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Abstract

Wireless sensor networks are expected to consist of large numbers of nodes with redun-

dant capabilities. This redundancy may exist in the abilities of the sensor nodes to sense

the environment, route data from other sensors, and aggregate and code redundant data,

among other tasks. In order to allow the network to operate at a high level of fidelity, or

QoS, for an extended period of time, the assignment of roles and protocol-level settings

to nodes should be carefully considered and chosen so that a node’s energy is used most

efficiently to meet the end goal of the sensor network application. Decisions concerning

role assignment should be made based on such node properties as location in the envi-

ronment (both absolute and relative to other nodes), sensing capabilities, energy supply,

and processing capabilities. In this dissertation, I present a general middleware frame-

work under which these optimizations can be made and I present several ways that role

assignment can be optimized to extend network lifetime, including application-aware

routing cost assignment, spatial resolution management, and transmission power con-

trol.
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Chapter 1

Introduction

The area of wireless sensor networks has become a hot area of research in recent years.

The ability to network tiny, easily deployed sensor devices to procure a useful over-

all description of current environmental conditions will enable the realization of ap-

plications previously considered impossible. Recently, research from the networking

community as well as advances in micro-fabrication technology have brought about

the realization of practical commercial wireless sensor networks. In the coming years,

these networks are expected to grow to large numbers of nodes (thousands) as the cost

of manufacturing the sensors continues to drop significantly. My thesis is that proto-

col design for wireless sensor networks should leverage the fact that while this type of

massive distribution of nodes can allow networks to perform at a high level, adequate

performance can be achieved when requiring only a subset of nodes to perform each of

the many roles (e.g., active sensor, router, aggregator, etc.) necessary for the network

to operate. In fact, due to the tight energy constraints of sensor nodes, limiting role

assignment in such a way can dramatically increase the lifetime of the network while

minimally reducing the quality of data collected on the network. Furthermore, these

roles should be assigned in a manner such that each node assumes the optimal role

to best support the end goal of the sensor network so that sensor network lifetime is

maximized.

1
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1.1 Overview of Wireless Sensor Networks

The list of potential uses for wireless sensor networks seems endless, with applications

from areas such as security, medicine, industrial machinery monitoring, the military,

and a plethora of others. Imagine a large building equipped with thousands of wireless

sensor devices, which are able to monitor a number of phenomena occurring within

the building (e.g., temperature, chemical, presence of humans, etc.). In case of an

emergency such as a fire in the building, these sensors could collaborate and detect the

exact locations where the fire exists, directing inhabitants to a safe exit of the building.

In addition, rescue teams may be able to poll the network to determine if there are any

remaining people in the building and their locations, while guiding the rescuers through

a safe rescue plan.

Sensor networks can also be used in a preventative manner to reduce or avoid catas-

trophes altogether. Consider stress sensors that are embedded into the structural support

of a building. These can be used in a proactive manner to monitor the condition of the

building, which can be especially important in instable areas such as earthquake-prone

regions. Other sensors may be used to detect unwanted foreign intruders, facilitating

the job of security personnel working at the building.

Another example of a useful wireless sensor network may be found in the health

care community. Several universities have begun projects involving intelligent homes,

in which sensor networks deployed within the home can assist in the daily life of its

residents [1, 2]. In addition to sensors that may be mounted directly on the residents

to measure such health signals as blood pressure and ECG waveforms, other sensors

distributed throughout the house may be able to track objects, allowing them to be

easily found once misplaced.

A wireless sensor node typically consists of four main components: the sensor

itself (including any analog-to-digital conversion), some type of processor, a radio,

and an energy supply. In fact, multi-modal sensors may have multiple sensors, and

depending on the sophistication, multiple processors to handle different functionalities.

A protocol stack resides on the processor, where software is written to provide medium

access control (MAC), routing, and transport layer services. In addition, other services

such as localization, topology control, and QoS (or fidelity) management may exist and

be controlled by the processor. This dissertation primarily addresses the protocols and
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services on this stack, and it describes ways to design them so that energy-efficiency is

achieved while QoS requirements are met.

1.2 Research Motivation

Wireless sensor networks can be thought of as a class of general ad hoc networks, and

in fact there are many similarities between them, including the following

• Both are constrained by the limited energy supply of the nodes in the network.

• Communication is unreliable due to the wireless medium.

• In general, both are expected to be self-configuring, requiring little or no human

intervention.

However, several unique features also exist in wireless sensor networks. These fea-

tures present new challenges and require modification of designs for traditional ad hoc

networks.

• While traditional ad hoc networks consist of network sizes on the order of tens,

sensor networks are expected to scale to sizes of thousands.

• Sensor nodes are generally immobile, so the mechanisms used in traditional ad

hoc network protocols to deal with mobility may be unnecessary and overweight.

• Nodes may be deployed in harsh environmental conditions, meaning that unex-

pected node failure is more common.

• Sensor nodes may be much smaller than nodes in traditional ad hoc networks

(e.g., PDAs, laptop computers), requiring smaller batteries that lead to shorter

lifetimes, less capable processors, and less bandwidth.

• Additional services, such as location information, may be required in wireless

sensor networks.

• While nodes in traditional ad hoc networks compete for resources such as band-

width, nodes in a sensor network can be expected to behave more cooperatively,

as they attempt to accomplish a common universal goal.
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• Cooperation extends beyond the absence of competition for resources, and nodes

should actually collaborate to reduce the amount of data generated and sent onto

the network.

Perhaps the most important aspect to consider in the design of wireless sensor net-

works is related to the final item. Quality of Service definitions used in wired and some

wireless networks have been reformulated for sensor networks so that they relate to the

overall application or system performance. The goal of large-scale wireless sensor net-

works is to gather information to monitor the environment. The overall quality of this

information in monitoring the environment is more important than the amount of infor-

mation. Each application may have its own unique interpretation of data quality, but

in general, the cumulative data gathered on the network should meet minimum quality

(i.e., fidelity) requirements. At the same time, sensor networks are expected to last for a

long time (months or even years) without recharging the limited energy supplies of the

individual sensors. It is essential to manage the energy supply of these nodes to ensure

that application QoS is met while achieving maximum network lifetime.

A sensor network is essentially a distributed network of data sources that provides

information about environmental phenomena to an end user or multiple end users. Typ-

ically, data from the individual sensors are routed via other sensors to sink points in

the network (base stations), through which the user accesses the data. As the cost of

manufacturing nodes becomes cheaper, it can be expected that often times, sensors will

be deployed with great enough density that activating every sensor in the network pro-

vides little more quality of service (QoS) to the sensor network application than what

could have been provided with many fewer sensors (i.e., the marginal quality provided

by many of the sensors is minimal). If sensors are not needed at a given time to provide

data or route other sensors’ data, they can save energy by shutting down (i.e., going into

“sleep” mode) or halting traffic generation until they are needed at a later time. In fact,

activating all of the sensors can be detrimental to the overall task of the sensor network

if there is so much traffic on the network that congestion is noticeable [3]. In this case,

network throughput can degrade significantly, and important data may be dropped as

packet queues at the sensor nodes overflow. Among the data packets that do reach the

data sink(s), high packet delays may be introduced, rendering the data useless.

In cases of unnecessarily high sensor redundancy, only a subset of the deployed

sensors should gather data so that there is no unnecessary redundancy and the network
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can operate at a point where the cumulative sensor data quality is sufficient to meet the

application’s goals, network congestion is minimal, and energy-efficiency is achieved.

Thus, the need for sensor network management arises. Several protocols and algorithms

have been proposed in the literature in which sensors determine the roles in which they

should operate through distributed, local decision making. This work continues this

trend, using an integrated approach in which the selection of nodes for active sensing,

routing, cluster head operation, data compression, and other special network roles is

combined within a single framework.

1.3 Research Contributions

This dissertation introduces several protocols and a general framework that address sev-

eral open research issues in wireless sensor networks, as described previously. Specific

contributions to the wireless sensor network research community include:

• A middleware framework is designed that allows sensor networks that have been

deployed in an ad hoc fashion to maintain high-level QoS goals over an extended

period of time. This middleware has been implemented on top of a Bluetooth

network.

• It is shown how sensor role management, transmission ranges, and deployment

plans can be optimized in multihop wireless sensor networks where individual

nodes have energy constraints. While these optimizations may not be practical

in large-scale sensor networks, they provide a benchmark against which practical

distributed algorithms can be compared.

• Several distributed algorithms for controlling spatial resolution and multihop

routing are presented.

• The routing algorithms are the first presented in the research community that

consider a node’s importance to the application over an extended period of time

when deciding whether or not other sensors’ data is routed through that node.

Thus, this research is the first to present an “application-aware” routing metric.
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• We analyze the energy-efficiency of wireless sensor networks characterized by

many-to-one traffic patterns and provide a framework for analyzing the cost-

efficiency of several deployment strategies that attempt to mitigate the sensor

network hot spot problem.

1.4 Dissertation Structure

Related work from the current literature is first presented in Chapter 2. Chapter 3 de-

scribes a general sensor network middleware architecture that has been developed in

collaboration with fellow researchers at the University of Rochester’s Center for Future

Health. Chapter 4 demonstrates how to optimize the roles of nodes in a sensor network

under reliability (i.e., coverage) and energy constraints for a case in which global infor-

mation is available at a central processor. Chapter 5 presents a protocol for sensor net-

work resolution control in an application that requires the mapping of a phenomenon’s

data image at a central processor. Chapter 6 addresses the sensor role management

problem from a routing perspective and presents application-aware routing costs and a

distributed protocol that assigns optimal roles (e.g., data collector or router) to individ-

ual nodes so that their energy is used most wisely to support the end goal of the appli-

cation. Chapter 7 expands this work and presents a multicasting framework that uses

these application-aware routing costs. In Chapter 8, transmission range distribution and

network deployment planning are optimized for the many-to-one (convergecast) traf-

fic patterns seen in many wireless sensor network applications, and different strategies

for solving this “hot spot” problem in an energy-efficient and cost-efficient manner are

analyzed. Chapter 9 presents a model for comparing the energy-efficiency and cost-

efficiency of several sensor network deployment strategies when transmission ranges

and load distribution are optimized as in Chapter 8. The dissertation is summarized in

Chapter 10.



Chapter 2

Related Work

In recent years, following the seminal paper of Estrin et al. [4] and exciting advances

in wireless sensor technology such as Smart Dust [5], the field of protocol design for

wireless sensor networks has grown dramatically. In this section, we review some of the

work from the current literature that is relevant to this dissertation. We include a review

of some of the existing middleware in the current literature, as well as an overview of

methods that are used for sensor role selection, including routing and topology control

protocols that determine routing roles as well as sensor selection protocols for coverage

applications and distributed compression techniques that determine sensing roles. For

a more complete review of the literature related to the general field of wireless sensor

networks, the reader is referred to [6, 7].

2.1 Middleware for Ad Hoc and Sensor Networks

Middleware has often been useful in traditional systems for bridging the gap between

the operating system (a low-level component) and the application, easing the develop-

ment of distributed applications. Because wireless sensor networks share many proper-

ties with traditional distributed systems, it is natural to consider distributed computing

middleware for use in sensor networks. Among existing distributed computing middle-

ware, QoS-Aware Middleware [8] provides the closest example of a middleware that

can support sensor network applications. This middleware is responsible for manag-

ing local operating system resources based on application requirements specified to the

middleware. The application’s QoS information is compiled into a QoS profile to guide

7
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the middleware in making resource use decisions.

While low layer protocol optimization provides the means to manage the limited

sensor network resources, oftentimes the protocols cannot be effectively managed by

the application. For example, suppose that an application wants to increase the resolu-

tion of data being collected. There are many ways to achieve this goal (e.g., perform

less in-network aggregation, reduce sleep cycles for the active nodes and require them

to transmit more data, etc.). As another example, suppose that the application is inter-

ested in only a certain type of data, such as any data that indicates an intrusion into the

region of interest. Using low layer management of the network, the application can-

not easily manage its resources to ensure that only data of interest is transmitted. For

complex data-centric and event-centric applications, it is unreasonable to expect appli-

cations to manage the data flow and network resources themselves. A middleware that

provides a well-defined API can be used to provide services to manage the data flow

and network resources on behalf of the application. Recently, much work has targeted

the development of middleware specifically designed to meet the challenges of wireless

sensor networks, focusing on the long-lived and resource-constrained aspects of these

systems.

One approach to interacting with a sensor network is to access the data according

to a database model. As both the organization of the data and the type of query are

different than in traditional databases, however, several challenges exist. From the

organizational perspective, traditional distributed databases have few data locations,

each with either the entire data set replicated or with a large portion of a non-replicated

data store. In sensor networks, each individual sensor is a source for its own data only,

yielding a large number of data sources, each providing minimal information. Further,

queries for sensor networks tend to be long lived (e.g., for the time interval dawn to

dusk, return the temperature of an area every ten minutes). In contrast, traditional

queries are most often performed to retrieve current information a single time. Many

approaches have been taken to adapt sensor network queries to fit this paradigm.

Both the Cougar [9] and SINA [10] systems provide a distributed database query

interface to the information from a sensor network with an emphasis on power manage-

ment. Cougar proactively manages power resources by distributing the query among

the sensor nodes to minimize the energy consumed to collect the data and calculate the

query result. SINA, on the other hand, incorporates low level mechanisms for hierar-
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chical clustering of sensors for efficient data aggregation as well as mechanisms that

limit the retransmission of similar information from geographically proximate sensor

nodes.

QUASAR [11] provides the application with a means to query a sensor database

with a Quality aware Query (QaQ). QaQs can express quality requirements as either set-

based (e.g., find at least 90% of the sensors with temperature greater than 50 degrees) or

value-based (e.g., estimate the average temperature within 1 degree). After the queries

are expressed by the application, they are executed to meet the quality requirements at

minimum cost.

TAG is a generic aggregation service for wireless sensor networks that minimizes

the amount of messages transmitted during the execution of a query [12]. In contrast

to standard database query execution techniques, in which all data is gathered by a

central processor where the query is executed, TAG allows the query to be executed

in a distributed fashion, greatly reducing the overall amount of traffic transmitted on

the network. The standard SQL query types (COUNT, AVERAGE, SUM, MIN, MAX), as

well as more sophisticated query types, are included in the service, although certain

query types allow more energy savings than others. Time is divided into epochs for

queries requiring values to be returned at multiple times. When a query is sent by

some node (initially the root), the receiving nodes set their parents to be the sending

node and establish an interval within the epoch (intervals may be set to a length of

EPOCH DURATION/d, where d represents the maximum depth of the aggregating tree)

during which their eventual children should send their aggregates (this interval should

be immediately prior to their sending interval).

TinyDB is a processing engine that runs Acquisitional Query Processing (ACQP)

[13], providing an easy-to-use generic interface to the network through an enhanced

SQL-like interface and enabling the execution of queries to be optimized at several lev-

els. ACQP allows storage points containing windows of sensor data to be created so that

queries over the data streams can be executed more easily. Such storage points may be

beneficial, for example, in sliding window type queries (e.g., find the average temper-

ature in a room over the previous hour once per minute). ACQP also supports queries

that should be performed upon the occurrence of specific events as well as queries that

allow sensor settings such as the sensing rate to be adapted to meet a certain required

lifetime. Perhaps most importantly, ACQP provides optimization of the scheduling of
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sensing tasks as well as at the network layer. Since the energy consumption involved

in the sensing of certain types of data is not negligible compared to the transmission

costs of sending such packets, the scheduling of complex queries should be optimized

in order to avoid unnecessary sensing tasks. ACQP optimizes this scheduling based on

sensing costs and the expected selectivity of the query so as to minimize the expected

power consumption during a query. Significant power savings can also be achieved by

the ACQP’s batching of event-based queries in some cases. The topology of an aggre-

gating tree can also be optimized by considering the query in its formation. TinyDB

uses Semantic Routing Trees (SRTs). Rather than requiring children to choose a parent

node solely based on link quality, the choice of a parent nodes during the construction

of an SRT also depends on the predicates of the query for which the tree is being built

(i.e., the conditions that should be met for inclusion in the query). Specifically, chil-

dren nodes choose a parent either to minimize the difference between their attributes

of the predicate in the query or to minimize the spread of the attributes of the children

of all potential parents. When a query is processed, a parent knows the attributes of

all children and can choose not to forward the message if it determines that none of its

children can contribute to the query (based on the query predicate and the attributes of

its children).

Another approach to support event-centric communication is employed by Envi-

roTrack [14], a middleware for environmental tracking applications. EnviroTrack ab-

stracts the low level collaboration of sensors around a certain event of interest by al-

lowing the application to view the event as a logical object. When an event is detected,

sensors surrounding the event form a cluster, to which a context label is associated. A

tracking object is attached to each cluster, and the cluster performs local operations on

the event of interest. Using EnviroTrack, the burden on the application is eased, as for

each context label (i.e., event to be sensed), the application only needs to provide the

conditions for an event to be sensed, a definition of the aggregate state, and any object

code to be attached with the context label.

In some networks, abstraction at a lower level for managing a sensor node’s neigh-

borhood may be more appropriate, as neighborhood-based algorithms are typically sim-

pler to design. Several programming primitives, such as Hood [15] and Abstract Re-

gions [16], allow this level of abstraction and provide means necessary for establishing

neighborhood membership, sharing data, caching data, and messaging.
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The formation of neighborhoods is the basic premise of Hood. Each node may

establish several neighborhoods, one for each different element of functionality (e.g.,

sensing, routing, localization, etc.), with the most important nearby nodes for each

functionality comprising the members of the neighborhood. Within a neighborhood,

data critical to the neighborhood’s function is shared. Neighborhoods are implicitly

determined through filtering operations, which scan incoming packets (containing “at-

tributes” such as location, sensor readings, etc.) that have been broadcast by nearby

nodes and determine if the broadcasting node is valuable to the functionality of the spe-

cific neighborhood. Thus, neighborhood membership is determined by individual nodes

and is asymmetrical, as opposed to rigid grouping or hard clustering techniques. If the

filter determines that the broadcasting node should be a member of the neighborhood,

a local “mirror” will be created or updated, containing “reflections” (the attributes that

are broadcast by the node), as well as “scribbles” (notes about the node that are locally

generated). When a node updates an attribute of its own, it sends it to a push-policy

module, broadcasting it to nearby nodes or using some other application-specific mech-

anism for advertising.

The Abstract Regions environment provides a neighborhood abstraction that is sim-

ilar to that of Hood. A similar API is provided that includes the functionality necessary

for neighborhood discovery, data sharing, and multiple forms of data aggregation. The

forming of neighborhoods is a bit more proactive, as a programmer explicitly sends

commands to establish a neighborhood based on one of several criteria (e.g., all nodes

within N radio hops, k nearest nodes, etc.). Abstract Regions also allows the applica-

tion developer to tune several network parameters to meet the quality necessary for the

application. For example, if the data sharing is accomplished by broadcasting packets

to neighbors, the abstraction allows parameters such as the number of rebroadcasts,

which can determine the reliability of data transmission, to be set explicitly.

2.2 Dynamic Sensor Selection

To exploit potential energy savings in a wireless sensor network, care should be taken

in the selection of the active nodes in the network and in the determination of the best

operating mode (e.g., sampling rate, resolution settings) for each active node. When us-

ing an energy-efficient MAC protocol [17, 18], the average energy consumption of each
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node can be heavily dominated by the amount of traffic generated. Furthermore, deac-

tivating sensors can reduce any congestion that may arise in low bandwidth networks

[3].

Among the most commonly proposed applications for wireless sensor networks are

those that require coverage of the entirety or a portion of a region where the sensors

are deployed [19]. Coverage preserving protocols and algorithms have many potential

applications, including intruder detection, biological or chemical agent detection, and

fire detection. Also, these protocols and algorithms can be used in the initial stages

of many target tracking applications, where a more detailed description or location

estimate of a phenomenon is required only when a “tripwire” threshold is crossed in

the measurements of some of the active sensors. Several protocols have been proposed

to select which sensors to activate for these coverage applications.

PEAS

PEAS [20] is a protocol that was developed to provide consistent environmental cover-

age and robustness to unexpected node failures. Nodes begin in a sleeping state, from

which they periodically enter a probing state. In the probing state, a sensor transmits a

probe packet, to which its neighbors will reply after a random backoff time if they are

within the desired probing range. If no replies are received by the probing node, the

probing sensor will become active; otherwise, it will return to the sleep state. The prob-

ing range is chosen to meet the more stringent of the density requirements imposed by

the sensing radius and the transmission radius. The probing rate of PEAS adapts to bal-

ance energy savings and robustness. Specifically, a low probing rate may lead to long

delays before the network recovers following an unexpected node failure. On the other

hand, a high probing rate may lead to expensive energy waste. In general, the prob-

ing rate of individual nodes increases as more node failures arise, so that a consistent

recovery time can be expected.

Node Self Scheduling Algorithm

A node self scheduling algorithm for coverage preservation in sensor networks is pre-

sented in [21]. In this algorithm, a node measures its neighborhood redundancy as the

union of the sectors (i.e., central angles) covered by neighboring sensors within the
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Sponsored sector

Unaccounted for redundancy

Figure 2.1: A sponsored sector, as defined by the node self scheduling algorithm [21].

Sensor A accounts for the redundant coverage of sensor B in the vertically shaded

regions but not the additional redundancy of sensors B and C shown in the horizontally

shaded regions.

node’s sensing range. At decision time, if the union of a node’s “sponsored” sectors

covers the full 360◦ (see Figure 2.1), the node will decide to power off. It should be

noted that additional redundancy may exist between sensors. The redundancy model

is simplified at the cost of the inability to exploit this redundancy. At the beginning of

each round, there is a short self-scheduling phase where nodes first exchange location

information and then decide whether or not to turn off after some backoff time. Scenar-

ios of unattended areas due to the simultaneous deactivation of nodes are avoided by

requiring nodes to double check their eligibility to turn off after making the decision.

Reference Time-based Scheduling Scheme

In the reference time-based scheduling scheme presented in [22], the environment is

divided into a grid and coverage is maintained continuously at every grid point while

minimizing the number of active sensors. During an initialization process, each node

broadcasts a randomly chosen reference time uniformly distributed on [0, T ), where T

is the round length, to all neighboring sensors within twice its sensing radius. For each

location in the grid that the sensor is capable of monitoring, a sensor sorts the reference
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Node A
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Node C

Ref A Ref B

Figure 2.2: Schedule calculation for a single grid point, as proposed in the reference

time-based scheduling scheme [22]. After all grid point schedules are calculated, the

schedules are merged and a sensor’s overall schedule is the union of all of its grid point

schedules.

times of all sensors capable of monitoring that grid point. For a given grid point, the

sensor schedules itself to be active beginning halfway between its reference time and

the reference time of the sensor immediately preceding it in the sorted list. Similarly,

its scheduled slot for the grid point ends halfway between its reference time and the

reference time of the sensor immediately after it in the sorted list (see Figure 2.2). The

sensor remains active during the union of the scheduled slots calculated for each grid

point within its sensing range. This algorithm is also enhanced to guarantee coverage

by multiple sensors in selected areas as well as provide robustness to node failures.

CCP

In CCP [23], an eligibility rule is proposed to maintain a certain degree of coverage.

First, each node finds all intersection points between the borders of its neighbors’ sens-

ing radii and any edges in the desired coverage area. The CCP rule assigns a node as

eligible for deactivation if each of these intersection points is K-covered, where K is

the desired sensing degree. The CCP scheme assumes a Span-like protocol and state

machine that can use the Span rule for network connectivity or the proposed CCP rule

for K-coverage, depending on the application requirements and the relative values of

the communication radius and sensing radius. An example of how the CCP rule is

applied is given in Figure 2.2. In Figure 2.2(a), node s4, whose sensing range is repre-
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Figure 2.3: The CCP activation rule for K-coverage, K = 1 [23]. In each scenario,

node s4 decides whether or not to activate, knowing that neighbors s1, s2, and s3, are

already active. In (a), node s4 may remain inactive since all of its intersection points

are K-covered. However, in (b), s4 must become active since intersection point 6 is not

covered by any of its neighbors.

sented by the bold circle, must decide whether it should become active in order to meet

a coverage constraint of K = 1. It is assumed that D knows that s1, s2, and s3, whose

sensing ranges are represented by the dashed circles, are currently active. The intersec-

tion points within s4’s sensing range are found and enumerated 1-5 in the figure. Since

s2 covers points 1 and 3, s3 covers points 2 and 4, and s1 covers point 5, s4 deduces that

the coverage requirements have already been met and remains inactive. In the scenario

illustrated in Figure 2.2(b), there is an intersection point (labeled 6 in the figure) that

is not covered by any of s4’s neighbors. Thus, s4 must become active and sense the

environment.

Connected Sensor Cover

The Connected Sensor Cover algorithm [24] provides a joint solution for topology con-

trol and sensor selection. Specifically, Connected Sensor Cover finds a minimum set of

sensors and additional routing nodes necessary in order to efficiently process a query

over a given geographical region. In the centralized version of the algorithm, an initial



16

sensor within the query region is randomly chosen, following which additional sensors

are added by means of a greedy algorithm. At each step in this algorithm, all sensors

that redundantly cover some area that is already covered by the current active subset

are considered candidate sensors and calculate the shortest path to one of the sensors

already included in the current active subset. For each of these candidate sensors, a

heuristic is calculated based on the number of unique sections in the query region that

the sensor and its routers would potentially add and the number of sensors on its calcu-

lated path. The sensor with the most desirable heuristic value and those along its path

are selected for inclusion in the sensor set. This process continues until the query region

is entirely covered. The algorithm has been extended to account for node weighting,

so that low energy nodes can be avoided, and to be implemented through distributed

means, with little loss in solution optimality compared with the centralized version.

