trans-
mission schedules such that nodek + 1 would wake-uptS s
before the destinationh, nodek 2tS s beforeh, etc. This forces
both sources (more generally, all nodesk − 1 forming a link
k−1 → k) to wake-up at almost the same time. While this may
be acceptable for low offered loads, it cannot accommodate
high packet rates from both sources.

1) Strategy: The key idea to support the convergence of
l flows to one nodek consists in increasing the duty cycle
of root nodes (≥ k). The ti value must be divided byl to
accommodate fair access to nodek by all sourcesk − 1j

2.
Upon receiving a new unicast packet, nodek checks the

ID of the previous-hop and adds it to a neighbor table if not
present already. If a new source is detected, nodek modifies
the received packet to include a MAC header containing the
value l, the ID k + 1 of its next-hop, and the ID of the new
previous-hop. The newti value is calculated as:

tnewi = tnewi,k = ti,k
l

l − 1

The packet is then broadcast to all immediate neighbors.
Nodesk andk+1 adopt the new duty cycle after forwarding
the packet to their next-hop neighbor.

The broadcast packet sent by nodek need not specify who
the new source node is: upon attempting to send a packet and
finding a busy network, a nodek−1j will back-off by tnew

i /l s
until all schedules are staggered.

2) Implementation in TinyOS: We tested and implemented
this synchronization technique in TinyOS [19] using the Tmote
Sky platform [20]. In order to gather results, we let Matlab
collect information through a TinyOS gateway. One of the
difficulties in showing path synchronization is the fact that
probes are “silent”: nodes simply turn their radios inreceive
mode, and receive a packet or go back to sleep. Only packet
transmissions can be reported and plotted. We show path
synchronization through the timing of packet transmissions.

Our test network consisted of four nodes, with two sources
(00 and01) sending to node1. The initial ti value was1.5 s.
The TinyOS code was successfully tested for more sources,
but since they are harder to read, these results are not shown
here.

2The notationk − 1j , where0 ≤ j < l, designates the previous hop of
nodek on branchj.



Figure 11 illustrates the process of path synchronization
with two sources sending data packets to a common desti-
nation every20 s and 10 s. The Y-axis indicates the ID of
the transmitting node. During the first half-minute, the path is
established through a simple route discovery protocol and only
one source is turned on. It takes two packets to synchronize
the first source, which can be observed by the narrowing of
the transmission bars. After45 s, the second source turns
on and sends its packet. It is immediately followed by a
broadcast packet (sent over the full duration of theti interval).
Immediately after, we can see that the schedules are staggered.
After 75 s, node00 sends a packet to node1, immediately
followed (ti/2 s later) by node01. Node1 then forwards both
packets successively.
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Fig. 11. (a) Successful path synchronization for two nodes sending data pack-
ets to a common destination. The packet rates are1/20 and 1/10 pkt.s−1.
(b) The reduction in packet delay as the synchronization takes place.

Figure 11(b) shows the packet delivery delay for both
sources. Once the nodes are synchronized, the packet delay

hovers around1 s—except for each sources’ fourth packet,
because01 sends its data before1 can forward the packet
from 00. The first packets for both sources experience almost
the same long delay (greater than3 s), although for different
reasons: when source00 sends its first packet, nodes are
not yet synchronized, and packet delivery is delayed by
long transmission times. We see this delay being reduced
in the following packet because node1 synchronizes with
its next-hop neighbor. The first packet of the second source,
however, is delayed by the transmission of the broadcast packet
indicating a newti value. Since synchronization is already
in place on the existing path, source01 is synchronized with
node1 with the first packet, which explains why the following
packet (with ID2) from node01 experiences low delay.

B. ti Control For Synchronized Paths With Multiple Sources

Path synchronization with multiple sources causes the root
of the path to use differentti values. This technique prevents
DDCC from excessively increasing the duty cycle to support
both sources with the sameti. Compared to that approach, path
synchronization results in energy savings for the branchesof
the network since theirti value can bel times that of the root.

Since the node controlling the duty cycle must learn about
the target number of packetsm∗, it should be placed after the
branch node. Thus, noden− 1 (the node immediately before
the destination) is a good candidate to be the controller for
a path with multiple branches. Upon starting and stopping its
flow of packets, a source must notify the controller of the
number of packets it needs to transmit every second. This
value is piggy-backed onto the unicast data packet and is read
by the controller. After the newti value has been computed,
it is broadcast and flooded onto the path.

While the synchronization technique has evolved to support
multiple branches, theti control engine has remained the same
as that of Section V. This shows the robustness of the both
control techniques designed for multi-hop cases.

C. Simulation Results

The tested network consists of two sources, as shown in
Figure 12 sending packets over a four-hop path with initialti
of 1.25 s. The controller is the node placed before the destina-
tion, and we compare compared both the AADCC and DDCC
controllers. Both schemes benefit from path synchronization
to guarantee fairness in the comparison.

Fig. 12. Topology of the tested network with two sources.

Figure 13(a) shows the evolution of the duty cycle for
AADCC and DDCC. During the initial phase of the simu-
lation, the network experiences difficulties delivering all its
packets, and thus decreasesti. After 400 s, the second source
is turned on, and the total packet rate is tripled. The branch



synchronization process activates, which can be visualized
by a division of ti by two. The duty cycle of the network
with AADCC is still doubled because of the synchronization
process taking place after a second source has been detected.
The response from the DDCC is a controlled increase in
the duty cycle to accommodate the new load. During this
time, DDCC is a little too eager to increase theti value,
and occasionally exceeds a safe value (presumably around
500 ms) that allows delivery ofm∗ packets (the same is true
of AADCC). At 1, 250 s, the second source is turned back
off, and the duty cycle is reduced to save energy.