2.3 Routing in Ad Hoc and Sensor Networks

2.3.1 Resource-Aware Routing

The field of ad hoc routing has been explored extensively. Initially, protocol design

focused on efficiently finding shortest path routes in the presence of node mobility

[25]. Recently, because of the scarce energy supplies available in sensor networks, a

great deal of effort has been put forth in creating energy-aware routing protocols that

consider the energy resources available at each sensor.

Singh et al. were among the first to develop energy-aware routing protocols and

proposed several routing costs that cause nodes with scarce energy resources to be

avoided [26]. They proposed that the lifetime of the network could be extended by

minimizing the cumulative cost cj of a packet j being sent from node n1 to node nk

through intermediate nodes n2, n3, etc., where

cj =
k−1∑

i=1

fi(zi) (2.1)

fi(zi) =
1

1− g(zi)
(2.2)

and g(zi) represents the normalized remaining lifetime corresponding to node ni’s bat-
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tery level zi. Further work by Chang et al. solved the problem of maximizing network

lifetime by finding an optimal energy-aware routing cost that considered transmission

energy as well as residual energy [27]. In their work, the routing cost of sending a

packet was the sum of the routing costs of the individual links. The cost cij of a link

between node i and node j was set to

cij = ex1
ij E−x2

i Ex3
i (2.3)

where eij represents the energy necessary to transmit from node i to node j, Ei repre-

sents the residual energy of node i, and Ei represents the initial energy of node i. Brute

force simulation methods were used to find the optimal values of x1, x2, and x3.

Shah et al.

From the intuition that can be taken from this initial work, several energy-aware routing

protocols have been developed for sensor networks, including the one proposed by Shah

et al. [28]. In this protocol, interest queries are sent from an agent by way of controlled

flooding toward the source node(s). The cost Cost(Ni) associated with each node Ni

indicates the node’s reluctance to forward messages. Each upstream neighbor Nj of

node Ni calculates a link cost CNj ,Ni
associated with Ni that depends on Cost(Ni) as

well as the energy eij required to transmit over this link and the normalized residual

energy Ri at node Ni such that

CNj ,Ni
= Cost(Ni) + eα

ijR
β
i (2.4)

where α and β are tunable parameters. Each node Nj builds a forwarding table FTj

consisting of its lowest cost downstream neighbors and the link cost CNj ,Ni
associated

with those neighbors. Node Nj assigns a probability PNj ,Ni
to each neighbor as

PNj ,Ni
=

1/CNj ,Ni∑
k∈FTj

1/CNj ,Nk

(2.5)

Received messages are forwarded over each link with this probability. Before forward-

ing its message, Nj must determine its own value of Cost(Nj), which is simply the

weighted average of the costs in its forwarding table FTj
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Cost(Nj) =
∑

i∈FTj

PNj ,Ni
CNj ,Ni

(2.6)

2.3.2 Data-Centric Routing

Sensor networks are fundamentally different from ad hoc networks in the data they

carry. While individual data items are important in ad hoc networks, it is the aggre-

gate data or the information carried in the data rather than the actual data itself that is

important in sensor networks. This has led to a new paradigm for networking these

types of devices – data-centric routing. In data-centric routing, the end nodes (i.e., the

sensors themselves) are less important than the data itself. Thus, queries are posed for

specific data rather than for data from a particular sensor, and routing is performed us-

ing knowledge that it is the aggregate data rather than any individual data item that is

important.

SPIN

SPIN (Sensor Protocol for Information via Negotiation) is a protocol that was designed

to enable data-centric information dissemination in sensor networks [29]. Rather than

blindly broadcasting sensor data throughout the network, nodes receiving or generating

data first advertise this data through short ADV messages. The ADV messages simply

consist of an application-specific meta-data description of the data itself. This meta-

data can describe such aspects as the type of data and the location of its origin. Nodes

that are interested in this data request the data from the ADV sender through REQ mes-

sages. Finally, the data is disseminated to the interested nodes through DATA messages

that contain the data. This procedure is illustrated in Figure 2.4.

The advantage of SPIN over blind flooding or gossiping data dissemination methods

is that it avoids three costly problems: implosion, overlap and resource blindness. Im-

plosion occurs in highly connected networks that employ flooding. In these scenarios,

each sensor receives many redundant copies of the data, as illustrated in Figure 2.5(a).

For large data messages, this wastes considerable energy. In SPIN, on the other hand,

short ADV messages will suffer from the implosion problem, but the costly transfer of

data messages is greatly reduced. The overlap problem occurs as a result of the redun-

dant nature of sensor data. Thus, two sensors with some common data will both send
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Figure 2.4: Message exchange in the SPIN protocol [29]. Nodes advertise their data

with ADV messages (a). Any node interested in receiving the data replies with a REQ

message (b), to which the source node replies with the transmission of the actual data

(c). The receiving node then advertises this new data (d) and the processes continues

(e,f).

their data, causing redundancy in data transmission and thus energy waste, as illustrated

in Figure 2.5(b). SPIN is able to solve this problem by naming data so that sensors only

request the data or parts of data that they are interested in receiving. Finally, in SPIN,

there are mechanisms implemented so that a sensor that is running low on energy will

not advertise its data in order to save its energy resources. Thus, SPIN solves the re-

source blindness problem by having sensors make decisions based on the current level

of available resources.

Directed Diffusion

Directed Diffusion is a communication paradigm that has been designed to enable data-

centric communication in wireless sensor networks [30]. To perform a sensing task, a

querying node creates an interest, which is named according to the attributes of the

data or events to be sensed. When an interest is created, the sink node injects it into

the network by broadcasting an interest message containing the interest type, duration,

and an initial reporting rate to all neighbors. An example of an interest is the number

of people in a given area every second for the next 10 minutes. Local interest caches

at each node contain entries for each interest that has been created on the network and
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Figure 2.5: Problems with blind flooding of sensor data. (a) Implosion occurs in a

highly connected network where nodes receive duplicate copies of data, wasting energy

and bandwidth resources. As seen in this figure, node D receives two copies of node

A’s data. (b) Overlap occurs due to the redundant nature of sensor data. This figure

shows that C receives data about region r from nodes A and B, again wasting valuable

sensor resources.

reached the node. An entry in the cache contains information about the interest’s type,

duration, and gradient (a combination of the event rate and direction toward the data

sink). Nodes receiving the interest messages find (or create) the relevant interest entry

in their caches and update the gradient field toward the node from which the message

was received, setting it to the rate defined in the interest message. Each gradient also has

information regarding the expiration time, which must be updated upon the reception

of the interest messages.

Interests are diffused throughout the network toward the sink node using one of a

number of forwarding techniques. For example, Figure 2.6 shows a network in which

the interest was sent to the region of interest via controlled flooding. Once the interest

reaches the desired region, sensor nodes within the region process the query and be-

gin producing data at the specified rate. If more than one entry for the same interest

type exist, data is produced at the maximum rate of these entries. Data pertaining to

these interests are then forwarded to each node for which a gradient exists at the rate

specified for each individual gradient. After receiving low rate events from the source

(recall that the initial reporting rate is set low), the data sink may reinforce higher qual-

ity paths. These reinforced paths might be chosen as those that experience low latency
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Figure 2.6: Establishing gradients in Directed Diffusion [30]. As the query is routed

toward the region of interest, gradients for that interest are established in the reverse

direction of the query dissemination. After data begins to arrive at the querying node,

the path of highest quality is reinforced.

or those in which the confidence in the received data is deemed to be high by some

application-specific measure. Reinforcement messages simply consist of the original

interest messages, with the reporting rates set higher. These reinforced routes are es-

tablished more conservatively than the original low rate interest messages so that only

a single or few paths from the event to the sink are used.

Rumor Routing

While long-lived queries or data flows justify the overhead involved in establishing

cost fields in a network, it may not be worth this effort when executing short-lived and

one-shot queries. Rumor routing was designed for these types of queries [31]. When

an event is detected by a sensor, it probabilistically creates an agent in the form of a

data packet, and forwards it throughout the network in a random manner (illustrated

by the solid line in Figure 2.7). Nodes through which the agent is forwarded maintain

local state information about the direction and distance to the event. Should an agent
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Figure 2.7: Query handling in Rumor Routing [31]. After an event is detected, and

agent is initiated and sent on a random path through the network, establishing state

at each node on the path. A query packet is similarly sent in a random direction and

hopefully crosses paths with the agent, allowing the query to be answered and returned

to the querying node.

traverse a node with knowledge of a path to other events, it adds this information so

that subsequent nodes through which the agent flows will maintain state information

regarding these events as well. When a node wishes to perform a query related to

a given event, it simply forwards a query packet in a random direction so that the

query traverses a random walk throughout the network (illustrated by the dashed line in

Figure 2.7). Because of the fact that two lines drawn through a given area are likely to

cross, there is a high likelihood that the query will eventually reach a node with a path

to the specified event, especially if multiple agents carrying that event are sent through

the network. If multiple queries happen not to reach the event, the querying node may

resort to flooding queries over the entire network.
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2.3.3 Geographic Routing

Often times, wireless sensor networks require a query packet to be forwarded to a par-

ticular region of interest in the network. A natural approach to perform this forwarding

is to utilize geographic forwarding. Geographic forwarding reduces the amount of

routing overhead, which is typically dominated by route discovery, and requires less

memory utilization for route caching than typical ad hoc routing protocols. Further-

more, geographic routing protocols can enable geographically distributed data storage

techniques such as Geographic Hash Tables (GHT) [32].

GPSR

GPSR (Greedy Perimeter Stateless Routing) is a geographic routing protocol in which

nodes make local packet forwarding decisions according to a greedy algorithm [33].

Under normal circumstances, a packet that is destined for some node D is forwarded

to the node’s neighbor that enables the maximum progress toward D. A similar greedy

forwarding scheme was originally proposed in the work of Takagi and Kleinrock [34].

However, obstacles or a lack of adequate sensor density can cause voids in the net-

work topology so that packets reach a hole, at which point the packet cannot progress

any further without first being sent backward. GPSR accounts for this by incorporat-

ing a perimeter routing mechanism. Voids can be detected by the nodes surrounding

them, and routes that circumnavigate the voids can be established heuristically. When

a packet reaches these voids, these routes can be used (routing by the right hand rule)

until normal greedy routing can resume. This process is illustrated in Figure 2.8(a).

While this approach works well, another more robust perimeter routing algorithm is

also proposed. In this algorithm, the graph that can be drawn from the complete net-

work topology is first reduced to a planar graph in which no edges cross. Once a packet

reaches a void, the forwarding node N finds the face of the planar graph that is in-

tersected by the line connecting N and the destination, as illustrated in Figure 2.8(b).

N then forwards the packet to the node along the edge that borders this face. This

procedure continues with each intermediate node finding the adjacent face that the line

intersects and routing along an edge bordering that face until the void has been cleared.
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Figure 2.8: GPSR [33] greedy forwarding policy (a) and perimeter routing algorithm

(b).
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Figure 2.9: Possible trajectories to use in TBF [35] for robust multipath routing (a),

spoke broadcasting (b), and broadcast within a remote region (c).

TBF

TBF (Trajectory Based Forwarding) is a useful paradigm for geographic routing in

wireless sensor networks [35]. Rather than sending a packet along a straight path to-

ward its destination, TBF allows packets to follow a source-specified trajectory, increas-

ing the flexibility of an overall forwarding strategy. For example, multipath routing can

be achieved by sending multiple copies of a single packet along separate geographic

trajectories, as shown in Figure 2.9(a), increasing resilience to localized failures or

congestion in certain parts of the network. Also, TBF can increase the efficiency of

many different forwarding techniques, including spoke broadcasting, illustrated in Fig-

ure 2.9(b), and broadcast to a remote subregion, illustrated in Figure 2.9(c).
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Figure 2.10: Adaptive clustering of the network.

2.3.4 Clustering Algorithms

As sensor networks are expected to scale to large numbers of nodes, protocol scala-

bility is an important design criteria. If the sensors are managed directly by the base

station, communication overhead, management delay, and management complexity be-

come limiting factors in network performance. Clustering has been proposed by re-

searchers to group a number of sensors, usually within a geographic neighborhood, to

form a cluster that is managed by a cluster head. A fixed or adaptive approach may be

used for cluster maintenance. In a fixed maintenance scheme, cluster membership does

not change over time, whereas in adaptive clustering schemes, sensors may change their

associations with different clusters over time, as illustrated by the two configurations in

Figure 2.10.

Clustering provides a framework for resource management. It can support many

important network features within a cluster, such as channel access and power control,

as well as between clusters, such as routing and code separation to avoid inter-cluster

interference. Moreover, clustering distributes the management responsibility from the

base station to the cluster heads, and provides a convenient framework for data fusion,

local decision-making and control, and energy savings.

LEACH

In-network processing can greatly reduce the overall power consumption of a sensor

network when large amounts of redundancy exist between nearby nodes. Rather than
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requiring all sensors’ data to be forwarded to a base station that is monitoring the envi-

ronment, nodes within a region can collaborate and send only a single summarization

packet for the region. This use of clustering was first introduced in the Low Energy

Adaptive Clustering Hierarchy (LEACH) protocol [36]. In LEACH, nodes are divided

into clusters, each containing a cluster head whose role is considerably more energy

intensive than the rest of the nodes; for this reason, nodes rotate roles between cluster

head and ordinary sensor throughout the lifetime of the network.

At the beginning of each round, each sensor node makes an independent decision

through a randomized algorithm about whether or not to assume a cluster head role.

Nodes that choose to be cluster heads announce their status to the rest of the network.

Based on the received signal strength of these announcements, sensors join the cluster

that requires the least power to communicate with the cluster head (assuming transmis-

sion power control is available). During the round, the ordinary sensors in each cluster

send data to their respective cluster heads according to a time-division multiple access

(TDMA) schedule. Inter-cluster interference is reduced using different spreading codes

in neighboring clusters. The cluster head aggregates data from all the cluster members

and sends the aggregate data to the base station. The length of each round is chosen

such that each node is expected to be able to perform a cluster head role once during its

lifetime.

Because there is no interaction between nodes when deciding roles, the cluster

heads may be chosen such that there is no uniformity throughout the network and cer-

tain sensors are forced to join clusters located at large distances from them. To mitigate

this problem, a centralized version of LEACH called LEACH-C has been developed.

LEACH-C uses simulating annealing to choose the cluster heads for a given round so

that the average transmission power between sensors and their cluster heads is mini-

mized.

HEED

Nodes in LEACH independently decide to become cluster heads. While this approach

requires no communication overhead, it has the drawback of not guaranteeing that the

cluster head nodes are well distributed throughout the network. While the LEACH-C

protocol solves this problem, it is a centralized approach that cannot scale to very large
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networks.

Many clustering algorithms have been proposed that create more uniform clusters

at the expense of overhead in cluster formation. One approach that uses a quickly

converging distributed algorithm is HEED (Hybrid Energy-Efficient Distributed Clus-

tering) [37]. HEED uses an iterative cluster formation algorithm, where sensors assign

themselves a cluster head probability that is a function of their residual energy and a

communication cost that is a function of neighbor proximity. Using the cluster head

probability, sensors decide whether or not to advertise that they are a candidate clus-

ter head for the current iteration. Based on these advertisement messages, each sensor

selects the candidate cluster head with the lowest communication cost (which could be

the sensor itself) as its tentative cluster head. This procedure iterates, with each sensor

increasing its cluster head probability at each iteration until the cluster head probability

is one and the sensor declares itself a final cluster head for the round. HEED requires

only local neighborhood information to form the clusters and the algorithm terminates

in O(1) iterations. Furthermore, the algorithm guarantees that every sensors is part of

just one cluster and that the cluster heads are well-distributed.

2.3.5 Topology Control

The purpose of traditional topology control protocols has been to balance two con-

tradictory goals – reducing energy consumption while maintaining high network con-

nectivity. Most early work in this area concentrated on adjusting radio settings (e.g.,

transmission power [38–41], beamforming patterns [42]) to maintain connectivity with

an optimal set of neighbors. Because it is often more power-efficient to relay packets

over several short hops than a single long hop, reducing transmission power is an ef-

fective means for reducing overall energy consumption. Reducing transmission power

also allows the network to benefit from spatial reuse, possibly resulting in reduced con-

gestion, higher throughput, and a reduction in the number of costly data packets that

are unnecessarily overheard.

These methods may be very effective in sensor networks where energy consump-

tion is dominated by the energy consumed in transmitting data packets. However, some

typical power models considered for sensor networks show that receive power and idle

power are comparable to transmit power [43]. Based on this observation, further sav-
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ings can surely be achieved by not only reducing transmission power, but also setting

the sensors’ radios into a sleep state whenever possible. Below, several topology con-

trol protocols that achieve energy-efficiency through these means are described. While

some of these protocols were originally designed for use in general ad hoc networks,

the fact that nodes are often allowed to turn their radios off nevertheless makes them

suitable protocols for sensor networks as well.

GAF

The Geographic Adaptive Fidelity (GAF) protocol [44] takes advantage of the fact that

neighboring nodes are often nearly identical from the perspective of data routing. In

GAF, a virtual grid is formed throughout the network, and each node is assigned to the

virtual grid cell in which it resides. Only a single node from a cell in the virtual grid is

chosen to be active at any given time, as illustrated in Figure 2.11. Nodes implement-

ing GAF initially enter a discovery state, where they listen for messages from other

nodes within their cell. If the node determines that a more suitable node can handle the

routing responsibilities for its cell, it falls into a sleep state, from which it periodically

reenters the discovery state; otherwise, it enters the active state and participates in data

routing. After a predetermined active period, active nodes fall back into the discovery

state. As the density of a network implementing GAF increases, the number of acti-

vated nodes per grid cell remains constant while the number of nodes per cell increases

proportionally. Thus, GAF can extend lifetime approximately linearly as a function of

node density.

Span

Span [45] is a topology control protocol that allows nodes that are not involved in a

routing backbone to sleep for extended periods of time. In Span, certain nodes assign

themselves the position of coordinator. These coordinator nodes are chosen to form a

network backbone, such that the capacity of the backbone approaches the potential ca-

pacity of the complete network. Periodically, nodes that have not assigned themselves

the coordinator role initiate a procedure to decide if they should become a coordina-

tor. The criteria for this transition is if the minimum distance between any two of the

node’s neighbors exceeds three hops. To avoid the situation where many nodes simulta-



29

Active Router Inactive Router

Figure 2.11: Example of a GAF virtual grid [44]. Only one node per cell is activated as

a router.

neously decide to become coordinator, backoff delays are added to nodes’ coordinator

announcement messages. The backoff delays are chosen such that nodes with higher

remaining energy and those potentially providing more connectivity in their neighbor-

hood are more likely to become a coordinator. To ensure a balance in energy con-

sumption among the nodes in the network, coordinator nodes may retreat from their

coordinator role if neighboring nodes can make up for the lost connectivity in the re-

gion.

ASCENT

ASCENT (Adaptive Self-Configuring sEnsor Networks Topologies) [46] is similar to

Span in that certain nodes are chosen to remain active as routers while others are al-

lowed to conserve energy in a sleep state. In ASCENT, the decision to become an active

router is based not only on neighborhood connectivity, but also on observed data loss

rates, providing the network with the ability to trade energy consumption for communi-

cation reliability. Nodes running the ASCENT protocol initially enter a test state where

they actively participate in data routing, probe the channel to discover neighboring sen-

sors and learn about data loss rates, and send their own “Neighborhood Announcement”

messages. If, based on the current number of neighbors and current data loss rates, the

sensor decides that its activation would be beneficial to the network, it becomes active
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and remains so permanently. If the sensor decides not to become active, it falls into a

passive state, where it gathers the same information as it does in the test state, as well

as any “Help” messages from neighboring sensors experiencing poor communication

links, but does not actively participate in data routing. From this state, the node may

reenter the test state if the information gathered indicates poor neighborhood commu-

nication quality, or enter the sleep state, turning its radio off and saving energy. The

node periodically leaves the sleep state to listen to the channel from the passive state.

EAD

Energy-aware data centric routing (EAD) [47] is an algorithm for constructing a min-

imum connected dominating set among the sensors in the network, prioritizing nodes

so that those with the highest residual energy are most likely to be chosen as non-leaf

(i.e., actively routing) nodes. To establish a broadcast tree, control messages, of the

form {type (undefined, leaf node, or non-leaf node), level (in the broadcast tree),

parent, residual energy}, are disseminated throughout the network, starting

with the data sink. During the establishment of the tree, each node with an undefined

status (the default starting state) listens for control messages. If an undefined node v

receives a message from a leaf node, the undefined node becomes a non-leaf node and

prepares to send a message announcing its non-leaf status after some backoff time T v
1 .

On the other hand, if an undefined node (or a non-leaf node) receives a message from a

non-leaf node, it becomes a leaf node and prepares to announce its status after a delay

of T v
2 . If a node at any time receives a message from a non-leaf node indicating that it

is that node’s parent, it immediately becomes a non-leaf node and broadcasts its status

via a control packet. To ensure that nodes with more residual energy are more likely

to assume the more energy intensive non-leaf roles, T v
1 and T v

2 should be monotoni-

cally decreasing functions of the residual energy. Also, the minimum possible value

of T v
1 should be larger than the maximum possible value T v

2 so that the resulting set of

non-leaf nodes is of minimal size.

2.3.6 Multicasting

The establishment of optimal multicast trees is a problem that has been studied ex-

tensively in the networking community [48]. Traditionally, optimal broadcasting and
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multicasting have been thought of as the minimization of the edge weights consisting

of the multicast trees (i.e., the formation of minimum spanning trees and Steiner trees,

respectively). This model is an accurate one for wired networks; however, in wireless

networks, nodes can exploit the inherent “wireless multicast advantage” to further re-

duce multicast tree cost. More recent algorithms for setting up minimum cost multicast

trees take advantage of the fact that a single node’s transmission can be received by

more than just a single intended destination. Thus, these algorithms can be thought of

as node-based, rather that link-based minimization algorithms.

BIP

The Broadcast Incremental Protocol (BIP) is a broadcasting protocol that takes advan-

tage of the aforementioned “wireless multicast advantage” to generate low-cost multi-

cast trees in wireless networks [49]. The BIP protocol is based on Prim’s algorithm for

finding minimum spanning trees (MST). However, when determining the node with the

minimum cost, BIP considers the incremental cost to join the tree. In other words, if a

node is already transmitting at a certain power level to reach some neighbor, its incre-

mental cost is the additional cost required to increase its transmission power to the level

necessary to reach the additional node. Following construction of the broadcast tree,

a “sweeping” operation is performed on the network in order to remove unnecessary

transmissions.

The MIP protocol is based on the BIP protocol and uses a pruning procedure to

remove unnecessary transmissions. After establishment of the broadcast tree, links

that are not necessary to reach the multicast group members are removed. Each node

transmits at the minimum power level required to reach each of its neighbors on the

remaining outbound links.

2.3.7 Distributed Multicasting

Following the development of the BIP and MIP protocols, attempts have been made

to distribute protocols for multicasting in a wireless environment. In this section, we

review several of these protocols
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Dist-BIP and LBIP

Dist-BIP was developed by the original authors of BIP as a means to approximate the

centralized version of their protocol while using a distributed version [50]. There are

two versions of Dist-BIP – Dist-BIP-A, which is a slightly better approximation to the

centralized version, and Dist-BIP-G, which requires less overhead.

In Dist-BIP-G, selected gateway nodes form local broadcast trees using knowledge

of their first and second neighborhood only. Dist-BIP-A is similar to Dist-BIP-G, ex-

cept that all nodes, not just those selected as gateways by their parents, compute their

local broadcast tree. As in the centralized version, both versions of Dist-MIP are identi-

cal to their Dist-BIP counterparts in the early stages, followed by a pruning procedure,

which is easily distributable, to reduce unnecessary transmissions.

LBIP (Localized Broadcast Incremental Protocol) is very similar to Dist-BIP-G in

that gateways are selected by their parents, and nodes calculate their local broadcast tree

using two-hop neighborhood knowledge. The key difference is that rather than recal-

culating transmission power for themselves and other nodes in their parents’ broadcast

trees, the gateways use the transmission power selected for them by their parents.

EWMA

Embedded Wireless Multicast Advantage (EWMA) is a heuristic algorithm for gener-

ating approximations to the minimum energy broadcast tree [51]. EWMA begins by

forming the link-based minimum spanning tree (MST). Once the initial spanning tree

is set up, the covered set C, transmitting set F , and excluded set E are set to the source

node, null, and null, respectively. Next, nodes from (C − F ) − E are analyzed for

potential gains that can be achieved by increasing their transmission power to the levels

that will reach the children of all transmitting nodes. Basically, the gain is given as

the energy that will be saved by increasing the transmission power to save power at

other nodes. The node with the largest gain is selected for inclusion in the set F and

the nodes that are saved from transmitting are added to E. All nodes that are covered

by the increase in transmission power are added to C. This process continues until all

nodes are covered (i.e., included in C). The authors propose a round-based distributed

version of this protocol.
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2.4 Transmission Range Optimization

The minimization of transmission energy in wireless sensor networks, and in wireless

networks in general, has been studied extensively. If transmission power cannot be

adjusted, power consumption can be minimized by minimizing the number of hops

between the source and destination. However, when transmission power can be set

according to the distance over which data is being transmitted, because received en-

ergy typically falls off with distance as 1/d2, it may be more energy-efficient to send

data over many short hops rather than fewer long hops. Several works have noted this

and shown how to minimize energy consumption by appropriately setting transmission

power. Takagi and Kleinrock explored how to best set transmission power in order to

minimize interference and maximize throughput [34]. The problem of setting trans-

mission power to a minimal level that will allow a network to remain connected has

been considered in several studies [39, 40]. In later work, some considered the im-

portance of a fixed energy consumption per bit, independent of transmission distance.

Because of this overhead, there exists an optimal nonzero transmission range, at which

energy-efficiency is optimized [52, 53].

In the above-cited works, the goal was to minimize overall energy consumption, and

a fixed network-wide transmission range was assumed. However, using such schemes

may result in extremely unbalanced energy consumption among the nodes in sensor

networks characterized by many-to-one traffic patterns. In addition to minimizing en-

ergy consumption, it may also be beneficial to distribute the energy among the nodes

and to favor using those with greater energy resources, so that network lifetime may be

maximized. Note that network lifetime may be defined a number of ways, including

time until the first node dies, time when the first region of a sensor network is left unat-

tended, etc. To accomplish this goal of lifetime maximization, load balancing through a

combination of intelligent routing and transmission power control was studied in [26],

where several heuristic routing costs were recommended for use in order to minimize

and at the same time balance energy consumption. In [27], Chang and Tassiulas show

how the optimal combination of several routing costs allows network lifetime to be ex-

tended. In [54], Efthymiou et al. show how energy consumption can be balanced by

distributing packets over several paths. The problem of finding the optimal routing to

achieve maximum network lifetime in a sensor network was studied as a constrained
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linear program optimization in [55–57]. In this work, the authors find the maximum

lifetime that could be achieved by any routing cost or balancing scheme.

2.5 Sensor Deployment Strategies

Aside from transmission range optimization for balancing energy across the sensors,

several other sensor deployment strategies have been proposed to extend network life-

time. For example, a mobile data sink roaming within the network can be deployed

to balance the energy consumption. In [58], data mules are deployed in the network

to pick up the data once they are close to the data source. Buffer requirements are the

main focus of this study. In [59], Kim et al. focus on minimizing the cost for topol-

ogy maintenance and communication between the mobile sinks and the data sources.

In [60], the optimal sink mobility strategy is studied. Our generalized model is able

to obtain the optimal assignment of communication load for the mobile sink strategy,

and our study focuses on the network lifetime improvement from this strategy. There-

fore, detailed design considerations such as buffer size and the overhead for network

maintenance are not considered here.

Multiple data sinks can also be deployed to collect data over a certain subregion

of the entire area. In [61], the optimal assignment of communication load to multiple

sinks is found using a method similar to electrostatic theory. In [62], an application us-

ing multiple Crossbow Stargates as virtual data sinks is implemented. Further deploy-

ment strategies that integrate data aggregation have also been considered. In LEACH

[36], each sensor can serve as a cluster head, where data from neighboring sensors is

aggregated, and sensors rotate their roles to evenly distribute the energy load. This can

be considered a multiple sink strategy with data aggregation.

The deployment of extra relay nodes around the data sink can also be helpful in

solving energy imbalance problems. In [63], Ergen and Varaiya compare the minimum

energy consumption when the relay nodes’ locations are predetermined, and when they

can be placed in any location. The authors provide a heuristic method to solve the latter

problem. In [64], a similar mixed-integer nonlinear programming solution is provided

to discover the optimal locations of relay nodes iteratively. In [65], Howitt and Wang

attempt to balance energy consumption by requiring the sensors to send traffic to the

next node along a chain to the base station and spacing sensors non-uniformly as a
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function of their distance to the data sink so that energy consumption is uniform for all

nodes.



Chapter 3

A Sensor Network Framework and
Architecture

Many protocols designed for wireless sensor networks have been designed to provide

high quality data (in terms of low latency, high resolution, etc.) to the application

to meet the application’s quality of service (QoS) demands. Many of these protocols

contain parameters that can be set to meet application goals. For example, depending

on the spatial bandwidth of a phenomenon being measured or the distance at which a

phenomenon can be measured, the nominal sensing range that is used when activat-

ing sensors may be set so that a threshold on the probability of a missed detection —

a requirement imposed by the application — is not exceeded. Another example in-

volves many MAC protocols, which can tune their duty cycle or other parameters so

that packet delays are bounded. Later chapters in this thesis describe protocols that

have been developed to meet these goals. Before these are presented, we present a

framework in which these protocols can operate. Adapting these protocol parameters

typically involves a tradeoff between application quality and energy-efficiency or net-

work lifetime. In this chapter, we address the problem of managing data quality within

an application and across applications operating on a single network from a systems

perspective, and we propose a middleware architecture for wireless sensor networks to

enable protocol parameters adaptation to meet application goals.

36
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3.1 Middleware Architecture

Oftentimes, a combination of characteristics from the environment and characteristics

of the application drive the design of middleware. With the advent of large-scale wire-

less sensor networks comes a new class of applications containing the following fea-

tures.

• Inherent distribution. The sensors are distributed throughout a physical space,

and are primarily connected via wireless links.

• Dynamic availability of data sources. Either mobility through space, addition

of new sensors, or loss of existing sensors causes the set of available sensors to

change over time.

• Constrained application quality of service demands. Sensor network applications

require a minimum reliability, or QoS, and this level must be maintained over an

extended period of time. There may be many ways to achieve the QoS (e.g.,

different sensors may offer data or services that meet the applications’ QoS re-

quirements). Furthermore, the required QoS and the means of meeting this QoS

can change over time, as the state of the application or the availability of sensors

changes.

• Resource limitations. Network bandwidth and sensor energy are constrained.

This is especially true when considering battery powered sensors and wireless

networks.

• Cooperative applications. Sensor network applications share available resources

(e.g., sensor energy, channel bandwidth, etc.) and either cooperate to achieve a

single goal, or, at the very least, do not compete for these limited resources.

• Data-driven applications. The applications collect and analyze data from the

environment, and depending on redundancy, noise, and properties of the sensors

themselves, the applications can assign a quality level to the data.

• State-based applications. The application’s needs with respect to sensor data can

change over time based on previously received data.



38

Figure 3.1: System that employs MiLAN. Each sensor runs a (possibly scaled-down)

version of MiLAN. MiLAN receives information from applications about their QoS

requirements, a system user about the desired interaction among the applications, and

the network about available components and resources. MiLAN then decides how best

to configure the network to support the applications.

Thus, wireless sensor network applications require new middleware designs to meet

these unique features.

Collaboration at the University of Rochester’s Center for Future Health has led to

the development of a middleware architecture specifically designed for wireless sensor

networks named MiLAN (Middleware Linking Applications and Networks). This mid-

dleware allows an application programmer to specify high level QoS goals through a

simple application programming interface (API) and configures sensor roles according

to the quality of information that the sensors can provide to a given application. Specif-

ically, MiLAN receives information from (1) the individual applications about their

QoS requirements over time and how to meet these QoS requirements using different

combinations of sensors, (2) the overall system about the relative importance of the

different applications, and (3) the network about available sensors and resources such

as sensor energy and channel bandwidth. Combining this information, MiLAN con-

tinuously adapts the network configuration (e.g., specifying which sensors should send

data, which sensors should be routers in multi-hop networks, which sensors should play

special roles in the network, etc.) to meet the applications’ needs while maximizing ap-

plication lifetime. Figure 3.1 shows a high-level diagram of a system that employs

MiLAN.
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The MiLAN middleware architecture enables control of the network functionality

while hiding network complexities from the application programmer. MiLAN receives

a description of application requirements, monitors network conditions, and optimizes

sensor and network configurations to maximize application lifetime. To accomplish

these goals, applications represent their requirements to MiLAN through specialized

graphs that incorporate state-based changes in application needs. Based on this in-

formation, MiLAN makes decisions about how to control the network as well as the

sensors themselves to balance application QoS and energy-efficiency, lengthening the

lifetime of the application.

Unlike traditional middleware that sits between the application and the operating

system, MiLAN has an architecture that extends into the network protocol stack, as

shown in Figure 3.2. As MiLAN is intended to sit on top of multiple physical networks,

an abstraction layer is provided that allows network specific plug-ins to convert MiLAN

commands to protocol-specific commands that are passed through the usual network

protocol stack. Therefore, MiLAN can continuously adapt to the specific features of

whichever network protocols are being used for communication (e.g., determining scat-

ternet formations in Bluetooth networks [66], coordinator roles in Span [45], etc.) in

order to best meet the applications’ needs over time.

Figure 3.3 shows an overview of the interactions among MiLAN, the applications,

and the sensors. This figure makes a distinction between the network plug-ins and

the core of MiLAN, emphasizing the separation of computation that is specific to the

selected network type versus the computation that always occurs, but the API specifies

only the application and sensor level operations.

3.1.1 Application Performance

Many sensor network applications are designed to receive data input from multiple

sensors and to adapt as the available sensors change over time, either as new sensors

come within range or as sensors go offline when they move away or run out of en-

ergy. We assume that application performance can be described by the reliability of

different variables of interest to the application, where the reliability of the different

variables depends on which sensors provide data to the application. For example, in a

personal health monitor application, variables such as blood pressure, respiratory rate,
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and heart rate may be determined based on measurements obtained from any of sev-

eral sensors [67]. Each sensor has a certain reliability in characterizing each of the

application’s variables. For example, a blood pressure sensor directly measures blood

pressure, so it provides a quality of 1.0 in determining this variable. In addition, the

blood pressure sensor can indirectly measure other variables such as heart rate, so it

provides some quality, although less than 1.0, in determining these variables. The qual-

ity of the heart rate measurement would be improved through high-level fusion of the

blood pressure measurements with data from additional sensors such as a blood flow

sensor.

In order to determine how to best serve the application, MiLAN must know (1) the

variables of interest to the application, (2) the required QoS for each variable, and (3)

the level of QoS that data from each sensor or set of sensors can provide for each vari-

able. Note that all of these may change based on the application’s current state. As

shown in Figure 3.3, during initialization of the application, this information is con-

veyed from the application to MiLAN via “State-based Variable Requirements” and

“Sensor QoS” graphs. Examples of these graphs are shown in Figures 3.4 and 3.5, re-

spectively. Figure 3.4 shows the required QoS for each variable of interest based on

the current state of the system and the variables of interest to the application, where

these states are based on the application’s analysis of previously received data. For a

particular state (a combination of system state and variable state), the State-based Vari-

able Requirements Graph defines the required QoS for each relevant variable. Because

variables can be named in multiple variable states, MiLAN must extract the maximum

QoS for each selected variable to satisfy the requirements for all variable states. The

health monitor application has two state types, a system state that includes the patient’s

overall stress level, as well as variable states for each variable that can be monitored.

The State-based Variable Requirements Graph specifies to MiLAN the application’s

minimum acceptable reliability for each variable (e.g., blood pressure, respiratory rate,

etc.) based on the current state of the patient. For example, the figure shows that when a

patient is in a medium stress state and the blood pressure is low, the blood oxygen level

must be monitored with a quality level of 0.7 and the blood pressure must be monitored

with a quality level of 0.8.

For a given application, the QoS for each variable can be satisfied using data from

one or more sensors. The application specifies this information to MiLAN through the
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Figure 3.4: Example State-based Variable Requirements Graph for for the personal

health monitor application. The graph specifies the variables and the required QoS

when the application is in various states. This graph illustrates only a subset of the

application’s possible states.

Sensor QoS Graph. When multiple sensors are combined to provide a certain reliability

level to the variable, we refer to this as a single “virtual sensor.” Figure 3.5 shows the

Sensor QoS Graph for the personal health monitor. This graph illustrates the important

variables to monitor when determining a patient’s condition and indicates the sensors

that can provide at least some quality to the measurement of these variables. Each

line between a sensor (or virtual sensor) and a variable is labeled with the reliability

that the sensor (or virtual sensor) can provide to the measurement of that variable. For

example, using data from a blood pressure sensor, the heart rate can be determined

with a reliability level of 0.7, but combining this with data from a blood flow sensor

increases the reliability to 1.0.

Given the information from these graphs as well as the current application state,

MiLAN can determine which sets of sensors satisfy all of the application’s reliability

requirements for each variable. These sets of sensors define the application feasible set

FA, where each element in FA is a set of sensors that provides reliability greater than

or equal to the application-specified minimum acceptable reliability for each specified

variable. For example, in the personal health monitor, for a patient in medium stress

with a high heart rate, normal respiratory rate, and low blood pressure, the application
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graph specifies which sensors, or sets of sensors, can provide what level of QoS for each

variable. This graph illustrates only a subset of the variables that should be considered

by the application.

feasible sets in FA that MiLAN should choose to meet the specified application QoS

are shown in Table 3.1. MiLAN must choose which element of FA should be provided

to the application. This decision depends on network-level information.

3.1.2 Network Control

The properties of specific network types as well as the current condition of the network

can constrain the set of feasible sets to a subset of those in FA. As shown in Figure 3.3, it

is the network plug-in’s job to determine which sets of nodes (sensors) can be supported

by the network, as well as other protocol-specific information, such as what role each

node must play.

MiLAN can use a service discovery protocol provided by the system architecture

(e.g., SDP in Bluetooth), or provide its own, to find new nodes and learn when nodes are

no longer accessible (due to mobility or exhaustion their energy resources). The service

discovery protocol must return important information about each node, such as the type

of data that can be provided by that node, the modes that the node can operate in, the

transmission power levels, and the current residual energy level. Using this information

from each currently available node, the network plug-in must determine which sets of

nodes can be supported by the network.
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Set # Sensors

1 Blood flow, Resp. rate

2 Blood flow, ECG (3 leads)

3 Pulse oxymeter, Blood pressure, ECG (1 lead), Resp. rate

4 Pulse oxymeter, Blood pressure, ECG (3 leads)

5 Oxygen measurement, Blood pressure, ECG (1 lead), Resp. rate

6 Oxygen measurement, Blood pressure, ECG (3 leads)

Table 3.1: Feasible sets FA for the personal health monitor application for a patient in

medium stress with high heart rate, normal respiratory rate, and low blood pressure.

If we assume that all nodes are on a single-hop, centralized network, bandwidth

constraints place limitations on the total amount of data that can be transmitted to the

application. For example, if all nodes are on a Bluetooth piconet or an 802.11 network

operating in infrastructure mode, all nodes transmit data directly to the application

(residing at the master in Bluetooth or the Access Point in 802.11). Therefore, the

network constraint is the total rate of all data transmitted.

However, in more complex environments such as Bluetooth scatternets, 802.11

multi-hop networks, or hybrid networks, network topology plays an important role

in determining network feasibility and power costs. For example, in Bluetooth it is

necessary to choose a feasible scatternet topology, where nodes selected in the feasi-

ble set allow the network to be fully connected. In addition to ensuring the feasibility

of a network configuration, we must also consider how the power costs of nodes are

affected by their roles in the network (e.g., piconet masters or bridge nodes in Blue-

tooth scatternets [66], coordinators in Span [45]). The power cost of using a node is a

combination of the power to run the device, the power to transmit its data, the power

to forward the data of other nodes in the set, and the overhead of maintaining its role

in the network. These costs can be influenced by MiLAN through techniques such

as transmission power control, efficient traffic scheduling, and the setting of different

sleep states. In multi-hop networks, routing data from nodes to the application also

becomes an important factor. The plug-in should know all of the network’s protocol-

specific features that can be modified and choose how to set these features to make sets

feasible and energy-efficient.
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The subsets of nodes that can be supported by the network define a network feasible

set FN . As only sets in FA provide the required application QoS, we can combine these

two constraints to get an overall set of feasible sets:

F = FA ∩ FN (3.1)

For the personal health monitor, suppose that the sensors and processors communi-

cate using an IEEE 802.11b network. As these networks can support overall throughput

of nearly 11 Mbps, the network is able to support the transmission of all data from each

of the sensor sets in FA from Table 3.1 in real-time. However, if other applications are

running simultaneously on the network and the personal health monitor application can

only utilize 100 kbps of the throughput, the network would not be able to support the

transmission of data from the ECG sensor with either 3, 5, or 12 leads. Thus, the set

of network feasible sets FN will only partially overlap with FA. This overlap is the set

of feasible sets F and consists of sets 1, 3, and 5 in Table 3.1. MiLAN must choose

a set of sensors from one of the sets in F based on the tradeoffs discussed in the next

section. If F is empty, MiLAN should raise an exception to the application, allowing it

to decide the appropriate action.

3.1.3 Tradeoffs

Among the sensor sets in F , MiLAN chooses a set that represents the best tradeoff

between performance and cost . How should “best” be defined? This depends on the

application – the MiLAN framework supports any method of deciding how to choose

an element of F . In most sensor network applications, we want to allow the application

to last as long as possible using the limited energy of each of the sensors. Simple

approaches to choosing sensor sets may yield the set from F that consumes the least

power or that will run for the maximum lifetime before the first sensor dies. However,

if we want to ensure that the application can run at the required QoS level as long as

possible, we should instead optimize the total lifetime by intelligently choosing how

long to use each feasible sensor set, as described in Chapter 4. In some cases, there are

multiple ways to schedule sensors so that the same total network lifetime is achieved. In

these cases, we may want to maximize the average quality of the sensor sets over time.

For some applications, the goal may be to maximize some combination of lifetime and
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quality. MiLAN is flexible enough to incorporate any of these or other optimization

criteria.

In Figure 3.3, we show this tradeoff computation occurring in the core MiLAN

component. After the computation is complete and the first set of sensors is chosen,

the MiLAN core informs the plug-in of the selection, and the plug-in configures the

network accordingly, using information about the role each sensor should play.

3.2 Summary

In this chapter, we have presented a generalized middleware framework for sensor net-

works named MiLAN that allows the network to dynamically configure itself accord-

ing to application QoS goals and current network conditions. A preliminary version of

the MiLAN middleware has been implemented on a Linux platform with a Bluetooth

plug-in using the BlueZ Bluetooth protocol stack. Using this implementation, we have

demonstrated a simple application transmitting ECG data to a remote monitor with a

display. We have also begun implementation of the MiLAN architecture on the TinyOS

platform, and a full implementation is planned in the future. An enabling technology

called X-Lisa [68], which facilitates information-sharing between different protocol

layers, may ease further transition of MiLAN to TinyOS.

The middleware proposed in this chapter provides a framework for tuning the pa-

rameters of network protocols and policies in order to meet quality of service goals.

With this framework in place, MiLAN can optimize sensor role assignment in order

to maximize network lifetime for a given application requirement. In the following

chapters, we show how this optimization can be accomplished and present several dis-

tributed protocols and policies for performing role assignment in real life sensor net-

works.



Chapter 4

Optimizing Sensor Role Management

In some situations, sensor networks may consist of sensors with overlapping coverage

areas that provide redundant information, giving an application a quality level that is

more than necessary. Rather than provide this unnecessary redundant data, it may be de-

sirable to reduce power consumption and conserve energy in these sensors to lengthen

the lifetime of the network or minimize the rate at which the sensors must be replen-

ished with energy. This energy conservation can be accomplished through a number

of methods. For example, sensors’ reporting rate or data resolution can be adjusted,

or the sensors can be turned off completely for an extended period of time. Balancing

the application quality with this goal of energy-efficiency essentially provides a type of

application quality of service (QoS). In this chapter, we show how the use of several

strategies, including redundant sensor deactivation and energy-efficient routing, can

be optimized to extend network lifetime while meeting a required level of application

quality. In the optimizations presented in this chapter, the specification of time-varying

roles (i.e., when individual sensors should sense data, how much of others’ data each

sensor should route) is integrated for maximum efficiency.

Consider an application that relies on data from a number of sensors in a network.

The individual sensor data is gathered at a base station in order to provide a complete

picture of the region of interest. One or more sensors may be used at any time to provide

data to the application, but only certain subsets of available sensors may satisfy channel

bandwidth and/or application quality of service constraints. For example, consider

the network shown in Figure 4.1. Each sensor is capable of reliably monitoring some

portion of the environment, illustrated in the figure. If we wish to detect the presence of

48
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Figure 4.1: Example sensor coverage scenario.

phenomena anywhere in the environment with minimal redundancy, there are a number

of sensor sets, also shown in Figure 4.1, that cover the entire environment and may be

used for this purpose.

The problem that we wish to solve is to determine which sensor sets should be used

and for how long so that the lifetime of the network is maximized while the necessary

quality of service is always maintained at the application. Assume that the power con-

sumption and initial energy among the sensors in this case is identical (1 µW and 1

µW -day, respectively). When deciding which sensor set to use, a naive approach may

be to activate the set with the fewest required active sensors. This would result in the

choice of sensor set f1. After this set is used for one day, the energy supplies of sensors

s1 and s2 would be exhausted and there would remain no sensor set from the table in

Figure 4.1 that covers the entire region of interest. Thus, the surveillance application

would obtain a lifetime of one day, during which it could achieve the desired level of

QoS. However, if a more intelligent approach were used, sets f2 and f3 could be chosen

and used subsequently, allowing the surveillance application to operate for two days at

its desired level of QoS.

In this chapter, we generalize this sensor role management optimization problem for

single hop sensor networks and show how it can be solved using linear programming.
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The problem is later generalized to networks where multi-hop forwarding is required

to deliver data to the data sink.

4.1 Single Hop Wireless Sensor Networks

We will refer to the complete set of sensors and their locations as S = {s1 . . . sNS
} and

L = {l1 . . . lNS
} , where NS represents the number of sensors deployed in the network.

In general, sensors in the network are capable of operating in multiple active modes

and additionally in sleep mode, where power consumption is negligible. An example

of a sensor that is capable of operating in multiple active modes is a video camera that

can send data at variable resolution or with a variable frame rate. For simplicity, in this

section we will assume that nodes only operate in a single active mode. All sensors

can communicate directly with a single data sink s∗, which is not energy-constrained.

In order to achieve the application’s required QoS level, it may be possible to use a

number of the sensors by themselves or in combination, constituting a feasible sensor

set. A sensor set is determined to be feasible if

• the total bandwidth necessary to support the set is below the capacity of the net-

work and the traffic can be scheduled, and

• the set provides the application with a quality that meets its minimum quality

requirements.

We will refer to the set of feasible sensor sets as F = {fi . . . fNF
}. A single feasible

sensor set is defined by the sensors that compose the set as well as their operational

mode such that fi = {sk1
j1 . . . s

kNfi
jNfi

}, where superscripts indicate the operating mode of

the sensors in the set. It should be noted that only sensor sets in which it is not possible

to reduce power consumption in any one sensor while not increasing power consump-

tion in any of the sensors or falling below QoS requirements should be considered in

the optimization. In other words, the sensor sets should not provide unnecessarily re-

dundant coverage.

We must also introduce Rk, P sense
k , and Etx,bit, which represent the bit rate of a

sensor operating in mode k, the sensing power consumption of a sensor operating in



51

mode k, and the communication energy consumption per bit, respectively. In this chap-

ter, wherever the subscripts are dropped from Rk and P sense
k , it should be assumed that

we are considering homogeneous sensors capable only of operating in a single active

mode. In general, Etx,bit is dependent on the distance of the link being transmitted over;

however, in this section, we will assume a constant value with respect to link distance.

In addition to the bandwidth and QoS constraints that were considered when form-

ing the set of feasible sensor sets F , we are constrained by the initial battery levels Ej

of the sensors such that

∑

i,k:sk
j∈fi

(RkEtx,bit + P sense
k )× Ti ≤ Ej ∀sj (4.1)

We wish to develop a schedule that determines the length of time that each sensor

set should be used to provide data to the application. Let Ti represent the length of time

that feasible sensor set fi is being used in the schedule. The objective of the problem is

to maximize

Ttotal =
NF∑

i=1

Ti (4.2)

Typically, the most difficult aspect of maximizing sensor network lifetime for large-

scale sensor networks is finding the feasible sensor sets. Depending on the application,

this procedure can be very simple or very difficult. A simple example can be drawn

from a personal health monitor system. In this application, a number of medical vari-

ables (e.g., blood pressure, temperature, oxygen levels, etc.) need to be monitored by

some combination of sensors attached to the body, some of which are capable of mea-

suring multiple variables. An example of the sensors that may be used in the system, as

well as the variables that must be monitored and the associations between the sensors

and variables, is given in Table 4.1. In this case, the process of finding the feasible sen-

sor sets is not difficult and may be carried out manually. Another class of applications

that might require sensor role optimization are those requiring coverage of some region

of interest. In such applications, each sensor is assumed to have some sensing range

and hence a coverage region, within which the sensor can detect any events of interest

with high probability. In other words, the active sensors at any point in time must form

a cover set. It may be reasonable to find all possible cover sets when the size of the
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◦ Heart rate

¦ Blood pressure

/ Muscle activity

◦ Blood oxygen

? Respiratory rate

(a) Variables

Sensors

◦ ¦ ◦ Blood pressure

¦ ◦ Blood pulse

◦ ¦ Blood flow

◦ ? ECG

◦ ¦ ◦ Pulse oxymeter

/ EEG

/ EMG

/ ? Respiratory sensor

(b) Sensors

Table 4.1: Variables measured by different sensors in a personal health monitoring

application.

network is on the order of tens of nodes; however, as the number of cover sets grows

exponentially with the network size, this becomes impossible for large-scale networks.

4.1.1 Large-Scale Networks

Our work has shown how to optimize network lifetime when it is possible to enumerate

all possible feasible sensor sets [69]. In the examples of the personal health monitoring

system and the coverage application in small-scale networks, it is not computationally

intensive to find all possible feasible sensor sets. However, the problem of finding

all feasible sensor sets may become extremely large and computationally infeasible

for networks consisting of a large number of sensors and a large amount of sensing

redundancy. For example, in the coverage application, the number of cover sets grows

exponentially with the number of sensors deployed, making the enumeration of all

cover sets impossible for large-scale networks.