Using DDCC, the network dropped the same number of
packets as when using AADCC (it dropped fewer packets by
a factor of six compared to the fixed duty cycle network):
Figure 13(b) shows that packets are mostly lost in the moments
after the second source is turned on. Immediately following
its activation (after400 s), a loss of five, then three packets
pushes theti value lower.

Figure 13(c) shows the extra energy consumed at node2
(the node where the branches converge) when the duty cycle
is increased. DDCC was able to balance dropped packets
and energy consumption better than AADCC, as the energy
consumption of the former is 8.5% lower (it is 3% higher
compared to the fixed duty cycle case). There is a clear trade-
off in using any sort of adaptive duty cycle controller between
improvement in quality of service (through the increase in
immediate delivery of packets) and energy consumption. How-
ever, it can be argued that although the energy expanded in
the case of the fixed duty cycle scheme is lower (because of a
lower duty cycle and because contention forces nodes to sleep
longer), it is done in vain since many of the packets fail to be
delivered. When using a duty cycle controller, the proposed
DDCC strikes a better balance between packet delivery and
energy consumption than AADCC for this tested scenario.

VII. C ONCLUSIONS, DISCUSSION ANDFUTURE WORK

A. Summary of Work

Low-Power-Listening MAC protocols show great promise
to increase WSN lifetime by reducing idle listening. However,
such MAC protocols were typically reserved for networks with
low packet rates so as to allow low duty cycles (and greater
energy savings).

In this paper, we introduce two adaptive duty cycle control
schemes. The Asymmetric Additive Duty Cycle (AADCC)
Control and the Dynamic Duty Cycle Control (DDCC) have
differing performance, but both provide adaptive control to the
duty cycle of LPL MAC protocols. Both schemes are capable
of increasing the duty cycle when the number of packets to
be transmitted cannot be accommodated, and they can both
decrease the duty cycle to conserve energy. DDCC jointly
optimizes the energy consumed at vulnerable nodes and the
number of packets to be transmitted. This results in energy sav-
ings of 2% to 10% compared to AADCC, and 20% compared
to the fixed duty cycle case for single-hop networks. When
they cannot lower energy (because they have to accommodate
the transmission of more packets), both AADCC and DDCC
succeed in drastically reducing the number of dropped packets
compared to the fixed duty cycle case.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
i
 over Time − Node 2

t i (
s)

Time (s)

 

 
AADCC
DDCC
Failed Packet(s)
Packet Rate

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8
Number of Packets Send Failed in Evaluations | 28 (AADCC) vs. 28 (DDCC) − Node 2

N
um

be
r 

of
 F

ai
le

d 
P

ac
ke

ts
Time (s)

 

 
AADCC

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

N
um

be
r 

of
 F

ai
le

d 
P

ac
ke

ts

Time (s)

 

 
DDCC

(b)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
Total Energy Consumed vs Time − Node 2

E
ne

rg
y 

(J
)

Time (min)

 

 

8.47% →
AADCC
DDCC

(c)

Fig. 13. Comparison of (a) the evolution ofti, (b) the dropped packets and
(c) the energy consumed for the dynamic controller and additive controller
cases for two sources in a multi-hop network.

We generalized these results to multi-hop networks with
multiple sources. The key to successfulti control was using
and improving a path synchronization technique that allowed
linearity to be maintained in the system. In our experiment,
we saw a reduction of dropped packets by a factor of six



(compared to the fixed duty cycle case) when the offered load
increases. The higher duty cycle caused only a limited increase
in energy consumption.

This work showed thatti control allows networks to respond
to sudden bursts of packets as caused by the occurrence of an
event in a monitoring network, making LPL MAC protocols
suitable for a greater number of WSN applications.ti control
allows the network to choose a very low duty cycle, thus
saving considerable amounts of energy when the network load
is low, while accommodating higher loads whenever needed.

More importantly, the proposed DDCC method, which does
not require knowledge of a system’s physical model, can
also be applied to the control of many other parameters in
a network.

B. Discussion

Although the balance of sent packets and energy consump-
tion is closer to optimal when using DDCC (minimization of
the error function), protocol designers may consider various
aspects when deciding whether to implement additive control
or dynamic control. While DDCC generally providesti val-
ues closer to the optimal values, its implementation requires
selecting an update coefficientα, as well as determining if
energy conservation is more important than packet delivery.
These aspects guide the responsiveness of DDCC to packet
loss or when the packet rate decreases. In the results presented
in this work, DDCC proved to correctly handle packet losses
and to respond swiftly by increasing the duty cycle (Figures6,
7, 8 and 13). When it comes to increasingti when the packet
rate decreases, DDCC is relatively sluggish. This is due to a
small α to prevent oscillations. On the other hand, AADCC
brings ti down very quickly when a packet loss occurs, and
it is in incapable of adapting the amount ofti decrease
or increase as it nears its target (unlike DDCC). However,
AADCC is a simpler scheme that provides satisfactory results.
The implementation of AADCC promises to be quicker, and
to utilize much smaller computational resources. All these
considerations may make one controller more attractive over
the other.

C. Future Work

For our future work, we plan to adapt DDCC to real-
life deployments. Other estimators may be considered for our
work: we could replace the NLMS algorithm by the Newton’s
method of gradient descent. We plan to adapt our method
of path synchronization andti control to more particular
networks such as those made of branches of branches. Finally,
we plan to investigate the possible cross-layer interactions
made possible by this work. In particular, we would like to
explore the impact of duty cycle on route selection: the routing
protocol may find alternate routes to nodes with very high duty
cycles and little remaining energy.
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