Rather than performing this enumeration, it would be ideal to find a subset of F

whose optimal scheduling would yield a similar lifetime as the optimal scheduling of

F . Following our work in [69], Berman showed how the calculation of the feasible sets

can be accomplished simultaneously with the scheduling of the sets [70]. The work is
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Figure 4.2: Garg-Könemann algorithm.

based on an algorithm proposed by Garg and Könemann [71].

For an arbitrary linear program (LP) packing problem

max{cT x|Ax ≤ b, x ≥ 0}

if an approximation algorithm for finding the column j of the matrix A that mini-

mizes the value of lengthy(j) =
∑

i
Aijy(j)

c(j)
for any arbitrary vector y, then the Garg-

Könemann algorithm yields a solution whose goal function value cT x is arbitrarily close

(within some factor ε) to the optimal value while using only a subset of the columns of

the complete matrix A. The Garg-Könemann algorithm proceeds as shown in Figure

4.1.1.

In order to use the Garg-Könemann algorithm to solve the sensor scheduling prob-

lem, the vector b is replaced by the initial energy vector E and the vector x is replaced

by the time schedule vector T . The complete set of feasible sensor sets and individ-

ual nodes’ power consumption during those sets can be represented in A by setting the

elements Aij as

Aij =





P sense
k sk

i ∈ fj

0 else
(4.3)

Since we assume that all cover sets provide adequate QoS, all elements of c(j) are set

to unity. The Garg-Könemann algorithm applied to the sensor cover set scheduling
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2 While D < 1
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.
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k
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E′i
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) ∀sk

i′ ∈ fj

8 D = ET y.

Figure 4.3: Garg-Könemann algorithm applied to the sensor scheduling problem.

problem proceeds as shown in Figure 4.1.1. Line 4 consists of iteratively choosing a

cover set. Line 6 schedules that cover set to be used for a round length proportional to

the initial energy of the most constrained sensor in the cover set.

Simple simulations illustrate the attainable lifetime as a function of the number of

sensors deployed in a network. Figure 4.4 shows results from such simulations where

the number of sensors is varied while the sensing range remains fixed at 150m. We set

the value of ε equal to 0.05 while finding the cover sets for these simulations.

Using the Garg-Könemann algorithm greatly reduces the number of sensor sets

that need to be found to calculate a near optimal schedule. However, the calculation

involved in this task is not insignificant. As ε is set smaller (i.e., the output of the

algorithm becomes more optimal), the round lengths calculated in line 7 of Figure

4.1.1 become small very quickly. In other words, the number of sets that need to be

calculated increases very quickly as ε decreases. Figure 4.5 shows the round length as

a function of ε in a network of 200 nodes, each containing a potential lifetime of 1. As

the figure shows, for the solution to be guaranteed to perform within 5% of its potential

maximum lifetime, approximately 2500 cover sets must be found. Fortunately, such

a large number of cover sets may not need to be found in practice. Once the cover

sets have been chosen, their scheduling may be modified through a linear program

optimization, and this optimized lifetime can often match or nearly match the true upper

bound of the lifetime even when a very large value of ε is used.
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remains constant, lifetime increases, as expected.
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sensor nodes.
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4.2 Multi-hop Wireless Sensor Networks

The work in [70] has shown how the single-hop scheduling problem can be approxi-

mately solved within reasonable time constraints even for large-scale networks by con-

sidering only an important subset of the possible cover sets in the network when opti-

mizing the sensor scheduling. In this section, we extend the sensor scheduling problem

to account for multi-hop networks and present a solution based on the method used in

[70].

In the previous section, we stated that in general, Etx,bit depends on the distance of

the link being considered. In this section, we will use the notation Etx,bit(si1 , si2) to

represent the energy necessary for si1 to transmit a bit to si2 . We must also introduce

Erx,bit(si1 , si2), which represents the energy consumption necessary for si2 to receive a

bit from si1 . Now that we are considering multi-hop networks, the free variables that

need to be solved for include the routing information as well as the scheduling infor-

mation that was determined by finding T . The routing information can be expressed

through the variables ti1i2 and pi1i2 , which represent the total traffic and the fraction of

traffic, respectively, that sensor si1 forwards toward the base station using si2 as its next

hop.

pi1i2 =
ti1i2∑

i′:si′∈S∪s∗ ti1i′
(4.4)

Additional requirements regarding the conservation of data flow (i.e., that the sum of

a node’s incoming data and its generated data must equal its outgoing data) need to be

introduced into this problem.

∑

i′:si′∈S∪s∗
tii′ =

∑

i′:si′∈S

ti′i +
∑

j

∑

k:sk
i ∈fj

RkTj ∀si ∈ S (4.5)

Because we need to consider routing, the energy constraint originally defined in Equa-

tion 4.1 now becomes

∑

j

∑

k:sk
i ∈fj

P sense
k Tj +

∑

s′i∈S∪s∗
tii′Etx,bit(si, si′) +

∑

s′i∈S

ti′iErx,bit(si′ , si) ≤ Ei ∀si ∈ S

(4.6)
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This constraint limits the total amount of time any node can route other nodes’ data and

the total amount of time any node can be an active sensor by that node’s initial energy.

Again, the goal of the multi-hop network optimization problem is to maximize Ttotal,

the sum of the time for which individual feasible sets are used.

4.2.1 Consideration for Networks with Non-Static Data Sinks

If the data sink of the network does not remain constant with respect to node identity

or location, some of the constraints of the previous section must be modified in order

to perform the optimization. Consider a mobile data sink capable of residing at several

locations represented by L∗ = {l∗1 . . . l∗N∗
L
}. In this case, the constraints that maintain

the conservation of data flow must be given on a per-location basis. Thus, Tj must be

modified as Tjm to represent the scheduled time of set fj while the data sink resides

in location l∗m. Also, pi1i2 and ti1i2 must similarly be modified to pi1i2m and ti1i2m,

respectively. Incorporating these modifications, equations 4.5 and 4.6 become

∑

i′:si′∈S∪s∗
tii′m =

∑

i′:si′∈S∪s∗
ti′im +

∑

j

∑

k:sk
i ∈fj

RkTjm ∀si ∈ S, l∗m ∈ L∗ (4.7)

and

∑
m




∑
j

∑
k:sk

i ∈fj
P sense

k Tjm+
∑

s′i∈S∪s∗ tii′mEtx,bit(si, si′)+
∑

s′i∈S ti′imErx,bit(si′ , si)


 ≤ Ei ∀si ∈ S (4.8)

while the goal is to maximize

Ttotal =
∑

j

∑
m

Tjm (4.9)

4.2.2 Joint Optimization for Multi-hop Sensor Networks

In order to optimize sensor network lifetime for a multi-hop sensor network, one may

find a reasonable representation of F through the Garg-Könemann algorithm and pro-

ceed to a linear programming solution, using Equations 4.7 and 4.8 as constraints. This

will be referred to as approach I for the remainder of this section. Alternatively, it
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is possible to directly apply the Garg-Könemann algorithm to the multi-hop sensor

scheduling problem. This approach may be easier since the implementation is very

simple and easily distributable. Recall that a single feasible sensor set in a single hop

sensor network could be represented by a column of the matrix A, where each element

of the column is proportional to the power consumption of a single sensor node. In

the case of the single hop network, the values of the elements in a single column in A

depend only on the active sensing mode for a node in the given sensor set. To model the

multi-hop sensor scheduling problem as a packing LP problem, columns of the matrix

A represent the power consumption of each node for a single configuration of the net-

work (including active sensors comprising a cover set and their routes to the data sink)

rather than simply the power consumption of the nodes constituting the cover set. For

this modeling, ti1i2m must be modified to ti1i2j , which represents the total amount of

traffic forwarded by sensor si1 toward the data sink using si2 as its next hop during the

operation of configuration fj . It is assumed that the data sink location is fixed during

the operation of a given configuration and is represented as l∗j . Similarly, pi1i2m must

also be modified to pi1i2j , which represents the fraction of traffic forwarded by sensor

si1 toward the data sink using si2 as its next hop during the operation of configuration

fj . Elements of A are set as the sum of the sensing and routing components of power

consumption such that

Aij = As
ij + Ar

ij (4.10)

where

As
ij =





P sense
k sk

i ∈ fj

0 else
(4.11)

and

Ar
ij =

∑

si′∈S∪s∗
bii′jEtx,bit(si, si′) +

∑

si′∈S

bi′ijErx,bit(si′ , si) (4.12)

where b represents the traffic rates induced on the network during a given configuration

and can be derived from the currently used feasible sensor set and p. We can apply the

Garg-Könemann algorithm to the problem

max{cT T |AT ≤ E, T ≥ 0}
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where cT again consists of a vector whose elements are set to some arbitrary positive

constant.

The remaining implementation task is to find an approximation algorithm for find-

ing the minimum length column of yA. For this, we turn to a greedy algorithm similar

to the one used in the single hop optimizations. For a given cover set (i.e., sensing

portion of a configuration), the length of yAj can be minimized by using shortest cost

paths with routing costs of yi applied to each sensor si. Using these cost assignments,

a link cost can be set as

Ci1i2 = Etx,bit(si1 , si2)yi1 + Erx,bit(si1 , si2)yi2 (4.13)

and shortest cost routes can be easily found using a slightly modified version of Dijk-

stra’s algorithm. To approximate the column Aj of matrix A that minimizes yAj , we

can use the same greedy algorithm as in the previous section to find the cover sets and

subsequently find the shortest cost routes. This will be referred to as approach II in

this section. Alternatively, since the selection of one node for inclusion in the cover set

affects not only itself, but also its would-be routers, it may make more sense to pre-

calculate the routes and add sensors to the cover set based on their cumulative route

costs rather than simply their own costs yi . This will be referred to as approach III in

this section.

4.2.3 Simulations

In order to compare the performance of the approaches that were considered, we ran

simulations of a coverage application in a disc network with a 500m radius. We

also compared against approaches where scheduling and routing decisions were made

blindly. In these blind approaches, routes were calculated according to a shortest cost

algorithm with link costs equal to

Ci1i2 =
Etx,bit(si1 , si2)R

Eres(si1)
+

Erx,bit(si1 , si2)R

Eres(si2)
(4.14)

where Eres(si) represents the residual energy of sensor si. The active sensors were se-

lected at the beginning of rounds (with pre-determined length) according to a weighted

greedy algorithm with each node’s cost assigned as Psense

Eres(si)
in the approach using post-

computed routes (called approach IV) and as the sum of its cumulative route cost and
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Psense

Eres(si)
in the approach using pre-computed routes (called approach V). We used the

energy model of [36], in which the energy to transmit and receive a bit were

Etx,bit(si1 , si2) = Eelec + εfs‖li1 − li2‖2 (4.15)

and

Erx,bit(si1 , si2) = Eelec (4.16)

respectively. Eelec (the electronics energy) was set to 50 nJ and εfs (the constant that

characterizes the power amplifier) was set to 10 pJ/m2. In our simulations, 200 sen-

sors were randomly deployed, each containing equal initial energy. The sensing and

transmission range were set to 150m and 250m, respectively. The sensing power was

varied to see the effect of the importance of routing on the performance of the different

routing and scheduling approaches. In order to avoid hot spots in the network, the data

sink was capable of moving between several locations in the network.

Figure 4.6 shows the results of our simulations. The plot shows that the approach us-

ing the Garg-Könemann algorithm to find the sets followed by joint scheduling/routing

optimization, as well as the integrated multi-hop Garg-Könemann algorithms, with both

pre-computed and post-computed routing, perform nearly as well as each other for all

values of Psense. Thus, it can be seen that the integrated multi-hop implementation of

the Garg-Könemann algorithm can attain nearly optimal lifetime and outperforms the

blind approaches.

4.3 Summary

In this chapter, we have reviewed the means by which the roles of sensors can be op-

timized so that network lifetime can reach its potential maximum for given energy

constraints and application requirements. However, using these optimized approaches

may not be practical, as the required computation may exceed the capabilities of real-

istic sensor nodes, or even certain data sink nodes, especially in large-scale networks.

In subsequent chapters of this dissertation, we will present some protocols that can be

used to accomplish the goals of these optimizations through distributed means.
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Figure 4.6: Comparison of approaches for schedule and routing optimization for

Psense = 0 (a), Psense = 50µW (b), and Psense = 10mW (c).



Chapter 5

Sensor Resolution Management

In Chapter 3, we presented a framework for adapting the network to current application

QoS requirements. In this chapter, we consider the QoS requirements for a sensor

network application whose goal is to reconstruct of a band-limited signal sensed by a

subset of sensors in the network. We propose a method to decide which nodes in a

wireless sensor network should be used to actively sense the environment and which

should remain off in order to conserve energy. We consider the situation where a large

number of sensor nodes are randomly deployed within the region to be monitored such

that in all subregions of the area, it is likely that the density of the sensor nodes is more

than necessary to meet the signal-to-noise ratio (SNR) requirements of the application.

In such situations, sensing accuracy can be traded for energy-efficiency, meaning that

a smaller subset of sensor nodes can be used to observe the area and the set of active

sensors may be rotated throughout the lifetime of the network.

5.1 Blue-Noise Spatial Sampling

In this chapter, we describe a protocol for sensor resolution management that is based

on the blue noise masking algorithms that are used in many image processing applica-

tions such as image half-toning. The traditional purpose for using blue noise masking

is that half-toned images created from a blue noise mask appear very accurate to the

human eye when compared with images created from other simpler masks. While this

property is not particularly beneficial to our application of recreating a data image of

some physical phenomenon to be sensed, blue noise masks have other desirable at-

62
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tributes. Particularly, sampling points in a blue noise sampling pattern are very well

spaced for a random pattern and rarely yield large areas absent of sampling points.

Thus, when stochastically sampling a bandlimited signal, the maximum spatial dis-

tance between sampling points is nearly minimized using a blue noise pattern for a

given number of sampling points. In other words, the number of points necessary to

stochastically sample a bandlimited signal, meeting the Nyquist rate in all subregions,

is nearly minimized using a blue noise spatial sampling pattern. Since sampling points

are analogous to active sensors in our application, selecting sensors through a blue noise

sampling algorithm can lead to significant energy savings as the number of sensors re-

quired to be active is minimized.

A blue noise pattern is a statistical model for describing stochastic patterns with

very little frequency content below a blue noise principal frequency fBN [72]. A binary

blue noise mask/pattern pBN(x) −→ PBN(f) is a special case of a blue noise pat-

tern that consists of similarly sized impulses distributed in a homogeneous manner and

maintains a stochastic nature (i.e., uniform distribution of the impulses is prohibited).

By distributing impulses in such a way, the resulting spectral content of the pattern is

composed almost entirely of high frequency content. A binary blue noise pattern may

be described by the following equations.

pBN(x) =
∑
xi

δ(x− xi) (5.1)

∫ fBN

0+
PBN(f)df ¿

∫ ∞

fBN

PBN(f)df (5.2)

Several algorithms have been proposed to generate binary blue noise patterns [73–

76]. The method that is of interest to us is that which was proposed in [73] and im-

proved in [74]. In their work, the authors propose a dart throwing method, mimicking a

stochastic Poisson disc method. In this method, randomly chosen new points (impulses)

are added to the point set if and only if no other points are located within a specified

radius centered at the location of the new points. A low pass spatial filter is then used to

determine which points contribute the most low frequency content (the points with the

highest value of the filtered sampling pattern). These points are subject to relocation

within the regions with the least low frequency content. Our proposed sensor selection

method uses a modification of this algorithm to create a binary blue noise pattern.
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(a) (b)

Figure 5.1: Blue noise (a) and white noise (b) sampling patterns.

While the optimal sampling pattern for a bandlimited signal consists of samples at

regular intervals (i.e., a grid pattern for images), other sampling patterns can be used

with little performance loss. As long as the maximum spacing between sensors is small

enough to meet the Nyquist sampling rate criteria, several algorithms can be used to

perform ideal reconstruction, converging to a reconstructed signal with no error from

the original [77–79]. In fact, when employing a sampling pattern based on a binary

blue noise mask, a source signal can be reconstructed nearly as optimally as from a

grid pattern. In other words, the number of sampling points necessary to perfectly

reconstruct a bandlimited signal is only slightly higher when sampling with a blue

noise pattern than when performing regular sampling at the Nyquist rate. Furthermore,

the necessary number of sampling points is much less for blue noise sampling than

random (white noise) sampling. Even if the local sampling rate falls below the Nyquist

rate in some subregions, a blue noise sampling pattern will achieve higher accuracy

than a white noise sampling pattern with the same number of sampling points. Figure

5.1 illustrates a typical blue noise sampling pattern and a typical random (white noise)

sampling pattern. As the figure shows, the sampling points in the blue noise pattern are

more evenly spread out than those in the white noise pattern.
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5.2 Application to Sensor Resolution Management

Since the objective of our application is to reconstruct a spatially dependent signal such

as a temperature field, we can consider the cumulative sensor data to be a stochastically

sampled signal, sampled at the active sensor locations, and apply blue noise masking to

our selection algorithm. Specifically, since the random deployment of the sensors limits

us such that we must stochastically (rather than regularly) sample the phenomenon, we

would like to sample with a blue noise pattern so that the accuracy is as high as possible

for a given number of sensors. Thus, we designed the sensor selection algorithm using

the intuition of the algorithm for creating blue noise patterns presented in [74].

We assume an image grid overlayed on the sensor network region with resolution

high enough that each sensor’s location can be precisely mapped into a single grid point

and each point on the grid is associated with no more than one sensor. If a sensor is

associated with a grid point, the grid point is assigned a value of 1; otherwise, it is

assigned a value of 0. The resulting binary pattern pinitial[i, j] should have white noise

spectral characteristics because of our assumption about the random deployment of

sensors.

In our proposed method, a low pass filter relaxation algorithm is applied to the sam-

pling pattern pcurrent[i, j], which is initially set to pinitial[i, j]. The characteristics of the

low pass spatial filter hBN [i, j], which is a symmetric filter based on a one-dimensional

impulse response hBN(d), should depend on the characteristics of the phenomenon

that is being observed. More specifically, the coefficients of the low pass filter are de-

termined such that the frequency content of the observed variable falls within the filter’s

pass band. Meanwhile, the selection of the order of the filter is essentially a tradeoff be-

tween the desired performance of the algorithm and computational cost. The algorithm

filters the sampling pattern to create F [i, j], such that F = pcurrent ∗ hBN . Next, the

algorithm finds the maximum value of F [i, j] at the pixels where any currently active

sensors reside, deactivates the corresponding sensor, and updates pcurrent by inverting

the value of the pixel that the sensor is mapped to. Essentially, this results in the re-

moval of a sensor that contributes significant low spatial frequency content. These steps

are carried out iteratively until the maximum filter output drops below a predetermined

threshold or the number of remaining active sensor nodes drops below a certain value.

The resulting sampling pattern pBN [i, j] is shown to have blue noise spectral character-
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istics [74].

5.3 Incorporation of an Energy Cost

A challenging design goal for wireless sensor networks is to allow the networks to

operate unattended for extended periods of time. In addition to reducing overall power

consumption through methods such as the one described above, it is also important to

avoid using nodes with little residual energy. Consider a network that chooses active

sensors based on a method similar to the one described above, where chosen sensors

operate until their energy supply becomes completely depleted. Toward the end of the

network lifetime, the available sensors from which to choose will be much more sparse

and so many more sensors may need to be chosen to achieve the same SNR as in the

early stages of the network. In addition to reducing the number of active sensors, we

would also like to extend the time before any of the sensors in the network die in order

to avoid this situation.

To achieve this goal, we add a modification to the proposed sensor selection method

in which we incorporate energy costs. The energy costs are assigned according to a

monotonically decreasing function of the residual energy of the sensor nodes. In this

modified selection method, the low pass filter output is combined with an energy cost,

calculated from the residual energy of the sensor nodes at the pixels to which they are

mapped, according to

Cost(si) = F [x(si), y(si)]
α × Costenergy(si)

(1−α) (5.3)

where α (0 ≤ α ≤ 1) represents a tuning parameter that allows the designer to balance

a tradeoff between ideality of the sensor pattern and balanced energy distribution. In

essence, we are combing a redundancy cost with an energy cost. A typical energy cost

assignment might be simply

Costenergy(si) =
1

E(si)
(5.4)

where E(si) represents the residual energy of sensor si. The sensor with the highest

overall cost is deselected and again, these steps are repeated iteratively until the active

subset consists of the desired number of sensors or no longer guarantees a sufficient
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SNR. Following the selection algorithm, the selected subset of nodes is used to observe

the region for a certain time interval. After this interval, the selection algorithm is

repeated again with updated energy information of the sensor nodes in the network.

5.4 Distribution of the Algorithm

As wireless sensor networks are expected to scale on the order of thousands of nodes,

it is desirable to distribute self-organization algorithms. Conveniently, the nature of our

proposed sensor selection algorithm makes it easily distributable. The deactivation of

a sensor is affected only by sensors with distances of less than N×Tr

2
from the sensor,

where N represents the order of the filter used to create the blue noise sampling pattern

and Tr represents the resolution of the image grid that the sensors are mapped to. In

fact, there is not necessarily a need for any concept of a discrete grid, as long as each

sensor si is able to translate distance to its neighbors sn into the appropriate value of

the impulse response hBN(dist(si, sn)).

As long as sensors are synchronized and begin the sensor selection algorithm si-

multaneously, they may set a backoff timer according to

B(si) = W −K × F [x(si), y(si)] (5.5)

F [i, j] = sinitial[i, j] ∗ hBN [i, j] (5.6)

where W represents the maximum backoff window value, and K is chosen according

to the maximum expected node density and the specific filter used to create the blue

noise sampling pattern. Using this approach, sensors whose locations correspond to

high values of F will have low backoff timers, as they should have highest priority for

deactivation. When a sensor si’s timer expires, it broadcasts a beacon to its neighbors,

informing them of its intended deactivation. When the neighboring nodes sn receive

these deactivation beacons from si, they adjust their calculated filter output by sub-

tracting hBN(dist(sn, si)) and increase their backoff time by K ∗ hBN(dist(sn, si)). It

is convenient that sensors can only increase their backoff time as a result of receiving

another node’s beacon, meaning that the nodes must only synchronize once during the

algorithm. The algorithm should terminate once the density of the nodes approaches a
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threshold based on the desired SNR. In terms of the distributed algorithm, this means

that once a node resets its backoff value past a certain threshold Bmax, it should with-

hold its beacon, stop listening for beacons, and assume that it will remain active.

An illustration of how the algorithm works, using sensors deployed in a single di-

mension for clarity, is shown in Figure 5.2. Figure 5.2a shows the initial values of F

and the corresponding timer values at each of the sensor nodes. Since sensor s2 has

the highest value of F , it is the first to send a beacon. In response to this, the other

sensors update the values of F and their backoff timers, as shown in Figure 5.2b. s2’s

beacon causes sensors s1 and s3 to set their timers beyond Bmax, and the algorithm

terminates at these nodes. At this point, s5 has the highest value of F . After its backoff

timer expires, s5 sends a beacon and again, each of the other active sensors updates F

and their backoff timers accordingly (Figure 5.2c). By now, all of the remaining sen-

sors have increased their backoff timers beyond Bmax and remain active, sensing the

environment.

The energy cost modification can easily be incorporated into this distributed version

of the protocol.

5.5 Lifetime Optimization

Here, we propose another energy-efficient sensor selection approach. In this approach,

active sensor subsets are created in a similar manner as in the first approach (that does

not incorporate an energy cost). However, rather than deterministically deselecting

nodes at locations with the highest filter output, nodes are deselected with a weighted

probability proportional to this value. Having introduced this factor of randomness,

many active subsets, each providing the desired blue noise sampling characteristics,

can be calculated. It is possible to schedule the use of each of these subsets so that the

total lifetime of the monitoring application is maximized, as described in Chapter 4.

Unfortunately, such an optimized schedule is not as robust or as easily distributed as

the previously described algorithm and should only be used in static topology networks

where one sensor has the computational power necessary to solve such a problem.
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Figure 5.2: Distribution of the sensor selection algorithm. Figures (a)-(c) show the

value of F and the current backoff timer values for the sensors at three time instances.
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5.6 Simulations

We simulated a network of sensors randomly deployed within a 128m× 128m region,

of which a given number were activated to monitor a bandlimited phenomenon whose

average signal power was normalized to unity. We compared our proposed blue noise

sensor selection approach with the random selection of sensors (essentially, a white

noise sampling approach) and a grid-based approach. In the grid-based approach, a

hexagonal grid was overlaid onto the region where the sensors were deployed and the

closest sensor to each grid point was selected for activation. Following the selection

of nodes, the original data image (e.g., temperature field) was reconstructed from the

sensor samples using the Voronoi reconstruction algorithm [77] and the mean square

error was calculated.

In our first simulations, there were 250 sensors deployed to sense a signal that was

bandlimited to 1
20

m−1. We measured the mean square error of the reconstructed sig-

nal using each approach as we increased the number of sensors activated. Figure 5.3

shows that, as expected, for all methods the mean square error decreases as the num-

ber of activated sensors increases. However, the blue noise sampling method performs

slightly better than the grid-based sampling approach and much better than the random

(white noise) sampling approach. At first, it might seem surprising that the grid-based

approach does not perform the best. However, this method is only expected to perform

very well when the number of selected active sensors is much less than the number of

deployed sensors. Otherwise, the sampling pattern created from the grid-based method

may not resemble a grid at all, due to the random initial placement of the sensors. The

blue noise selection algorithm also holds the advantage of being able to easily distribute

the algorithm.

In Figure 5.3, the error goes to zero at approximately 150 sensors using the blue

noise and grid-based approaches and approximately 200 sensors using the random sam-

pling approach, meaning that at these points, the Nyquist sampling rate criteria is being

met in all subregions. Even when the sensor deployment is not sufficient to meet this

criteria, a subsampling approach can be beneficial if the deselected sensors are chosen

correctly. In Figure 5.4, we plot the results from a scenario similar to the one above,

but with a phenomenon that is bandlimited to 1
15

m−1. In this case, even when all 250

sensors are activated, the mean square error of the reconstructed signal does not go to
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Figure 5.3: Mean square error of reconstructed signal using the blue noise, grid-based,

and random selection methods for a phenomenon bandlimited to 1
20

m−1.

zero. However, with an intelligent selection scheme such as the blue noise selection

algorithm, a limited number of sensors may be deactivated without much further loss

in signal quality. Figure 5.4 shows that with the blue noise selection algorithm, the de-

selection of 20 sensors has almost no effect on signal quality, and even the deselection

of 40 sensors does not greatly affect signal quality.

Next, we ran some simple simulations to show the benefit of including an energy

cost. In these simulations, 400 nodes were deployed, of which 150 were selected for

activation. We used the inverse of a node’s residual energy as its energy cost, so that

Cost(si) = f(x(si), y(si))
α × (

1

E(si)
)(1−α) (5.7)

where E(si) represents the residual energy of sensor si, which was initially distributed

uniformly between 2J and 10J in these simulations. We varied α to observe the tradeoff

between ideality of the sampling pattern and appropriate distribution of the energy load.

For a large value of α, the algorithm is essentially unchanged from the original version,

while a small value of α means that good load distribution has become the more critical

goal. This tradeoff is illustrated in Figure 5.5. For large values of α, a very low mean

square error is achieved, but many nodes with little residual energy are selected. The
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Figure 5.4: Mean square error of reconstructed signal using the blue noise, grid-based,

and random selection methods for a phenomenon bandlimited to 1
15

m−1.

average residual energy of the selected nodes is the mean of the energy distribution —

6J . As we decrease the value of α, the average residual energy of the selected nodes

increases, as desired, while there is initially a very small rise in mean square error.

As the value of α decreases further, it can be seen that mean square error begins to

increase more rapidly. A typical application may want to operate somewhere near the

knee of the curve, simultaneously attaining the goals of accuracy of the reconstructed

data image and good load balancing.

Finally, we ran simulations to observe the lifetime achievable through the optimiza-

tion of the sensor schedule, as described previously. We compared the optimal sched-

ule’s lifetime with that of a blind selection method, in which we select the sensor subset

based on the unaltered blue noise selection algorithm, and iteratively reselect the subset

once a sensor in the subset dies. In these simulations, we deployed 100 sensors in a

128m× 128m field and chose active subsets of 50 nodes to observe a phenomenon that

was bandlimited to 1
35

m−1. For the optimized schedule, we chose 100 sensor subsets

of 50 nodes each according to the blue noise sampling pattern algorithm (with the nec-

essary modifications to add a factor of randomness to the selection algorithm). Nodes

were each given a lifetime of 1 (units are arbitrary).

In Figure 5.6, we show the average mean square error of the reconstructed signal
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Figure 5.5: Selection optimality versus load balancing tradeoff imposed by the assign-

ment of an energy cost.

as a function of time using the optimized sensor schedule and using the blind selection

algorithm, averaged over 20 trials. Since the order in which the subsets are used in the

optimized schedule is arbitrary, we show the average and standard deviation of these

subsets instead of a time plot. The blind selection scheme initially chooses a sensor

subset that reconstructs the data image with a low mean square error, as Figure 5.7(a)

shows for a single trial. However, once the energy of the nodes in the first subset is used

up (at time 1), there are only 50 sensors remaining from which to choose the next set

of 50. The resulting sensor subset’s sampling pattern, shown in Figure 5.7(b), does not

have the desired blue noise properties. This is reflected in the high mean square error

in the late stages of network operation. On the other hand, the optimization procedure

uses many high quality sensor subsets, a sampling of which is shown in Figure 5.8.

The optimal scheduling of these sets allows the network to perform well over a longer

period of time, for an average length of 1.43.

To observe the performance of the optimization program when the energy among

the deployed nodes is nonuniform, we simulated a network in which the nodes’ initial

energy was randomly distributed so that sensor lifetime ranged from 3 to 10 time units,

taking only integer values in order to simplify the simulations. Again, we found 100

sensor subsets from which we calculated the optimal schedule and compared with the
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Figure 5.6: Mean square error of optimized sensor schedule (mean and standard devia-

tion) compared with mean square error using the blind selection approach.

(a) (b)

Figure 5.7: Initial (a) and subsequent (b) sets chosen through blind blue-noise sensor

selection method.
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Figure 5.8: Sampling of sensor subsets used in the optimal sensor scheduling method.
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Figure 5.9: Mean square error of optimized sensor schedule (mean and standard devia-

tion) compared with mean square error using the blind selection approach, for randomly

distributed initial energy.

blind approach. The results are shown in Figure 5.9. The optimized schedule allows

the network to operate with a low mean square error for an average time length of 6.3,

while the average mean square error of the blind approach reaches an unacceptable

level by this time. Of course, the amount by which lifetime can be extended is affected

by factors such as how many subsets we run the optimization for as well as how much

randomness we add to the selection algorithm, which allows sensor pattern ideality to

be traded for sensor subset diversity.

5.7 Summary

In this chapter, we have presented a protocol for node selection in a wireless sensor

network that uses the concept of blue-noise sampling to ensure that sensor spacing is

approximately uniform throughout the network. This allows the phenomenon being

sensed to be reconstructed accurately by the end user. We have shown that this proto-

col can be distributed, enabling its use in large-scale sensor networks. We have also

shown how sensors’ residual energy can be incorporated into sensor selection so that

good sensor sets can be selected for a longer period if the activity of sensors is rotated



77

throughout network lifetime. In this section, we have considered the sensor selection

service for our target application. In the following chapters, we will shift our focus

to the routing layer and present protocols that consider application goals when making

routing and sensor selection decisions.



Chapter 6

Application-Aware Role Assignment

In the previous chapter, we considered application QoS requirements for an application

whose goal is to reconstruct a phenomenon sensed by a subset of sensors in the network.

Other sensor network applications may require coverage of the network by a subset of

sensors that are assigned a nominal sensing range. In this chapter, we consider role

assignment for such networks and focus on optimizing decisions at the routing layer as

well as sensor selection.

Traditionally, the objective of routing protocols for ad hoc wireless networks has

been to reduce power consumption by finding shortest path routes or routes that min-

imize overall energy consumption. Recently proposed routing methods have used

awareness of energy resources to avoid routing through nodes with little energy so

that network lifetime is extended as much as possible. In this chapter, we present sev-

eral cost functions — called “application-aware” costs — for routing in wireless sensor

networks that use awareness of energy resources as well as sensing capabilities of the

nodes (i.e., coverage areas) so that sparsely deployed regions are avoided and the sens-

ing application’s lifetime is extended. In our work to date and throughout most of this

chapter, the use of the application-aware costs is limited to routing decisions. However,

this is not a fundamental limitation of the application cost’s usefulness. Other work has

shown the applicability of these cost metrics in sensor selection and clustering decisions

[80].

78
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6.1 Application-Aware Routing Costs

Our work is motivated by the intuition that for collaborative sensor networks, applica-

tion goals should play a role in many of the network decisions, such as which sensors

to activate and how to route the data. Specifically, sensors that are more important to

the sensing application as data generators (e.g., those that are located in sparsely de-

ployed areas) and those whose residual energy is least should not be chosen as routers

over those that are less important to the application (e.g., those with more redundant

neighbors) and those with more residual energy. Because these more important nodes

are expected to consume more energy on average to sense data, they should be avoided

as potential routers for the data generated by other active sensors. While traditional

energy-aware routing costs will allow these important nodes to be routed around in the

later stages of the network since their energy resources will be depleted faster than the

less important nodes that are not used as often to sense data, care should be taken to

route around these nodes in the early stages as well. Guided by this intuition, we pro-

pose the use of application-aware routing costs that consider the importance of the node

to the sensor network application. Since certain nodes are more critical than others as

data generators, using an application-aware routing cost allows the network to identify

and avoid these sensors as routers.

The actual cost function depends on the quality of service (QoS) required by the

sensor network application. Consider, for example, a sensing application that requires

full coverage of a region of interest. In this case, it is important that all subregions

contain at least a single active sensor for as long as possible. Thus, sensors that have

several redundant neighbors covering the same subregions are less important to the

application than sensors that do not have many neighbors that can provide the same

data. In this case, an application-aware routing cost should be chosen such that these

more important sensors have a higher cost, so they are not selected as routers. One

way to achieve this goal is to consider not only the residual energy of the sensor to

which the cost is being assigned, but also that of its redundant neighboring sensors, as

described in this section. Thus, we propose using “application-aware” routing costs for

route selection in wireless sensor networks.
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6.1.1 Sensing and Network Model

In this work, we assume an application where the entirety or a portion of a region needs

to be monitored by any one or multiple sensors that are within their sensing range of that

location. We refer to the complete set of sensors as S = {s1, . . . , sNs}. If we require

the network to perform at some predetermined level of QoS, or fidelity, we can assign

a nominal sensing range to the sensors so that sensors can adequately monitor activity

within this sensing range (e.g., the signal-to-noise ratio exceeds a given threshold at

this range).

In the system model that we are considering, many sensors are deployed in the

region to be monitored. A data sink periodically queries the network for data. Sensors

in the network then reply to the query and send data, the entirety of which meets the

querying node’s QoS requirements, back to the querying node. It is often the case

that long network lifetime is more important than meeting very high QoS constraints.

Furthermore, it may be the case that the cumulative QoS of the data from each sensor

is marginally better than what could be provided by a subset of the sensors. In these

situations, many of the sensors can choose not to participate in the sensing of data,

but remain active to route traffic from those that do participate in sensing data. If one

were to observe over time which sensors participate most in the sensing task, it will

typically be the case that the sensors deployed in sparse areas with the least coverage

redundancy sense the most data, while those deployed in the denser areas with the most

coverage redundancy sense the least, since they can share the task with neighboring

sensors. Thus, we need to take this into account when assigning the node costs used in

route selection.

A common “energy-aware” routing cost used in wireless ad hoc networks is the

inverse of a node’s residual energy eres
i .

Cea(si) = 1/eres
i (6.1)

With the use of this routing cost, nodes with little energy remaining are unlikely

to be used to route the traffic of other nodes and, consequently, this increases the time

before the first nodes die. In the application model that we are considering, certain

nodes are expected to be used more often than others as data generators, meaning that

on average, their energy consumption will exceed that of the other nodes in the net-
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work. As the network progresses into its final stages, these nodes will have the lowest

remaining energy and will be avoided as routers. However, this happens too late and

these nodes may die prematurely, as they are required to generate traffic very often. In

order to improve network lifetime, these nodes should be avoided as routers even in the

initial stages of the network.

Let A(si) represent sensor si’s coverage area. Because redundancy exists between

the coverage of the sensors, each location x is characterized by a sensor set S(x) ⊆ S

that is capable of monitoring it. We will denote the total energy of all sensors that have

location x within their coverage area as E(x).

E(x) =
∑

si∈S(x)

eres
i (6.2)

We can define several cost functions based on E(x) that allow nodes to indicate their

unwillingness to route traffic even before their residual energy drops significantly be-

low other nodes in the network. While these application-aware costs can be used for

the sensor network models considered in this work, other methods for determining

application-aware costs may be used for sensor network applications that do not con-

form to this coverage model. In developing an application-aware routing cost, the gen-

eral goal is to provide information about the importance of the individual sensors to the

sensing application.

6.1.2 Worst-Coverage-Based Cost

In some applications, it may be critical that the entirety of the region being monitored

is covered as long as possible. In other words, the utility of the application drops

significantly as the coverage falls from 100% to just below 100%. For such situations,

we define a worst-coverage-based cost Cwc(si)

Cwc(si) =
1

minx∈A(si) E(x)
= max

x∈A(si)

1∑
sj∈S(x) eres

i

(6.3)

This cost assignment method finds the least-covered subregion (in terms of energy) of

each node’s coverage area and sets the node’s cost equal to the inverse of the sum of

the energy of the individual sensors capable of monitoring that critical subregion.
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Figure 6.1: Example sensor network. Since s3 is the only sensor that can cover re-

gion D, its worst-coverage-based cost Cwc(si) is the highest in the network. The

comprehensive-coverage-based cost Cwc(si) gives a more complete encapsulation of

a sensor’s value to the sensing task and considers the area and redundant energy of

each subregion.

Consider the scenario illustrated in Figure 6.1, where the rectangular area is the re-

gion to be monitored and sensors s1, s2, and s3 are capable of monitoring the regions

within the circles representing their respective sensing ranges. For simplicity, we as-

sume that all sensors have a single unit of energy. Any point in region A, which we will

refer to as xA, can be covered by 2 sensors – s1 and s2. Thus, E(xA) = 2 and similarly,

E(xB) = 3, E(xC) = 2, and E(xD) = 1. Sensor s1 can monitor regions A and B and

since the coverage in region A is the poorest in terms of total energy, s1’s cost is set to

Cwc(s1) = 1
E(xA)

= 1
2
. Similarly, Cwc(s2) = 1

2
and Cwc(s3) = 1.

Note that several sensors, whose least redundantly covered portions of the moni-

tored region consist of overlapping portions, will have identical application costs, re-

gardless of their individual residual energy. This follows the intuition of our design,

since these sensors are equally effective at monitoring this critical region of the envi-

ronment.

6.1.3 Comprehensive-Coverage-Based Cost

In some scenarios, the utility of a sensor network application may degrade gracefully

with the amount of area that is covered. To account for this, we propose another routing
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cost Ccc(si) that considers the comprehensive coverage in the regions that a sensor can

monitor instead of the single least-covered region. This comprehensive coverage-based

cost is set as a weighted sum of 1/E(x), weighted by the area of each subregion. In

other words, to obtain Ccc(si), we integrate the inverse of E(x) over si’s coverage

region.

Ccc(si) =
∫

A(si)

dx

E(x)
=

∫

A(si)

dx∑
sj∈S(x) eres

j

(6.4)

Again, consider the scenario illustrated in Figure 6.1. Sensor s1 will set its cost

as Ccc(s1) =
∫
A(s1)

dx
E(x)

=
∫
A

dx
2

+
∫
B

dx
3

= area(A)
2

+ area(B)
2

. Similarly, Ccc(s2) =
area(A)

2
+ area(B)

3
+ area(C)

2
and Ccc(s3) = area(B)

3
+ area(C)

2
+ area(D)

1
. This comprehensive-

coverage-based routing cost provides a more balanced view of a node’s importance to

the sensing task.

6.1.4 Combining Several Cost Functions

So far, we have proposed two application-aware cost functions that capture the impor-

tance of individual nodes to the sensing of the environment. However, the usefulness of

sensors is not limited to their ability to sense the environment and generate data; they

are useful for routing the data of other sensors as well. While the objective of our pro-

posed costs is to use the sensors that are not important as data generators more liberally

as routers, some combination of the application-aware costs proposed in this work and

a connectivity cost could ensure that these sensors are not used too liberally. Consider a

network in which a number of nodes that can serve as routers but do not have any sens-

ing capabilities are deployed in addition to the microsensors that we have considered

thus far. Using Cwc(si) and Ccc(si) as routing costs, these nodes will be assigned a cost

of 0. Large amounts of traffic will be routed through these nodes and sent as far toward

the data sink as transmission ranges permit, even when large distances between these

nodes and the data sink cause energy inefficient transmissions. Clearly, this routing

strategy is not optimal. In an energy-efficient solution, these router-only nodes would

be used more conservatively as routers and a greater portion of their energy would be

saved for use in the later stages of the network.

Thus, we propose the use of a routing cost that considers a node’s importance as

a router as well as a data source. Here, we simply use the energy-aware routing cost
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Cea(si) to help balance the importance of a node. It should be noted that this is a very

coarse approximation of the importance of a node to maintaining connectivity, but it

is typically a closer approximation than the application-aware routing costs. In future

work, we plan to develop a connectivity cost that measures the importance of individual

sensors in routing data and maintaining good network connectivity.

We considered several methods for combining the energy-aware routing cost and the

comprehensive application-aware routing cost, including the weighted arithmetic mean,

the weighted geometric mean, and the weighted maximum. Simulation results have

shown that using the maximum value of the worst-coverage-based cost and a weighted

value of the energy-aware cost is most effective in extending network lifetime with

100% coverage.

C(si) = max(Cwc(si), βCea(si)) (6.5)

Similarly, the use of the maximum value of the comprehensive-coverage-based cost

and a weighted value of the energy-aware cost is effective in providing long network

lifetimes with graceful degradation.

C(si) = max(Ccc(si), βCea(si)) (6.6)

In each case, the parameter β can be optimally tuned to maximize network lifetime, as

we will show in Section 6.2.4.

6.2 DAPR - Distributed Activation with Predetermined

Routes

We have designed a simple distributed protocol called DAPR (Distributed Activation

with Predetermined Routes) that integrates the services of sensor selection and route

discovery. Most architectures proposed for use in coverage-preserving wireless sensor

network applications use a modular approach where sensor selection and routing are

performed independently. Even in those that use an integrated approach (e.g., [24]), the

integration is rather loose, as the sensor selection algorithm considers the effect of the

potential routers, but the routers are not chosen with any consideration of the sensor

selection algorithm. In the DAPR protocol, route discovery and sensor selection are
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Figure 6.2: The execution of a DAPR query is triggered by a Query message, sent by

the data sink. A Route Discovery Phase is followed by a Role Discovery Phase, in

which sensors select and deselect themselves to participate in the query’s execution.

After these phases are completed, the query is executed for some predetermined query

length.

performed separately, but decisions made in each process are influenced by the other.

The premises for the design of DAPR are twofold — that sensors critical to the sensing

applications as data generators should be avoided as routers and that the selection of a

sensor for the active sensor set affects its potential routers as well as the sensor itself.

In DAPR, finite-length queries, which are triggered by the sending of Query pack-

ets, are processed for a predetermined query length by a subset of the sensors available

in the network. Before the query is processed, the network undergoes a Route Discov-

ery Phase followed by a Role Discovery Phase. Upon completion of the Role Discovery

Phase, sensors process the query and provide data to the querying node for the duration

of the query, as shown in Figure 6.2. In previous work [81], we considered a round-

based approach where a data sink collects data for long periods of time, and sends

Round Start messages periodically so that roles are updated regularly and energy is

balanced throughout the lifetime of the network. The single-query approach proposed

here is simply a more generic version of this protocol and can be made equivalent by

requiring queries to be sent at the correct interval.

During the Route Discovery Phase, the Query packets are broadcast throughout the

network, with one copy of the packet broadcast by each node, so that a spanning tree,

rooted at the data sink, is formed. As the packets are flooded throughout the network,

each node updates a cost field within the packet, adding the cost of the link to its parent

node. Routing costs such as those proposed in the previous section are assigned to

individual sensors, and the cost of a link is a weighted sum of the effort that each

sensor must put forth to transfer the data. Specifically, the cost of a link is calculated as
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Clink(si, sj) = C(si)e
tx
ij + C(sj)e

rx
ij (6.7)

where etx
ij represents the energy that is required by si to transmit a bit to sj and erx

ij

represents the energy that is required by sj to receive a bit from si. The cumulative cost

of a sensor’s route is

Croute(si) =
∑

(sj ,sk)∈p(si,s∗)
Clink(sj, sk) (6.8)

where p(si, s
∗) represents the set of links along the chosen optimal path from si to the

sink s∗ that minimizes Croute(si).

After the Route Discovery Phase, each sensor must decide whether or not it is nec-

essary to become active in the Role Discovery Phase. After initially assuming that it

will remain active to process the query, each sensor will attempt to deactivate itself if

possible by sending a deactivation beacon. To ensure that sensors with the highest route

costs are given the highest priority to deactivate, each node backs off before broadcast-

ing its deactivation beacon, with backoff delays set according to a decreasing function

of the route costs. The intuition behind prioritizing sensors based on route costs is

based on the fact that a sensor’s activation affects its potential routers as well as itself.

If, after its backoff delay, a sensor infers that its coverage region is entirely covered by

its neighbors that have not yet sent a deactivation beacon, the sensor sends its deactiva-

tion beacon, becomes inactive, and does not process the query. It should be noted that

this deactivation is for sensing purposes only. A node that sends a deactivation beacon

must remain available for routing purposes since routes have already been determined

by this time.

Implementation Issues

The calculation of our proposed application-aware routing costs assumes that nodes

have location information of neighboring nodes with redundant coverage regions. This

information can be exchanged between neighbors after being obtained through GPS or

any number of proposed location estimation algorithms in the current literature [82–84].

Since DAPR was designed for networks of static sensor nodes, location updates must be

performed only a single time at the beginning of network operation, or very infrequently
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in the worst case. Note that the need for location information is not a drawback of

the DAPR protocol or the proposed application-aware routing costs specifically – this

information is necessary in any coverage-preserving protocol. Also, very loose time

synchronization is required so that nodes can identify the beginning and end of query

periods.

The application-aware routing costs also depend on information about the residual

energy of neighboring nodes. This information can be conveyed within the Query mes-

sages that are forwarded. Before forwarding these messages, which each node should

do once per query, a node simply fills in a field in the packet header that is reserved

for residual energy information. Since a node must know its own routing cost before

forwarding a Query message, it must calculate this value from information obtained

during the previous query. As long as the query length is not so long that nodes may

use a significant portion of their initial energy during a single query, the residual en-

ergy information should not be too stale to calculate near-optimal routes. Alternatively,

two packets could be sent during the Route Discovery Phase – the first containing only

residual energy information and the second containing route cost information.

We have assumed that nodes are able to begin the dissemination of a query immedi-

ately after the data sink broadcasts the initial Query packet. In practice, this means that

sensor nodes must listen to the channel in an idle listening mode until receiving these

packets. Since it has been shown that power consumption in the idle listening mode

is typically comparable to that in the receive mode, this can severely impact network

lifetime. If moderate delays are acceptable, then a low power wakeup system may be

used to inform nodes about a predetermined time at which the Route Discovery Phase

will start [85]. However, idle listening during the Route Discovery and Role Discov-

ery phases is unavoidable, as sensors do not know when their neighbors will send the

Query messages and deactivation beacons. Since the Route Discovery and Role Dis-

covery phases are expected to be very short compared to the query length, this will not

greatly impact the energy-efficiency of DAPR. Also, this is not a requirement of the

application-aware routing costs specifically, and would be required under a similar pro-

tocol using other routing costs. For short-lived queries where the Route Discovery and

Role Discovery Phases contribute significant overhead in terms of energy consumption,

DAPR should not be used.

For normal network operation during the processing of the query, we assume that
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a schedule-based MAC protocol is used so that idle listening does not contribute sig-

nificantly to overall energy consumption. The development of such a MAC protocol is

beyond the scope of this work, but the reader is referred to [86, 87] for some examples.

The determination of the existence and size of overlapping coverage regions dur-

ing the calculation of the proposed routing costs and decisions concerning deactivation

can potentially be very computationally intensive. Our implementation uses an approx-

imation in which sensors create a grid of locations within their sensing ranges and,

point-by-point, observe the redundancy of their neighbors. However, for the deactiva-

tion decision, any of the coverage preserving rules described in the current literature

could be used in place of this method (e.g., [21, 23]).

The deactivation beacons may be sent over a single hop if it is assumed that the

transmission range is at least twice as great as the sensing range. If this assumption is

not valid, the beacons must be forwarded through controlled flooding until they reach

all sensors that redundantly cover at least some portion of the sending sensor’s coverage

region (i.e., those within twice the sensing range).

6.2.1 Simulations and Analysis

In this section, we present simulation results measuring the performance of the pro-

posed application-aware routing costs and the DAPR protocol. The simulations in this

section were performed using Matlab, and they focus on the routing and application

layer while simplifying MAC and physical layer implications.

In these simulations, a data sink sent periodic queries, which were processed by

sensors that sent constant bit rate traffic to the sink. We assumed that queries were

generated from different locations in the network throughout the network lifetime. This

helped to avoid rapid energy drain in the nodes surrounding the data sink.

The energy model that was used in our simulations was similar to that used in [36],

in which the energy required by si to send a bit to sj separated by a distance of dij was

etx
ij = Eelec + ε dα

ij (6.9)

where Eelec represents the energy associated with the radio electronics, ε character-

izes the power amplification component, and α represents the path loss exponent. The

energy required by sj to receive a bit from si was
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erx
ij = Eelec (6.10)

Under ideal conditions (e.g., very high density), power consumption is minimized by

sending packets over distances of d∗ [88, 89], where

d∗ = α

√
2Eelec

(α− 1)ε
(6.11)

Using our power consumption numbers, given in Table 6.2, the optimal transmission

distance d∗ was approximately 32 m. While ideal conditions were not seen in our sim-

ulations and sensors may send traffic along circuitous routes in order to avoid routing

through critical sensors, this distance, along with the geographic size of the networks

that were simulated, provides some indication of the amount of routing that must be

performed on the data generated within the network.

In these simulations, we considered three deployment scenarios. The first was a

uniform deployment scenario, in which sensor locations were selected uniformly from

a circular deployment region. In this scenario, coverage nonuniformities were gener-

ally not very severe. While the application-aware costs were not designed for such

networks, we include analysis of their performance in these types of deployments for

thoroughness. The second scenario that we considered was a clustered deployment sce-

nario, in which small groups of sensors were deployed in a normal distribution around

a number of locations chosen randomly from within the network. In this scenario, more

coverage nonuniformities existed as a result of deployment nonuniformity. The third

scenario was a video network, in which cameras were mounted in a grid deployment

on four walls, each of which was required to be monitored at all times. Each camera

was randomly tilted horizontally and vertically between -45 and 45 degrees. The sim-

ulations of this scenario helped to measure the performance of the application-aware

routing costs when the sensors’ physical proximity to each other did not necessarily

determine their coverage overlap. Examples of deployment patterns for each scenario

are given in Figure 6.3. The coverage nonuniformities are summarized in Table 6.1,

which shows the mean and standard deviation of the coverage overlap throughout the

region to be monitored. While both the uniform and clustered scenarios have an aver-

age overlap of about 9 sensors, the standard deviation is more than twice as high in the

clustered scenario.
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Figure 6.3: Example sensor deployment patterns for the uniform deployment scenario

(a), clustered deployment scenario (b), and video scenario (c).

Scenario Uniform Clustered Video

Mean coverage overlap

(Number of sensors)

9.0 8.9 6.4

Standard deviation of cover-

age overlap

(Number of sensors)

3.0 6.6 2.2

Table 6.1: Coverage overlap statistics for the three simulated deployment scenarios.
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Parameter Value

Packet Size 20 bytes

Packet Rate 1 packet/sec

α 2

Eelec 50 nJ/bit

ε 100 pJ/bit/m2

Query Length 24 hr

Initial Node Energy 1000 J

Sensing Range (Uniform, Clustered) 25 m

Deployment Radius (Uniform, Clustered) 100 m

Surveillance Radius (Uniform, Clustered) 90 m

Room Width (Video) 70 m

Room Height (Video) 30 m

Sensor Spacing (Video) 10 m

Sensor Field of View (Video) 30 degrees

Table 6.2: Default simulation parameters for DAPR simulations.

The rest of the parameters used in our simulations are summarized in Table 6.2. All

simulation results were averaged over 25 trials. It should be noted that we did not com-

pare our results against other coverage-preserving protocols that exist in the literature.

The reason for this is that the major contribution of our work is the incorporation of

coverage information into the routing protocol. In fact, the way that nodes determine

whether or not they need to remain active to preserve coverage in the network is not

very important. Any of the coverage-preserving decision algorithms in the literature

could be used with an application-aware routing cost.

6.2.2 Performance of Application-Aware Routing Costs

In this section, we analyze the performance of our proposed application-aware routing

costs as alternatives to traditional energy-aware routing, where C(si) = Cea(si), and

minimum power routing, where C(si) = 1, using the DAPR protocol for sensor and

router selection. All networks in this section consisted of 150 sensor nodes.
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Figure 6.4: Coverage degradation over time for different routing costs in the uniform

deployment scenario.

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage lifetime (days) 362 1094 1178 904

98% coverage lifetime (days) 521 1198 1184 1200

Table 6.3: Simulation results for different routing costs in the uniform deployment

scenario.

Figure 6.4 shows the coverage degradation over time for the uniform deployment

scenario. Although the application-aware routing costs were not designed for such

networks in which node redundancy is approximately equivalent throughout the net-

work, it can be seen that the application-aware routing costs perform very similar to the

energy-aware cost, and even slightly better. From this plot and the results summarized

in Table 6.3, we can see that the lifetime before the first break in coverage is high-

est for the worst-coverage-based routing cost, giving an improvement of 7% over the

energy-aware routing cost. Networks using the comprehensive-coverage-based cost,

which was designed so that coverage degrades more gracefully, were the last to drop

below 98%, although the gain over the energy-aware routing cost was minimal in this

scenario.
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Figure 6.5: Coverage degradation over time for different routing costs in the clustered

deployment scenario.

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage lifetime (days) 62 247 365 376

98% coverage lifetime (days) 81 260 377 388

Table 6.4: Simulation results for different routing costs in the clustered deployment

scenario.

Figure 6.5 and Table 6.4 present the results for the clustered deployment scenario.

Because coverage is less uniform throughout the network, the gains that can be ob-

tained from the use of the application-aware routing costs are higher than in the case

of the uniform deployment scenario. The worst-coverage-based routing cost gives an

improvement of 48% over the energy-aware routing cost in terms of lifetime before the

first break in coverage. The comprehensive coverage-based cost gives an improvement

of 49% in lifetime before coverage drops below 98% over the energy-aware routing

cost.

Figure 6.6 and Table 6.5 present the results for the video scenario. The worst-

coverage-based cost gives a significant gain in network lifetime before the first break

in coverage, increasing lifetime by 24%. However, the comprehensive-coverage-based
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Figure 6.6: Coverage degradation over time for different routing costs in the video

scenario.

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage lifetime (days) 381 855 1063 717

98% coverage lifetime (days) 585 1097 1108 921

Table 6.5: Simulation results for different routing costs in the video scenario.

cost performs very poorly in this scenario. We suspect that the reason for this is that

this cost does not consider the utility of a node as a router, but rather as a sensor only.

Nodes that should be kept alive for routing purposes may be used too liberally, causing

them to die and forcing other sensors in the region to use suboptimal routes for the

remainder of the network lifetime. This is not a problem in the uniform and clustered

deployment scenarios since a node’s importance as a sensor and as a router are both tied

to its location. One way to avoid this problem for video networks is to use a combined

routing cost, as discussed in Section 6.2.4.

6.2.3 Effect of Sensor Selection Criteria

In this section, we explore the effect of the sensor selection criteria when using the

worst-coverage based routing cost. Recall that sensors are deactivated by sending a
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Scenario Random Individual Cost Cumulative Routing Cost

Uniform 1036 1088 1178

Clustered 364 365 365

Video 818 800 1063

Table 6.6: Network lifetime when using the worst-coverage-based routing cost with

different selection criteria.

deactivation beacon to neighboring sensors after a backoff timer expires. In these sim-

ulations, we compare network lifetime when setting the backoff timer according to

three different criteria – randomly, based on the sensor’s individual cost, and based on

the sensor’s cumulative route cost, given in Equation 6.8. As the activation or deacti-

vation of a sensor affects its routers as well as itself, we expect lifetime to be highest

when setting the backoff timer according to the cumulative route cost. As shown in

Table 6.6, choosing sensors based on their cumulative cost improves network lifetime

over using the sensors’ individual costs by a modest 8% in the uniform deployment

scenario, almost nothing in the clustered deployment scenario, and a more significant

33% in the video scenario. These values can be explained by the fact that nearby sen-

sors typically have very similar routes to the data sink. For this reason, when selecting

which sensors to deactivate among multiple nearby sensors that cover the same region,

the choice will probably affect only the sensors being deactivated, but few or none of

the routers, since they are probably the same for all sensors under consideration. This

is the case in the clustered deployment scenario and to less of an extent, in the uniform

deployment scenario. However, in the video scenario, two sensors that cover the same

region may have very dissimilar routes to the base station. In this situation, the choice

of which sensor to deactivate will affect different groups of sensors. Thus, the gain in

network lifetime is highest in this scenario.

6.2.4 Combining Routing Costs

In this section, we explore the effectiveness of combining the application-aware rout-

ing costs with the energy-aware routing cost in order to account for both coverage and

connectivity requirements. We simulated similar networks as in the previous sections
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as well as heterogeneous networks, in which 150 sensors capable of sensing the en-

vironment and generating data for the data sink were deployed along with additional

nodes that could only be used to route data (50 for the uniform and clustered scenarios

and 32 for the video scenario). We ran simulations in which we set the nodes’ routing

costs to C(si) = max(Cwc(si), βCea) and others in which we set the nodes’ routing

costs to C(si) = max(Ccc(si), βCea), as described in Section 6.1.4, and we tuned β to

maximize network lifetime.

Network lifetime (for 100% coverage) when setting the routing cost as the com-

bined cost C(si) = max(Cwc(si), βCea) are summarized in Table 6.7. The results show

that network lifetime before coverage degrades below 100% is typically maximized or

very nearly maximized when β is set around 0.25 in these scenarios. The improvement

is most significant in the heterogeneous networks since the router-only nodes’ value is

most misrepresented by the application-aware cost in this case. In the heterogeneous

networks, the use of the combined routing cost with this value of β improves network

lifetime by 20% over the use of the worst-coverage-based routing cost and by 17%

over the use of the energy-aware routing cost for the uniform deployment scenario. For

the clustered deployment scenario, these numbers grow to 21% and 43%, respectively.

In the video network, the combined cost improves lifetime by 8% over the use of the

worst-coverage-based routing cost and by 20% over the use of the energy-aware routing

cost.

The effects of the combined cost are less dramatic in the scenarios that contain only

sensing-capable nodes, as in the simulations of the previous sections. The network

lifetime improvement is about 4% for the uniform and video scenarios when using a β

value of 0.25. Meanwhile, the clustered scenario does not benefit at all from the use of

the combined cost.

Network lifetime (for 98% coverage) for each scenario when setting the routing cost

as C(si) = max(Cwc(si), βCea) are summarized in Table 6.8. The results show that

network lifetime before coverage degrades below 98% is typically maximized or nearly

maximized when β is set at 100m2 for each scenario. Again, the impact is greatest in

the heterogeneous networks. The use of the combined routing cost with this value of β

improves network lifetime by 20% over the use of the comprehensive-coverage-based

routing cost and by 2% over the use of the energy-aware routing cost for the uniform

deployment scenario. In other words, we gain very little in using the combined cost
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β 0 0.05 0.25 0.5 1

Uniform 1178 1192 1224 1093 1094

Clustered 365 365 360 245 247

Video 1062 1082 1106 853 855

Uniform (add.routers) 1368 1572 1635 1549 1402

Clustered (add.routers) 476 567 576 525 403

Video (add.routers) 1214 1299 1306 1083 1083

Table 6.7: Network lifetime (days) before first coverage break for heterogeneous net-

works when using a combination of worst-coverage-based energy-aware routing costs.

β = 0 represents the case when C(si) = Cwc(si), while β = 1 represents the case

when C(si) = Cea(si).

over using the energy-aware cost alone. For the clustered deployment scenario, these

numbers grow to 29% and 28%, respectively. For the video scenario the combined cost

improves network lifetime by 42% over the use of the comprehensive-coverage-based

routing cost and by 7% over the use of the energy-aware routing cost.

As in the case of the worst-coverage-based cost, the improvements are not as great

in the networks containing only sensing-capable nodes.

6.2.5 Comparison With Optimizations

In these simulations, we compared the lifetime achieved using DAPR with the optimal

lifetime that can be achieved through the large-scale optimization program described

in Chapter 4. In this program, cover sets were chosen using a version of the Garg-

Könneman algorithm applied to sensor network selection [70, 71]. Once a large enough

group of cover sets, each providing complete coverage of the region, were found, we

ran the optimization program outlined in Chapter 4 to find the maximum achievable

lifetime. Our simulation results of DAPR with the worst-coverage-based cost are com-

pared with the optimal lifetime in Figures 6.7(a), 6.7(b), and 6.7(c) for the uniform,

clustered, and video scenarios, respectively. We compare several approaches here:

1. a typical non-integrated approach - setting node costs as Cea(si) (energy-aware

routing) with sensor selection based on the individual sensors’ costs,
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β 0 20m2 100m2 400m2 ∞
Uniform 1203 1210 1240 1212 1212

Clustered 419 419 418 346 281

Video 943 1064 1163 1142 1143

Uniform (add.routers) 1392 1554 1670 1646 1645

Clustered (add.routers) 487 569 629 561 493

Video (add.routers) 1232 1595 1747 1629 1629

Table 6.8: Network lifetime (days) before coverage drops below 98% for heteroge-

neous networks when using a combination of comprehensive-coverage-based energy-

aware routing costs. β = 0 represents the case when C(si) = Ccc(si), while β = ∞
represents the case when C(si) = Cea(si).

2. the non-integrated approach, but setting node costs as Cwc(si),

3. DAPR, using energy-aware routing cost Cea(si),

4. DAPR, using the worst-coverage routing cost Cwc(si), and

5. DAPR, using a combination of the energy-aware routing cost and the worst-

coverage routing cost, as described in Section 6.1.4, with β set to 0.25.

In the uniform scenario, the use of the combined worst-coverage and energy-aware

cost with DAPR gives a total network lifetime gain of 14% over the non-integrated ap-

proach, closing the gap with the optimal solution by 56%. The results for the clustered

deployment scenario show that DAPR with the worst-coverage routing cost performs

especially well in this scenario, improving lifetime by 56% and closing the gap between

the non-integrated approach and the optimal solution by 77%. Most of this improve-

ment in this scenario is due to the use of the application-aware routing cost rather than

the selection of sensors based on the cumulative route cost. Finally, the use of DAPR

with the combined worst-coverage and energy-aware cost in the video scenario gives a

total network lifetime gain of 50% and closes the gap between the non-integrated ap-

proach and the optimal solution by 76%. Most of the improvement in this case comes

from the selection of sensors based on the cumulative route cost.
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Figure 6.7: Comparison of DAPR with globally optimal solution calculated using linear

programming.
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6.3 Summary

In this chapter, we have presented several “application-aware” routing costs that are es-

pecially beneficial for sensor networks where sensor deployment is nonuniform. These

routing costs are the first that consider the application’s QoS goals and the impor-

tance of individual sensors to the application’s requirements. We have also presented

DAPR, a distributed protocol for sensor selection and route selection that uses these

application-aware routing costs. Simulation results have shown that the application-

aware costs can increase network lifetime by almost 50% in some scenarios. While

these results indicate the advantages of application-aware costs for convergecast traf-

fic patterns, many wireless sensor networks utilize multicast of data from the sensors

to a number of data sinks. In the next chapter, we explore the advantages of using

application-aware costs in such a multicast scenario.



Chapter 7

Applying Application-Aware Costs to
Multicast Traffic Patterns

In the previous chapter, we showed the advantage of using application-aware routing

costs in a network model where sensors route traffic to a single destination within the

network (i.e., a static base station that forwards this data to the end user via a high-

bandwidth uplink or a mobile robot wandering throughout the network). This net-

work model is frequently assumed in the current sensor network literature. However,

we would like to explore the benefits of these application-aware cost in other network

models as well. Specifically, we would like to show the gains that can be obtained in a

network that employs multicast as its traffic model. Multicasting is a model that is well

suited for several sensor network scenarios. For example, in a sensor-actuator network

[90], the sensor data often must arrive at several actuator locations within the network

so that the actuators can act on the information that the sensors provide. Another viable

multicast scenario is one in which several base stations exist in the network, each with

a high-bandwidth uplink the end-user. If some of these links are unreliable, it may be

advantageous to route the data to several of these base stations so that at least one of

them will be able to send the data back to the end user.

7.1 Multicasting in a Wireless Environment

The establishment of optimal multicast trees is a problem that has been studied exten-

sively in the networking community [48]. Traditionally, optimal broadcasting and mul-

101
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ticasting has been thought of as the minimization of the edge weights of the multicast

trees (i.e., the formation of minimum spanning trees and Steiner trees, respectively).

This model is an accurate one for wired networks; however, in wireless networks, nodes

can exploit the inherent “wireless multicast advantage” to further reduce multicast tree

cost. More recent algorithms for setting up minimum cost multicast trees take advan-

tage of the fact that a single node’s transmission can be received by more than just a

single intended destination. Thus, these algorithms can be thought of as node-based,

rather than link-based minimization algorithms.

The Broadcast Incremental Protocol (BIP) takes advantage of the aforementioned

“wireless multicast advantage” to generate low-cost multicast trees in wireless networks

[49]. The BIP protocol is based on Prim’s algorithm for finding minimum spanning

trees (MST). In Prim’s algorithm, nodes are added iteratively to the spanning tree start-

ing with the source node. During each iteration, the node not included in the current tree

with the minimum link cost to a node included in the current tree is chosen for addition

to the tree. In BIP, nodes are also added iteratively to the tree, starting with the source

node. However, when determining the node with the minimum cost, BIP considers the

incremental cost to join the tree. In other words, if a node is already transmitting at a

certain power level to reach some neighbor, its incremental cost is the additional cost

required to increase its transmission power to the level necessary to reach the additional

node. Thus, the incremental cost is given as

Cinc
ij = P ′

ij = Pij − P (i) (7.1)

where Pij represents the power required to send from node i to node j and P (i) repre-

sents the transmission power at which node i is currently set to transmit.

Consider the network shown in Figure 7.1(a). At this stage in the spanning tree’s

construction, node 1’s downstream neighbor set includes nodes 2, 3, and 4. Meanwhile,

node 2’s downstream neighbor set includes nodes 5 and 6 and node 3’s downstream

neighbor set includes node 7. Node 2 is the furthest node in node 1’s neighbor set and

node 1 must transmit at power level P (1) = P1,2. Similarly, node 2 must transmit at

power level P (2) = P2,5 and node 3 must transmit at power level P (3) = P3,7. In

order for node 1 to reach node 8, it must increase its transmission power to the level

P1,8 for an incremental cost of P ′
1,8 = P1,8 − P1,2. Similarly, P ′

2,8 = P2,8 − P2,5 and

P ′
3,8 = P3,8 − P3,7. For all other nodes i, P ′

i,8 = Pi,8. In our example, the minimum



103

1

5

4

2

3

7

8

6

(a)

1

5

4

2

3

7

8

6

(b)

1

5

4

2

3

7

8

6

(c)

Figure 7.1: Example of a BIP tree construction.

incremental cost is attained by node 2 and its transmission power is increased during

the next iteration, allowing the network to become fully connected as shown in Figure

7.1(b).

Following construction of the broadcast tree, a “sweeping” operation is performed

on the network in order to remove unnecessary transmissions. In the sweep opera-

tion, all leaf nodes are analyzed to determine if their current power level will allow

neighboring nodes to reduce their transmission power. Each node in turns looks at any

downstream neighbors that are reachable with its current transmission power. If any

of these neighbors’ parents would benefit from their children switching parents to the
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current node, this transition is made and the old parent’s transmission power is reduced

to the minimum level that will allow it to reach its remaining neighbors.

Consider the network shown in Figure 7.1(b). Since node 1 does not reach any

neighbors except its own downstream neighbors in the broadcast trees, it has no options

to participate in the sweep operation. Since node 2’s transmission power allows it to

reach node 7 as well as its downstream neighbors, node 3’s transmissions are redundant

and thus can be removed. Node 2 adds node 7 as a downstream neighbor and node 3 is

allowed to cease transmitting. The new tree following the sweep operation is shown in

Figure 7.1(c).

The MIP protocol is based on the BIP protocol and uses a pruning procedure to

remove unnecessary transmissions. After establishment of the broadcast tree, links

that are not necessary to reach the multicast group members are removed. Each node

transmits at the minimum power level required to reach each of its neighbors on the

remaining outbound links.

We have made modifications to the MIP protocol to allow for the incorporation of

node-based costs and to allow for the consideration of receiver-based costs, which exist

in real-life hardware. When determining the incremental cost for a given node, we

replace Equation 7.1 with Equation 7.2.

Cinc
ij = C(sj)e

rx + C(si){etx
ij − max

k:sk∈N(si)
etx

ik} (7.2)

Here, N(si) represents the current downstream neighbor set of sensor si and C(si)

represents the individual node cost.

7.1.1 Simulations

Simulation results have shown that the coverage-aware costs proposed in Chapter 6 can

extend the lifetime of multicast networks over the lifetimes that can be achieved using

simple energy-aware costs. In our simulations, we used similar energy and network

models as we did in Section 6.2.1. We varied the number of multicast sinks from 1 to 8

to observe the effect of the different routing costs on network lifetime in the clustered

sensor deployment scenario.

Figures 7.2(a)-(d) show the coverage degradation over time for the different multi-

cast group sizes. From this plot and the results summarized in Table 7.1, we can see that



105

0 200 400 600 800 1000 1200
90

92

94

96

98

100

102

Time (days)

C
ov

er
ag

e 
(%

)

C(s
i
) = 1

C(s
i
) = C

ea
(s

i
)

C(s
i
) = C

wc
(s

i
)

C(s
i
) = C

cc
(s

i
)

(a) 1 sink
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(c) 4 sinks
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Figure 7.2: Coverage degradation over time for different routing costs in the clustered

deployment scenario (multicast).

the lifetime before the first break in coverage is highest for the worst-coverage-based

routing cost. However, even the use of energy-aware costs within MIP, which had not

previously been explored, significantly increases lifetime over the use of the standard

MIP. The worst-coverage-based routing cost gives improvements of 26%, 23%, 20%,

17% over the energy-aware routing cost for 1, 2, 4, and 8 multicast sinks, respectively.

Networks using the comprehensive coverage-based cost, which was designed so that

coverage degrades more gracefully, were the last to drop below 98%, giving improve-

ments of 25%, 20%, 15%, and 16% over the energy-aware routing cost for 1, 2, 4, and

8 multicast sinks, respectively.
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C(si) 1 Cea(si) Cwc(si) Ccc(si)

Nsinks = 1

100% coverage lifetime (days) 168 744 941 616

98% coverage lifetime (days) 348 775 957 967

Nsinks = 2

100% coverage lifetime (days) 116 573 702 464

98% coverage lifetime (days) 234 607 714 729

Nsinks = 4

100% coverage lifetime (days) 92 442 531 355

98% coverage lifetime (days) 169 477 539 548

Nsinks = 8

100% coverage lifetime (days) 77 362 423 283

98% coverage lifetime (days) 133 379 431 440

Table 7.1: Simulation results for different routing costs in the clustered deployment

scenario (multicast).
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7.2 Distributing the Multicast Algorithm

Following the development of the BIP and MIP protocols, attempts have been made to

distribute protocols for multicasting in a wireless environment [50, 51, 91–94]. Among

these is Dist-BIP [50], of which there are two versions – Dist-BIP-A, which is a slightly

better approximation to the centralized version, and Dist-BIP-G, which requires less

overhead. We will focus on the latter. In Dist-BIP-G, selected nodes form a local broad-

cast tree using knowledge of their first and second neighborhood only. The broadcast

tree is started from the source node, which generates its local broadcast tree and selects

its first hop neighbors that are required to reach its second hop neighbors as gateways.

The local tree and the IDs of the gateways are broadcast to its local neighborhood.

The nodes selected as gateways, in turn, perform a similar operation, and this process

continues until all of the nodes in the network are included in the broadcast tree. If a

node receives multiple messages indicating that it should be the child of more than one

parent, it chooses its parent based on the first message, but continues to aggregate chil-

dren according to subsequent messages. Like in the centralized version, Dist-MIP-G

is identical to Dist-BIP-G in the early stages, and is followed by a pruning procedure,

which is easily distributable, to reduce unnecessary transmissions. We implemented

a modified version of Dist-MIP-G to test whether our application-aware routing costs

would still provide some improvement over the simpler energy-aware costs even in a

distributed multicast protocol. The modifications were similar to those used in the cen-

tralized version, with each gateway building its local broadcast tree using similar rules

and costs.

7.2.1 Simulations

Figures 7.3(a)-(d) show the coverage degradation over time for the different multicast

group sizes when using Dist-MIP-G. From this plot and the results summarized in Ta-

ble 7.2, we can see that the lifetime before the first break in coverage is highest for the

worst-coverage-based routing cost. Again, the energy-aware cost performs well com-

pared to standard MIP. The worst-coverage-based cost gives improvements of 32%,

26%, 22%, and 18% over the energy-aware routing cost for 1, 2, 4, and 8 multicast

sinks, respectively. Networks using the comprehensive coverage-based cost, which

was designed so that coverage degrades more gracefully, were the last to drop below
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Figure 7.3: Coverage degradation over time for different routing costs in the clustered

deployment scenario (distributed multicast).

98%, giving improvements of 34%, 27%, 23%, and 19% over the energy-aware routing

cost for 1, 2, 4, and 8 multicast sinks, respectively.

7.3 Summary

In this chapter, we have shown how the “application-aware” routing costs proposed in

the previous chapter can be incorporated into networks with alternative traffic models.

Specifically, we have incorporated these costs into the MIP protocol for multicasting in

a wireless environment and shown that network lifetime can be extended significantly

when using these costs over simpler costs based solely on the nodes’ residual energy,

depending on the number of multicast sinks. We have also incorporated these costs into
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C(si) 1 Cea(si) Cwc(si) Ccc(si)

Nsinks = 1

100% coverage lifetime (days) 185 703 929 642

98% coverage lifetime (days) 299 718 937 960

Nsinks = 2

100% coverage lifetime (days) 124 543 684 478

98% coverage lifetime (days) 198 560 695 713

Nsinks = 4

100% coverage lifetime (days) 91 410 499 369

98% coverage lifetime (days) 140 427 508 524

Nsinks = 8

100% coverage lifetime (days) 67 326 386 281

98% coverage lifetime (days) 106 339 391 403

Table 7.2: Simulation results for different routing costs in the clustered deployment

scenario (distributed multicast).
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a distributed version of MIP and shown even greater network lifetime improvement.



Chapter 8

Optimal Transmission Power Control
for Sensor Networks

So far in this thesis, we have presented several protocols to allow energy-efficient op-

eration of the network while meeting application requirements. Previous chapters have

focused primarily on routing and sensor selection decisions to meet these requirements

while operating in an energy-efficient manner. In addition to application requirements,

nodes must adapt to the environment in which they operate. In this section, we explore

the situation in which the deployment environment is not ideal but nodes must make

the best use of their resources in the given situation. Specifically, we consider networks

with a single sink, where a “hot spot” around the data sink forms as a result of a con-

vergecast traffic pattern. Transmission power and traffic distribution are optimized to

extend network lifetime over simple routing policies.

A great deal of attention has been given to the reduction of unnecessary energy

consumption of sensor nodes in areas such as hardware design, collaborative signal

processing, transmission power control polices, and protocols at all levels of the net-

work stack, as exemplified by the work in the previous chapters of this dissertation.

However, reducing an individual sensor’s power consumption alone may not always

allow networks to realize their maximal potential lifetime. In addition, it is important

to maintain a balance of power consumption in the network (assuming uniformly dis-

tributed, equally important sensors) so that certain nodes do not die much earlier than

others, leading to unmonitored areas in the network.

Early work in transmission range optimization assumed that forwarding data pack-

111
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ets towards a data sink over many short hops is more energy-efficient than forwarding

over a few long hops, due to the nature of wireless communication. The problem of

setting transmission power to a minimal level that will allow a network to remain con-

nected has been considered in several studies [39, 40]. Later, others noted that because

of the electronics overhead involved in transmitting packets, there exists an optimal

non-zero transmission range, at which power efficiency is maximized [88]. The goal

of these studies is to find a fixed network-wide transmission range. When using such

a fixed transmission range in many-to-one (convergecast) sensor network applications,

however, an energy imbalance problem manifests itself, as a hot spot is created around

the data sink, or base station. The nodes in this hot spot are required to forward a

disproportionately high amount of traffic and typically die at a very early stage. If we

define the network lifetime as the time when the first subregion of the environment (or

a significant portion of the environment) is left unmonitored, then the residual energy

of the other sensors at this time can be seen as wasted.

Intuition leads us to believe that the hot spot problem can be solved by varying

the transmission range among nodes at different distances to the base station so that

energy consumption can be more evenly distributed and the lifetime of the network

can be extended. In this chapter, we consider the problem of optimizing transmission

ranges among nodes for a given deployment scenario. We formalize the transmission

range distribution optimization problem, which is solved by determining how a node

should distribute its outgoing data packets over multiple distances, always using the

minimum transmission power necessary to send over each distance. Given the energy

constraints and data generation rate of each sensor node, the lifetime of the network

can be maximized by using this optimal distribution.

Table 8.1 lists the parameters that we use in this chapter, including those used in the

general network model, the power model, the lifetime model, and the cost model.

8.1 Assumptions

In our model, we make several basic assumptions. First, we assume that the power

consumption of sensor nodes is dominated by communication costs, as opposed to

sensing and processing costs. This assumption is reasonable for many types of sensor

nodes that require very little energy, such as pressure and temperature sensors. Another
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Table 8.1: Variables used in network modeling throughout this chapter.

Network Model
Ns Total number of sensors

si Sensor i, i ∈ {1, · · · , Ns}
s0 Base station (single sink)

λa Minimum sensor coverage density

λe Energy density

A Network area

ri Traffic generation rate of sensor i

einit
i Initial energy of sensor i

einit,total Total initial energy

dij Distance between sensors i and j

dmax Maximum transmission distance

Power Model
Etx Energy consumption for each bit transmitted

Erx Energy consumption for each bit received

Eelec Energy consumption from electronic overhead

εamp Transmitter amplifier coefficient

α Path loss exponent

Lifetime Model
ei Energy consumption of sensor i

tij Amount of traffic that i forwards to j

dt
ij Transmission distance between sensors i and j

L Sensor network lifetime

L̃ Normalized sensor network lifetime

Cost Model
C Overall deployment Cost

Cs Cost of sensors

Ce Extra cost
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assumption that we make is that the network is small enough so that all nodes can

directly reach the data sink using their maximum setting of transmission power.

We also ignore the overhead that would typically be introduced by the routing layer.

However, for long lasting sensor networks with little or no mobility, route updates

should be performed infrequently and should not significantly affect the overall power

consumption in the network.

We also ignore any potential overhead at the MAC layer. Due to the scarce energy

supplies in sensor nodes, many have proposed the use of coordinated TDMA scheduling

in the MAC layer. Because of the low data rates expected in many sensor network

applications, even localized TDMA scheduling (as opposed to globally coordinated

scheduling) should not cause much communication overhead in the form of collisions

and retransmissions. Furthermore, TDMA scheduling can eliminate most overhead

introduced by idle listening and overhearing. As with the overhead associated with

routing updates, the establishment of schedules can take place very infrequently and

should not contribute significantly to overall power consumption.

In this work, we also assume that channels are lossless. We can assume that the

minimum energy necessary to transmit over a link is the minimum energy such that the

packet loss rate is below some small threshold. However, it may be possible to reduce

transmission energy further and introduce some non-zero packet loss rate as long as

overall power savings are achieved. These factors may contribute to interesting effects,

which is the subject of future research.

8.2 Lifetime Optimization

We adopt as a common lifetime definition the time when the first sensor dies. This

lifetime definition, proposed in [27], is widely utilized in the sensor network research

field. An alternative lifetime definition that has been used is the time at which a certain

percentage of total nodes run out of energy. This definition is actually quite similar in

nature to the one we use here. In a well designed network, sensors in a certain area

exhibit similar behaviors to achieve energy balance. In other words, when one sensor

dies, it can be expected that the neighbors of this node will run out of energy very soon

since they will have to take over the responsibilities of that sensor. Therefore, in a well

designed network, there should be little or no difference in lifetime when using these



115

two definitions.

In our network model, a set of Ns sensors is deployed in a region in order to mon-

itor some physical phenomenon. We refer to the complete set of sensors that has been

deployed as S = {s1 . . . sNs}. Sensor i generates traffic at a rate of ri bits per second.

All of the data that is generated must eventually reach a single data sink, labeled s0. We

adopt the power model from [36], where the amount of energy to transmit a bit can be

represented as Etx = Eelec + εampd
α, and the amount of energy to receive a bit can

be represented as Erx = Eelec, where Eelec represents the electronics energy, εamp is

determined by the transmitter amplifier’s efficiency and the channel conditions, d rep-

resents the distance over which data is being communicated, and α represents the path

loss exponent. The network scenario parameters also include the traffic generation rate

ri for each sensor, the distances dij between sensors, and the maximum transmission

distance dmax.

The goal of our network lifetime model is to discover the maximum network life-

time L given a fixed deployment strategy and network scenario parameters. The model

is able to determine this maximum by optimizing the amount of traffic that each sensor

should distribute to the other sensors in order to balance energy consumption among

the sensors. This traffic distribution is denoted by tij , indicating the amount of traffic

that sensor i transmits to sensor j. Note that tii = 0 for all i.

During network lifetime L, sensor i will generate a total of riL traffic. The first

constraint of our problem, related to the conservation of data flow at all sensor nodes,

is

Ns∑

j=1

tji + riL =
Ns∑

j=0

tij ∀i ∈ {1, · · · , Ns} (8.1)

Equation 8.1 states that the sum of all traffic received at sensor i and generated by sensor

i must be transmitted to other sensors or to the data sink (s0). The energy consumed by

sensor i includes the energy required for both transmitting and receiving data and can

be expressed as

ei =
Ns∑

j=0

(
Eelec + εamp(d

t
ij)

α
)
tij +

Ns∑

j=1

Eelectji (8.2)

The second constraint, related to the initial energy at each sensor, einit
i , is,
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ei ≤ einit
i ∀i ∈ {1, · · · , Ns} (8.3)

The third constraint, related to the maximum transmission range dmax of each sensor,

depends on the sensors’ transmission power control capabilities. If the sensors can vary

transmission power to accommodate the distance over which they must transmit, then

the transmission power required to deliver a packet from sensor i to sensor j will be

controlled in such a way that the transmission distance dt
ij equals the physical distance

In many real radio transmitters that employ transmission power control, transmission

power can only be set at a number of discrete levels, rather than at any arbitrary con-

tinuous value. However, these levels can be rather finely spaced, and we model the

sensors as being able to set their transmission power arbitrarily to simplify analysis.

dt
ij = dij ∀i ∈ {1, · · · , Ns},∀j ∈ {0, · · · , Ns} (8.4)

If nodes must use a fixed transmission range dmax, then the constraint simply becomes

dt
ij = dmax ∀i ∈ {1, · · · , Ns}, ∀j ∈ {0, · · · , Ns} (8.5)

Note that if dij > dmax, then no traffic can be sent between sensors i and j and the

following constraint must be applied.

tij = 0 ∀(i, j) : dij > dmax (8.6)

The last constraint, related to the energy distribution at each sensor, depends on how

freely energy can be assigned to each sensor. If energy can be freely assigned, then the

total energy consumption of all sensors must simply satisfy

Ns∑

i=1

einit
i = einit,total (8.7)

If sensors are initially assigned the same amount of energy, then

einit
i =

einit,total

Ns

∀i ∈ {1, · · · , Ns} (8.8)

The optimal network lifetime can be obtained using a linear programming approach

that sets the constraints as in Equations 8.1, 8.3, 8.4 (or 8.5), 8.6, and 8.7 (or 8.8), and

sets the goal of maximizing L. The linear program finds the maximum lifetime L for
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Figure 8.1: A one-dimensional topology network. Nodes are equally spaced in this

scenario.

a given scenario, and it also discovers the traffic distribution tij , indicating how this

lifetime can be obtained through intelligent traffic distribution.

8.3 Simulations

In this section, we provide simulation results in order to observe the optimal transmis-

sion range distributions for several typical sensor network deployment scenarios. In

all simulations, we used values of Eelec = 50 nJ/bit and εfs = 10 pJ/bit/m2 in the

power model. According to this power model and the analysis provided in [88], the

ideal transmission range for nodes in a general ad hoc network would be 100m. In

other words, 100m is the most power-efficient operating point in the absence of the hot

spot problem. The initial energy and data generation rate of all nodes in the network

were arbitrarily set to 1 J and 1 bit/second, respectively, in all simulations.

8.3.1 One-Dimensional Scenario

First, we observe a special case of the transmission range distribution optimization

problem where the topology consists of a one-dimensional deployment of sensors, sep-

arated by a distance of ∆, leading to the data sink. This scenario may occur in such

applications as highway traffic congestion monitoring. The scenario is depicted in Fig-

ure 8.1.

The optimal transmission range distribution for a one-dimensional network with

node spacing of 5m and a radius of 500m is shown in Figure 8.2. Figure 8.2(a) illus-
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Figure 8.2: Optimal transmission range distribution for a one-dimensional network with

a 500m radius and 5m spacing between nodes. Figure (b) shows the transmission range

probability density function of the node located 400m from the base station.

trates the optimal transmission range distribution as a function of distance to the data

sink. Dark areas in the distribution images refer to areas of dense transmission proba-

bility. By taking a vertical cross section of the image data, as shown in Figure 8.2(b)

for a node at a distance of 400m from the base station, we can more easily interpret the

data. A cross section gives us the probability density function pi(d) for a sensor si lo-

cated at the position where the cross section is taken. For example, Figure 8.2(b) shows

that using optimal scheduling, the node located 400m from the base station should send

9% of its traffic over a distance of 135m, 64% of its traffic over a distance of 140m,

and 27% of its traffic over a distance of 375m.

As shown in Figure 8.2(a), the sensors can be separated into three regions: a near-

field, a mid-field, and a far-field. In the near-field region, nodes transmit directly to

the base station. Nodes at farther distances, in the mid-field region, transmit most of

their packets over multiple hops, and the distribution of the packets is concentrated at

a distance that increases approximately linearly with distance from the base station.

Packets from nodes in the far-field region are split between being sent over an energy-

efficient transmission range and directly to the base station.

While extending lifetime is the primary goal of the transmission range distribution

optimization problem, we consider energy usage in our analysis as well. Lifetimes ap-

proaching that of the optimal solution can often be attained when using only a fraction

of the total network-wide energy available. If we allocate the same amount of initial
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energy to each individual node but use just a fraction of the total network energy, we

find an interesting trend in the attainable lifetime, shown in Figure 8.3. In fact, as the

total energy consumed in the network decreases from 100%, changes in the lifetime

are initially very limited. Figure 8.4 illustrates the changes in the optimal transmis-

sion range distribution and power consumption for each node at different points on the

energy-lifetime curve. The energy inefficiency is caused primarily by the nodes in the

far-field region and the nodes at the border of the near-field and the mid-field regions.

The inefficiency of the transmissions in the far-field region can be explained as

follows. Nodes closer to the base station in general must forward more traffic than those

far away. The nodes in the farthest region need to send only their own traffic, and so in

an energy efficient solution (in which they transmit over reasonably small transmission

ranges), they consume the least energy. In order to balance the energy and increase

lifetime by a minimal amount, they may take several of the packets that were sent

over the “reasonable” transmission ranges and send them over longer distances (e.g.,

directly to the base station), thus reducing the load on the intermediate nodes. However,

because of the long distances, the number of additional packets that are sent over longer

distances rather than using the “reasonable” transmission ranges is limited. As the

plots in Figure 8.4 show, packets that are sent over longer distances rather than using

the “reasonable” transmission ranges are the primary ones to be transferred to a more

energy-efficient range (see the regions of the distributions enclosed by the dashed lines

as well as the energy consumption plots) as the total network-wide energy consumption

drops from 100% to 90%.

Nodes at the border of the near-field and mid-field regions also contribute to the

energy inefficiency by transmitting packets to nodes located at very small distances

from the base station. Consider a node far from the base station that sends its packets

to a node located close to the base station. The total energy consumption for such

packet transmissions would be slightly higher than the energy consumption to send

packets directly to the base station. However, in the absence of these two-hop packet

transmissions, the farther node consumes more energy than the closer node and is more

of a limiting factor in terms of network lifetime. Thus, while requiring the nearer

node to forward traffic increases total energy consumption, it minimizes the maximum

energy consumption among the nodes and is included in the optimal solution. Figure

8.4 (see the regions enclosed by the solid lines) illustrates that as the total network-
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Figure 8.3: Lifetime vs. percentage of total network energy consumed.

wide energy consumption drops from 100% to 90%, some of the packets that would

have been sent over a long-hop followed by a short-hop are instead sent over a single

slightly longer hop. Note that the reduction in energy consumption actually occurs at

the nodes that would have received these packets (i.e., those closest to the base station),

rather than at the nodes that would have sent them.

Next, we study the impact of node density on the optimal transmission distribution,

which we expected would be minimal. As density increases, the ability of individual

nodes to rotate activity or generate data at a lesser rate lengthens lifetime if intelligent

schemes are used; however, if the density is increased uniformly throughout the net-

work, the additionally deployed nodes should exhibit similar trends in terms of trans-

mission range distribution. Figure 8.5, which shows the optimal transmission range

distribution for networks with a radius of 500m, with 5m, 10m, 20m, and 100m spac-

ing between the nodes, verifies our intuition. The only anomaly is in the 100m spacing

scenario, where the large spacing prevents transmissions over optimal distances from

being realized. In scenarios with higher node density, the optimal transmission range

distributions are very similar, as expected.

Next, we observe the effect of network radius on network lifetime and optimal

transmission range distribution. In Figure 8.6, we show the optimal transmission range

distribution as we set the network radius at 250m and 1000m, using 5m sensor spac-
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Figure 8.4: Optimal transmission range distribution and energy consumption as a func-

tion of distance for 100% (a) and 90% (b) of total network energy consumed.
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Figure 8.5: Optimal transmission range distribution as a function of distance from the

base station for 5m (a), 10m (b), 20m (c), and 100m (d) spacing, 500m radius.
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Figure 8.6: Optimal transmission range distribution as a function of distance from the

base station for radius of 250m (a) and 1000m (b), 5m sensor spacing.
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Figure 8.8: Two-dimensional sensor field (a) and one-dimensional modeling (b).

ing. The energy-lifetime curve is plotted in Figure 8.7. In larger networks, the farthest

nodes must operate at much more inefficient points in order to balance energy consump-

tion and so inefficiency occurs earlier as the percentage of network energy consumed

increases.

8.3.2 Two-Dimensional Sensor Fields

Next, we consider the scenario of a two-dimensional sensor field, with a base station

located in the center of the field. We modeled a dense two-dimensional field as a one-

dimensional field with nonuniform spacing. With infinitely dense sensor deployment,

we can assume that sensors will always send their packets within an infinitesimally thin

angle toward the base station, as shown in Figure 8.8(a). Since the number of nodes n

within distance r from the base station satisfies n ∝ r2 for two-dimensional networks,

when mapped into the one-dimensional space, the distance of a node to the base station

should be proportional to the square root of the node index, as shown in Figure 8.8(b).

We ran simulations to find the optimal transmission range distribution for a two-

dimensional sensor field. In these simulations, the number of nodes in the network

was kept constant and their spacing scaled up according to the network radius. The

optimal transmission range distributions are shown in Figure 8.9 for network radii of

250m and 1000m. The trends seem similar to those in the one-dimensional scenario,

although it seems that a larger portion of the packets are sent over long distances. This

is to be expected since there are disproportionately fewer nodes near the base station to

route data and disproportionately more data being generated by nodes far from the base
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Figure 8.9: Optimal transmission range distribution as a function of distance from the

base station for a two-dimensional sensor field with radius of 250m (a) and 1000m (b).

station. Since it is inefficient to send packets over long distances, we can expect the

energy-lifetime curve to reflect higher inefficiency at points of high energy consump-

tion. Figure 8.10 verifies this and shows that inefficiency occurs at even lower points

of total network-wide energy consumption than in the one-dimensional scenario, espe-

cially for large networks.

A similar optimal transmission range distribution is also observed even in networks

where infinitely high density is not assumed. In our next simulations, we randomly

placed 150 sensors in a circular field. We ran 25 simulations and calculated the optimal

transmission range distribution for each simulation. The mean transmission range dis-

tribution is given in Figure 8.11. In the far-field region, nodes in the randomly deployed

network transmit more packets directly to the base station than in the ideally dense sce-

nario. This is because the nodes often do not have another node directly on line to the

base station at the optimal distance. For the same reason, among the transmissions that

are sent over multiple hops, the transmission distances vary quite a bit, blurring this

region in the optimal transmission range distribution.

Overall, in a two-dimensional space, nodes are more densely located in the areas

farthest from the base station, aggravating the hot spot problem even further. As a

result, the energy inefficiency in the far-field region becomes more obvious than in the

one-dimensional case.
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Figure 8.10: Lifetime vs. percentage of the total energy consumed in the network for a

two-dimensional sensor field with various network radii.
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Figure 8.11: Optimal transmission range distribution as a function of distance from

the base station for a randomly deployed two-dimensional sensor field with radius of

250m (a), 500m (b), and 1000m (c). The trends are similar to those in the ideally dense

model, except that the distributions are blurred.



127

8.4 Summary

In this chapter, we have formalized the transmission range distribution optimization

problem for one-dimensional and two-dimensional networks and shown how to obtain

the maximum lifetime for convergecast networks using linear programming. Analysis

of the solution shows that any network lifetime improvement over simpler transmis-

sion range policies that can be obtained through optimization comes at the expense of

energy-inefficiency and a wasting of system resources. This is especially true in large

networks and two-dimensional networks. The results of this chapter motivate the re-

search presented in the following chapter, in which we present a complete cost analysis

of the single-sink convergecast deployment strategy as well as a number of other, more

energy-efficient deployment strategies.



Chapter 9

Cost-Efficiency of Sensor Network
Deployment Strategies

In the previous chapter, we showed the limited extent to which the hot spot problem

that arises in wireless sensor networks can be mitigated when the data sink is a static

node. In this chapter, we argue that transmission power control alone is not enough

to solve the hot spot problem and that data sink rotation is necessary for the network

to operate in an energy-efficient manner. Here, we explore the problem of optimizing

data sink rotation and observe the benefits that can be obtained from deploying even

a few extra data sinks (or moving the data sink a few times during the lifetime of

the network). Alternatively, it may be possible to distribute the processing of sensor

network data to regional cluster heads within the network. This mitigates the hot spot

problem significantly and increases the energy-efficiency of the system, as data is sent

over many fewer hops on average. However, as the deployment of a moving data sink or

a few aggregator nodes may be more expensive than deployment of an ordinary sensor

node, the optimal deployment method should be considered from a cost perspective.

Here, we explore this tradeoff and propose cost-efficient deployment solutions.

We begin by discussing several different strategies for sensor network deployment

and some assumptions we make in order to model the network for these different de-

ployment strategies.
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9.1 Deployment Strategy Options

Several key parameters can be used to describe sensor network deployment strategies.

These parameters include the following.

1. Sensor capabilities. In some cases, sensors have a non-adjustable transmission

power and thus a fixed transmission range, while in other cases, sensors equipped

with more advanced transceivers may vary their transmission ranges by using

different transmission powers.

2. Base station options. Some sensor networks are deployed with a fixed base sta-

tion that cannot change its physical location. However, another deployment op-

tion is to utilize a mobile base station that changes its physical location over

time. A third option is to deploy multiple base stations, where each base station

can collect data from a portion of the network.

3. Initial energy assignment. The initial energy assignment for each sensor reflects

how much freedom a sensor network deployment strategy has. When the deploy-

ment is in a controlled manner, nodes can be assigned different levels of initial

energy depending on their locations and their roles in the network. For general

sensor network deployments, however, we usually assume that the initial energy

of all the sensors is the same. This might be true especially when sensors are

manufactured in large quantities without differentiation.

4. Sensor locations. Similarly, the locations of sensors, relay nodes and data sinks

depend on how much freedom a sensor network deployment has. If the deploy-

ment is under full control, more sensors can be placed where energy is needed,

and relay nodes can be placed in areas likely to receive the most traffic.

5. Traffic generation pattern. The traffic generation pattern is closely related to the

sensing application. For environmental monitoring applications (e.g., temper-

ature monitoring), sensors may generate samples at the same rate. The traffic

generation pattern is uniform in this type of network. For intruder detection ap-

plications where an intruder is expected to be detected at the farthest end from

the base station, more traffic is expected to be generated at far distances. The

traffic generation pattern is thus non-uniform in this case.
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Table 9.1: Sensor network deployment strategies, corresponding scenarios, and poten-

tial difficulty/extra costs.

Strategy Scenario: {Traffic, Sensors, Energy, Sink} Difficulty/Extra Costs

DS1: Single static sink {uniform, homogeneous, uniform, single/static}

DS2: Mobile data sink {uniform, homogeneous, uniform, single/mobile} Data sink mobility

DS3: Multiple data sinks {uniform, homogeneous, uniform, multiple/static} Extra data sink deployment

DS4: Non-uniform energy {uniform, homogeneous, non-uniform, single/static} Individual energy assignment

DS5: Non-uniform placement {uniform, heterogeneous, uniform, single/static} Sensor/relay placement

DS6: Non-uniform traffic {non-uniform, uniform, uniform, single/static} Case dependent

A good network deployment strategy should resolve energy imbalance while main-

taining high energy-efficiency. We list some potential sensor network deployment

strategies in Table 9.1, labeled as DS1 through DS6. We do not intend to list every

possible deployment strategy in Table 9.1, but rather merely to highlight some possible

solutions to achieve both energy balance and energy efficiency.

The ultimate goal for sensor deployment is to provide a certain quality of service for

a maximum lifetime using a minimum cost. Although the more complex deployment

strategies listed in Table 9.1 may provide much longer network lifetimes, the extra cost

of sensor hardware, base station hardware, and incurred deployment complexity may

lead to a disproportionate increase in deployment cost. While maximizing network

lifetime is most often the desired research goal, the ultimate goal for a real sensor

network deployment plan is to reduce network deployment cost per network lifetime

without sacrificing quality of service. Therefore, cost must be considered along with

network lifetime during the analysis of different deployment strategies.

9.2 Normalized Network Lifetime

While the lifetime L found in the previous chapter allows us to determine an absolute

maximum time that the network can operate, this value is highly dependent on the

network scenario parameters, including the network area, the required density of active

sensors, the energy density, and the data generation rate. In order to obtain a more
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general understanding of the energy-efficiency of different deployment strategies, we

propose a normalized network lifetime L̃, which measures how many total bits can be

transported on the network per unit of energy. Similar sensing tasks should result in the

same normalized network lifetime for a given sensor network deployment strategy.

A typical sensing task can be described as the requirement to monitor an area, pro-

viding a certain quality of service, for a certain period of time. For example, suppose

that we want to monitor the temperature of a region for one year with a temperature

sample rate of once per hour. Design parameters of this task include the average traffic

generation rate among active sensors (r̄), the minimum sensor coverage density λa, the

initial energy assigned to each node ( ¯einit), and the monitoring period or network life-

time (L). These parameters affect the absolute lifetime, and they should be factored out

during the calculation of the normalized network lifetime. Note that energy-efficiency

of each deployment strategy is dependent on the area of the region being monitored,

and so we do not attempt to remove this factor.

In typical sensor networks, the network designer can calculate the minimum number

of sensors that are required to cover an area for a given application and required quality

of service. We denote this minimum sensor coverage density as λa. Sensors may be

deployed more densely than the sensing application requires and allow their sensing

activity to be rotated while maintaining the same sensing coverage goals [20, 23, 81,

95]. Once the network is fully covered, network lifetime can be arbitrarily increased

by simply putting more energy into the network. This can be realized by scaling up the

deployed sensor density, or increasing the initial energy per sensor. Network lifetime

can also be increased by reducing the traffic generation rate r̄ among active sensors. A

normalized lifetime L̃ that accounts for the total energy consumption by considering

the above factors can be expressed as

L̃ = L

(
r̄λa

λe

)
(9.1)

where λa represents the minimum sensor coverage density, r̄ represents the average bit

rate among active sensors, λe represents the energy density of the network (i.e., how

much energy is available per unit area), and L is the lifetime achievable with the given

scenario’s parameters.

In terms of units, L is measured in seconds, r̄ is measured in bits per second, λa is
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measured in the number of sensors per square meter, and λe is measured in Joules per

square meter. L̃ is thus measured in terms of bits per Joule, which explicitly indicates

the energy efficiency of a particular deployment strategy for a given network scenario.

9.3 Cost Model

Normalized lifetime reflects the energy-efficiency of different deployment plans. From

the normalized lifetime, we can deduce the number of sensors that will need to be

deployed in order to meet the sensing requirements, giving some indication of the cost

to deploy the network. For a particular deployment strategy DSi, given the sensing

requirements and a target network lifetime goal L, we can calculate the number of

required sensors Ns as follows.

Ns(DSi) =





min(λaA, Lr̄λaA

L̃ ¯einit
) i = 1, 2, 3, 5

λaA i = 4
(9.2)

For deployment strategies DS1, DS2, DS3, and DS5, where each node has a uniform

data generation rate r̄ and a uniform initial energy ¯einit, Equation 9.2 determines the

number of sensors that are needed based on the normalized lifetime L̃ as well as the

application quality of service (sensing density). For deployment strategy DS4, Equa-

tion 9.2 simply specifies that the minimum number of sensors that support the appli-

cation quality of service (sensing density) should be deployed since unequal energy

assignment can be used to ensure that the lifetime goal is met. In our cost analysis of

strategies DS1, DS2, DS3, and DS5, we will assume that the application quality of

service (sensing density) constraints are always met and that network lifetime is the

driving factor when determining how many sensors should be deployed.

More energy-efficient deployment strategies will have a higher normalized lifetime

(i.e., they will carry more traffic per unit of energy) and thus require a lower number of

sensors Ns(DSi) to meet the target lifetime. Thus, the deployment cost from sensors,

Cs(DSi), is lowered. However, these complex strategies may have higher extra deploy-

ment cost Ce(DSi). Our cost model explores these extra costs that are often overlooked,

and it enables the evaluation of different deployment strategies from a monetary cost

perspective. The total cost for the sensors is Cs(DSi) = csNs(DSi), where cs rep-

resents the cost of an ordinary microsensor, and the overall deployment cost C(DSi)
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becomes

C(DSi) = Ce(DSi) + Cs(DSi) (9.3)

This cost model is a simple yet effective method for allowing a network designer to

compare different deployment strategies on an equal basis.

9.4 Comparison of Different Deployment Strategies

In the previous section, we showed that optimal traffic load distribution with transmis-

sion power control is not very effective in extending network lifetime in some scenarios.

However, for deployment strategy DS1, this is the only option for extending network

lifetime. In this section, we investigate how well each of the other strategies listed in

Table 9.1 improves network lifetime. We will evaluate these strategies using the general

normalized lifetime and deployment cost models, defined in Sections 9.2 and 9.3.

When determining the normalized lifetime for each deployment scenario, we use

an arbitrary sample scenario that is manageable in terms of memory and processing for

solving the linear programs. In the sample scenario, Ns = 180 nodes are deployed in

a disc with a radius of 250 m, and sensors send traffic at a rate of r̄ = 1 bit/s. 180

Joules of total energy is assigned to the sensors. The network parameters for the sam-

ple scenario are summarized in Table 9.2. Once the values of L̃ have been determined

for each deployment strategy via analysis of this sample scenario, they can be used to

compare the cost-efficiency of different deployment strategies for a larger scale target

scenario. For each deployment strategy, we find the normalized lifetime with and with-

out transmission power control. For the scenarios without transmission power control,

we perform a brute force search over all possible fixed transmission ranges so that we

find an upper bound for that scenario using any transmission power.

9.4.1 Deployment Strategy DS1: Single Static Sink

We begin our study of the optimized network lifetime for the simplest, most common

sensor network deployment scenario, DS1 in Table 9.1. For this deployment strategy,

the only option to reduce the effects of the hot spot problem and maximize network

lifetime is to employ intelligent traffic distribution.
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Table 9.2: Network parameters for the sample scenario.

Parameter Value

Network Radius 250 m

Ns 180

λa
180

π2502 /m
2

einit,total 180 J

λa
180

π2502 J/m2

r̄ 1 bit/sec

We assign nodes the same initial energy einit
i = 1 Joule and the same traffic genera-

tion rate ri = 1 bit per second. In all simulations and analysis, we use values of Eelec =

50 nJ/bit and εamp = 100 pJ/bit/m2 [36]. We assume that nodes can adjust their

transmit power large enough to transmit to sensors 100m away (i.e., dmax = 100m).

We solve a linear program with Equations 8.1, 8.3, 8.4, 8.6, and 8.8 as the constraints

and a goal of maximizing L. The linear program solution provides us with the maxi-

mum achievable network lifetime for this strategy. This lifetime is shown in Figure 9.1

for various network radii.

In the optimal traffic distribution matrix, nodes that are very close to the base station

simply transmit all of their traffic directly to the base station. Nodes at farther distances

transmit most of their packets over multiple hops and send a smaller share of their

packets directly to the base station over long distances.

To investigate the improvement that transmission power control provides, we com-

pared its lifetime with the lifetime of a fixed transmission power scheme, which we

found using an optimization program with Equations 8.1, 8.3, 8.5, 8.6, and 8.8 as the

constraints. The results are shown in Figure 9.1. For each network radius, the optimal

fixed transmission range was found using a brute force search. While it seems that

transmission power control greatly improves energy-efficiency, analysis shows that the

improvements of Figure 9.1 are a result of inefficiency of the last-hop transmissions

when transmission power control is not used. The sensors transmitting along the last

hop have their power set unnecessarily high compared with the required level to reach

the base station. To isolate the effect of this, we also propose and analyze a heuristic
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Figure 9.1: Network lifetime as a function of network radius for the optimal power

control scheme, the fixed transmission power scheme and the heuristic power control

scheme in a two-dimensional scenario.

power control scheme in which nodes transmit using a fixed transmission power over

most hops, while using transmission power control for the last hop. To model this

heuristic scheme, the constraint imposed by Equation 8.5 must be modified as follows.

dt
ij =





dmax j ∈ {1 . . . N}
dij j = 0

(9.4)

The lifetime performance of this heuristic power control scheme is shown in Fig-

ure 9.1. The optimal transmission distances dmax for each network radius are obtained

through brute force searches on all possible transmission ranges. The heuristic power

control scheme performs somewhere between the optimal power control scheme and

the fixed scheme.

The normalized lifetime for a two-dimensional network utilizing the parameters in

the sample scenario (Table 9.2) was found to be 4.69× 105 bits/J when using transmis-

sion power control and 1.62× 105 bits/J when not using transmission power control.
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(a)

(c)

(b)

(d)

Figure 9.2: Data sink locations for the lifetime optimization using 1 (a), 2 (b), 3 (c),

and 4 (d) data sink locations.

9.4.2 Deployment Strategy DS2: Mobile Data Sink

In this section, we analyze the effectiveness of a mobile data sink for extending network

lifetime. Suppose that the mobile data sink stops at a given number Nl of data sink

locations, and all of the active sensors report to this sink when it stops at a new location.

For small values of Nl such as 2, 3, and 4, we assume that the optimal sink locations

form a symmetric pattern, as shown in Figure 9.2. To find the optimal locations, we

can use a brute force search, slowly varying the distances between the base stations and

the center of the deployment region, while finding the maximum lifetime achievable

for each set of sink locations. For values of Nl larger than four, it is more difficult to

determine the optimal base station locations. Therefore, we resort to random location

deployment.
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During the period that the data sink is at each of the locations, the data flow at each

sensor should be balanced. To account for this, several modifications must be made to

our model’s constraints. We will refer to the time during which each data sink location

l is operational as Ll. The amount of traffic sent from sensor i to sensor j during the

time when sink location l is active will be denoted as tijl. The conservation of flow

constraints become

Ns∑

j=1

tijl + riLl =
Ns∑

j=0

tijl ∀i ∈ {1, · · · , Ns}, ∀l ∈ {1, · · · , Nl} (9.5)

Meanwhile, the energy consumption of each sensor should be defined as

ei =
Ns∑

j=0

Nl∑

l=1

(
Eelec + εamp(d

t
ij)

α
)
tijl +

Ns∑

j=1

Nl∑

l=1

Eelectjil (9.6)

The goal of the linear program is now to maximize
∑Nl

l=1 Ll.

Note that sensors are required to send their traffic in a timely manner. While we

do not consider packet delay in our analysis, we make a fundamental underlying as-

sumption that the data must reach its destination before the data sink moves to a new

location. Otherwise, a node could simply hold the data until the base station moves to

a nearby location and lifetime could be made arbitrarily high.

Figures 9.3(a) and 9.3(b) show plots of the normalized lifetime L̃ as a function

of the number of data sink locations Nl with and without transmission power control,

respectively. Plots of L̃ using optimal data sink locations are given by the solid lines,

and plots of L̃ using randomly chosen data sink locations are given by the dashed lines

with standard deviation bars.

The use of DS2 with random data sink deployment and transmission power control

improves network lifetime by 92% to 5.97 × 105 when using eight data sink locations

instead of just one. However, the normalized lifetime flattens out at about 8 data sink

locations since the hot spot problem is already solved effectively at this point. When

transmission power control is not available, the use of 8 data sink locations improves

lifetime 237% to 4.13 × 105. However, the improvement again flattens out at 8 data

sink locations.

Although the normalized lifetime of DS2 for a large number of sink locations is

higher than that of DS1 (and thus, the required number of sensors is lower), a mobile
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Figure 9.3: Normalized lifetime vs. number of data sinks deployed for the sample

scenario with transmission power control (a) and without transmission power control

(b). Increasing the number of sink locations improves lifetime until a certain threshold

is met and the hot spot problem has been effectively solved.

data sink may be much more expensive than a stationary data sink used in DS1. This

cost may affect the overall desirability when we compare and evaluate the different

deployment strategies.

9.4.3 Deployment Strategy DS3: Multiple Data Sinks/Clustering

In a clustering approach, multiple aggregator-capable nodes are deployed and each sink

collects data from only a portion of the sensor network for the entire network lifetime.

Previous work in this area deals primarily with homogeneous networks, in which any

of the deployed nodes is capable of acting as cluster head. While this may be the

case in some network scenarios, it can be expected that data aggregation will require

more powerful processors and thus, more expensive sensor nodes, resulting in the de-

ployment of heterogeneous networks. In this section, we consider such heterogeneous

networks, where cluster heads are actually data sinks that are more capable (e.g., they

contain larger batteries, more processing power and memory, and possibly a second ra-

dio to link back to a central base station) and significantly more expensive than ordinary

microsensors. In our model, a sensor may send its traffic to whichever cluster head it
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chooses. The chosen cluster head is typically, but not necessarily, the closest cluster

head.

This deployment strategy also requires a modification of the first constraint in our

network lifetime model. Since we have multiple data sinks, we can no longer refer to

a single sink s0. Rather, we will refer to the data sinks as S∗ = {sNs+1, . . . , sNs+Nl
}.

Equation 8.1 should be modified as follows.

Ns∑

j=1

tji + riL =
Ns+Nl∑

j=1

tij ∀i ∈ {1, · · · , Ns} (9.7)

The energy consumption of each sensor can be described as

ei =
Ns+Nl∑

j=1

(
Eelec + εamp(d

t
ij)

α
)
tij +

Ns∑

j=1

Eelectji (9.8)

Using the sample scenario, we find the relationship between the normalized lifetime

and the number of data sinks that are deployed, as shown in Figures 9.4(a) and 9.4(b)

for schemes with and without transmission power control, respectively. The normal-

ized lifetime is given for optimal cluster head placement as well as random placement.

Again, optimal cluster head location patterns are only achievable for a small number of

cluster heads through brute force searching. As expected, when more cluster heads are

deployed, the hot spot problem is reduced and the network lifetime improves. In the

most extreme case, so many data sinks are deployed that every sensor can find a data

sink just one hop away. The hot spot problem is completely solved in this case. When

transmission power control is used, the normalized lifetime is found to be 3.11 × 105

bits/J for a single base station and increases to 2.73 × 106 bits/J for 30 base stations.

When transmission power control is not applied, increasing the number of randomly

deployed data sinks from 1 to 30 increases the normalized lifetime from 1.19 × 105

bits/J to 1.50× 106 bits/J.

Note that the performance of DS3 is better than that of DS2 since on average, traffic

is forwarded over much shorter distances (to the closest data sink rather than the single

global data sink). Another potential advantage of clustering is that it may better accom-

modate certain scheduling schemes. The cluster heads can serve as local controllers for

scheduling, which brings additional advantages over the single sink uniform deploy-

ment strategy. However, unlike the assumed fixed extra cost for a mobile data sink,
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Figure 9.4: Normalized lifetime vs. number of cluster heads deployed with transmis-

sion power control (a) and without transmission power control (b). Large gains in

network lifetime can be achieved when even a few extra cluster heads are deployed,

especially when their locations are optimized. Random sink locations can provide life-

time improvement, but it is not as large as that obtained using the optimal sink locations.

When power control is unavailable, the gap between random sink locations and optimal

sink locations is greatly reduced.
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the extra cost of this strategy is more likely to have a linear relationship with the num-

ber of data sinks deployed. Therefore, a proper number of data sinks must be chosen

according to the cost ratio of data sinks and normal sensors.

9.4.4 Deployment Strategy DS4: Non-uniform Energy Assignment

In strategy DS4, we loosen the initial energy constraint and allow each sensor to be

deployed with a different value of initial energy. In this strategy, Equations 8.1, 8.3, 8.4,

8.6, and 8.7 are used as the constraints for the linear program. The lifetime performance

of non-uniform energy assignment for various network radii is shown in Figure 9.5.

Compared to the results shown in Figure 9.1, in which optimal traffic distribution is the

only option, normalized lifetime improves from 4.69×105 bits/J to 9.09×105 bits/J for

the sample scenario when using transmission power control. The normalized lifetime

increases from 1.62 × 105 bit/J to 7.25 × 105 bit/J when transmission power control

is not used. Figures 9.6(a) and 9.6(b) show the optimal energy assignment map for

nodes at different distances to the base station along with an interpolated polynomial

function, for schemes using transmission power control and not using transmission

power control, respectively.

Intelligent energy assignment seems to be a good choice for sensor network de-

ployment. However, this strategy is inherently difficult since energy must be assigned

differently for individual nodes at different locations. When sensor deployment is per-

formed in a random manner, this becomes almost impossible. However, deployment

strategy DS5 (non-uniform sensor placement) is very similar in nature to DS4 and its

use seems more realistic. We will omit further discussion of DS4 and focus on strategy

DS5 in the remainder of this chapter.

9.4.5 Deployment Strategy DS5: Non-uniform Relay/Sensors

If we assume that all sensors must be deployed with equal initial energy, we may deploy

more relay/sensor nodes according to the energy maps shown in Figure 9.6, achieving

the same goal of providing more energy at particular points in the network. The nor-

malized lifetime obtained using this approach is equivalent to that calculated for DS4.
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Figure 9.5: Normalized lifetime as network radius varies for the non-uniform energy
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Figure 9.6: Energy distribution map for the sample scenario with transmission power

control (a) and without transmission power control (b). Nodes closest to the base station

should be assigned the most energy. The assignment can be approximated using a

polynomial function .
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9.4.6 Deployment Strategy DS6: Non-uniform Traffic Generation

In certain sensor networks, more traffic may be generated at distances farther from the

base station. For example, in sensor networks designed for intruder detection, the sen-

sors in the network periphery may provide the most important data, as these sensors

notify the application when an intruder has entered the network area. The majority of

the work for nodes closest to the base station is to forward the traffic, rather than to gen-

erate it. In this type of traffic generation pattern, the hot spot problem is automatically

alleviated. Consider an extreme case in the one-dimensional scenario in Figure 8.1. If

only sensor Ns, the sensor furthest from the data sink, generates traffic, the traffic will

be forwarded hop by hop to the data sink. Choosing the next hop closest to the optimal

transmission range will be the most energy-efficient forwarding method, and the energy

imbalance trends seen in other deployment strategies will not exist.

Data aggregation can be considered a variation of non-uniform traffic generation as

well. As data are forwarded to the base station, sensors may perform some processing

and aggregate their data with the received data before forwarding. Even if the data

generation rate is uniform within the network, data aggregation actually transforms it

into a non-uniform traffic generation pattern. Again, this helps to reduce the hot spot

problem.

However, in sensor networks where areas closer to the data sink are more of interest

for monitoring, more traffic is generated around the data sink. This actually aggravates

the hot spot problem. All of the strategies mentioned earlier can be applied to allevi-

ate the problem, and our model is still applicable to these scenarios. However, these

scenarios are essentially different from the previous scenarios. Therefore, we will not

compare the performance of this strategy with that of the previous strategies.

9.4.7 Cost Comparison of Deployment Strategies

Now that we have analyzed the normalized lifetime of the different deployment strate-

gies, in this section, we analyze the cost-efficiency of the deployment strategies for a

chosen target scenario. In our target scenario, we wish to monitor a disc with a radius

of 250 m with sensors that send traffic at an average rate of r̄ = 100 bits/s. The sensors

are activated with a density of 0.001 sensors/m2 and are deployed with an initial energy

of einit = 1000 J. The target network lifetime L is one year. Network parameters for
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Table 9.3: Network parameters for the target scenario.

Parameter Value

Network Radius 250 m

λa 0.001 /m2

¯einit 1000 J

r̄ 100 bit/sec

L 1 year

the target scenario are summarized in Table 9.3.

We compare the cost-efficiency of several deployment strategies under two cost

scenarios. In both scenarios, the cost of a normal microsensor is assumed to be $75 per

unit [96]. In the first cost scenario, the base stations are relatively cheap units ($500

per unit), such as simple Crossbow Stargate nodes [97]. In the second cost scenario,

the base station becomes a much more expensive unit ($5000 per unit), such as a high

power laptop or custom-designed base station.

When analyzing the cost-efficiency of DS2, we assume a large number of move-

ments by the data sink and use the normalized lifetime obtained from using 8 data sink

locations, as it seems to be fairly close to an asymptotic bound. For strategy DS3,

before comparing the strategy as a whole, we must find the optimal number of sink

locations to use for a given cost model. The number of sensors required for our target

scenario when using strategy DS3 is plotted in Figures 9.7(a) and 9.7(b) for schemes

with and without transmission power control, respectively. The total costs for both

cost scenarios are plotted in Figures 9.8(a) and 9.8(b). As expected, when data sinks

are cheaper, it is more cost-efficient to deploy more of them. As a representative set of

solutions, we will consider the use of 8 data sinks and 30 data sinks in our cost analysis.

The number of sensors required to meet the target lifetime for different deployment

strategies when using transmission power control and not using transmission power

control is summarized in Tables 9.4 and 9.5, respectively. We can see that in Cost

Scenario 1, when the base station is relatively cheap, it is wise to use a clustering

approach with many base stations, and DS3 with Nl = 30 becomes the most cost-

efficient approach. When sensors become much cheaper than base stations, it becomes
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Figure 9.7: Number of sensors required to meet the target scenario lifetime when using

transmission power control (a) and when not using transmission power control (b) for

the multiple data sinks deployment strategy.
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Figure 9.8: Total cost of deployment for target scenario when using transmission power

control (a) and when not using transmission power control (b) for the multiple data

sinks deployment strategy.
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Table 9.4: Cost evaluation for the two cost scenarios with transmission power control.

DS1 DS2, Nl = 8 DS3, Nl = 8 DS3, Nl = 30 DS5

Ns(DSi) 1322 1038 466 227 681

Cost Scenario 1

cs $75 $75 $75 $75 $75

ce1 $500 $500 $500× 8 $500× 30 $500

C1 $99,626 $78,353 $38,923 $32,006 $51,607

Cost Scenario 2

cs $75 $75 $75 $75 $75

ce1 $5,000 $5,000 $5,000× 8 $5,000× 30 $5,000

C2 $104,130 $82,850 $74,920 $167,010 $56,110

Table 9.5: Cost evaluation for the two cost scenarios without transmission power con-

trol.

DS1 DS2, Nl = 8 DS3, Nl = 8 DS3, Nl = 30 DS5

Ns(DSi) 3820 1499 947 412 854

Cost Scenario 1

cs $75 $75 $75 $75 $75

ce1 $500 $500 $500× 8 $500× 30 $500

C1 $286,990 $112,930 $75,030 $45,900 $64,540

Cost Scenario 2

cs $75 $75 $75 $75 $75

ce1 $5,000 $5,000 $5,000× 8 $5,000× 30 $5,000

C2 $291,490 $117,430 $111,030 $180,900 $69,040
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more effective to use a single base station and deploy more sensors, and thus DS5

becomes the most cost-effective. For such a scenario, non-uniform sensor deployment

is the best option. If this is not possible, then a clustering approach with fewer data

sinks is the next best option. After this, if the difference in costs between DS1 and

DS2 is enough to make up for the hidden costs of DS2 not shown here (those that are

difficult to quantify in a general sense, such as the cost to manually move the data sink

or the extra cost of adding robotics to the data sink), then DS2 should be used. As a

last resort, DS1 can be used.

While the normalized lifetime for some strategies is higher than others, when con-

sidering the extra cost of these strategies, they become less desirable than some of the

less energy-efficient strategies. A complete evaluation of different strategies should be

performed from both an energy and a cost perspective. Although these conclusions

sound straightforward, our method provides a quantification on the overall cost, and

thus a clear method for making a decision between several potential strategies.

9.5 Summary

In this chapter, we presented a general deployment cost model to evaluate multiple

senor network deployment strategies. In our work, we have made the following obser-

vations.

1. A good sensor network deployment strategy is one that achieves both energy

balance and energy-efficiency.

2. A good strategy should allow sensors to send most of their traffic at the general

optimal transmission range.

3. The strategy of mobile data sink deployment has some limitations on lifetime

improvement, while the strategy of deploying multiple data sinks can continue to

improve network lifetime as more sinks are added until the sub-networks become

one-hop networks.

4. The strategy of non-uniform energy assignment achieves both energy-efficiency

and energy balance simultaneously. However, it is inherently difficult to apply in

practice.
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5. Although more intelligent strategies may have better lifetime performance, the

cost of these strategies must be fully considered because once the quality of ser-

vice of a network is satisfied, cost becomes the primary concern for a practical

sensor deployment plan.



Chapter 10

Conclusions and Future Work

As the use of wireless sensor networks continues to spread and large-scale networks

become realizable, a great deal of effort has focused on energy-efficient sensor network

planning. This dissertation contributes to this effort and proposes means to optimally

assign roles to individual nodes so that they can most efficiently serve application goals.

10.1 Summary of Contributions

In this dissertation, we have made the following research contributions

• We have developed a sensor network middleware named MiLAN that allows a

system designer to optimize sensor selection and network parameters. MiLAN

provides mechanisms that allow system QoS requirements and sensor relation-

ships to be specified by a network programmer. Preliminary versions of this

middleware have been developed for the BlueZ Bluetooth protocol stack as well

as the TinyOS platform.

• We have formalized the problem of joint sensor selection and route selection and

shown how optimal network lifetime can be achieved through a linear program-

ming approach.

• We have presented several distributed protocols for role assignment in sensor

networks. A blue-noise spatial sampling protocol was presented for sensor se-

lection in a network whose goal is to reconstruct the signal of a bandlimited

149



150

phenomenon by a field of sensors. Variations on this protocol allow the end user

to collect high-quality data for extended periods of time. We have also presented

DAPR, a distributed protocol for joint sensor and route selection that can be used

in sensor networks that require the entirety of a region to be monitored by sensors

with a nominal coverage range. DAPR is the first known protocol that uses an

“application-aware” routing cost, helping to avoid use of sensors that are most

important to the application’s end goals. We have also shown how existing mul-

ticast protocols such as MIP can be modified to use these “application-aware”

costs to extend network lifetime.

• We have formalized the transmission range distribution optimization problem and

analyzed how transmission ranges should be optimally set in sensor networks

characterized by many-to-one traffic patterns. Motivated by the limited improve-

ments that optimizations can achieve over simpler policies, we have presented a

general framework for analyzing the cost-efficiency of several deployment strate-

gies that can be used as alternatives to a single-sink network.

10.2 Future Work

The work in this dissertation has opened up many new avenues for future exploration

of role assignment in wireless sensor networks. Possible future work in area includes

the following.

• The MiLAN middleware should be further developed and tested on the TinyOS

platform. Also, for a given hardware platform (i.e., the TelosB motes on which

the current implementation exists), a list of tunable network parameters should

be enumerated and policies for setting these parameters according to network and

application conditions should be explored. The further development of MiLAN

for TinyOS should be made simpler through use of the X-Lisa architecture [68].

• The application-aware routing costs that were presented in this dissertation per-

tain only to networks in which a certain level of coverage should be maintained

over the lifetime of the network. However, the concept of application-aware route

costs is not limited to such networks. Similar routing costs can be developed for
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networks whose goal is to reconstruct a bandlimited phenomenon such as those

considered in Chapter 5. Also, the implications of the use of distributed source

coding, where certain nodes reduce traffic rates and are partially rather than com-

pletely turned off, should be considered.

• The use of application-aware routing costs should be considered in networks with

traffic models other than convergecast and multicast. For example, we have done

preliminary work integrating application-aware costs into networks that employ

network coding as a means to disseminate data to a number of multicast sinks

within the network.

• The use of application-aware costs can be extended to levels of the protocol stack

other than routing. For example, in congested networks where significant energy

is dissipated in the MAC protocol by nodes contending for access to the channel,

backoff timers can be set according to these costs.
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