A Brief History of Interactive Music Systems

Zhiyao Duan
Audio Information Research (AIR) Lab
Department of Electrical and Computer Engineering
University of Rochester

Tutorial for the CAAI International Conference on Artificial Intelligence (CICAI)
Theme 3 – Art and Artificial Intelligence
Beijing, China, August 27, 2022
Interactive Music System

Human

Exchange of musical information

through some media (e.g., audio, visual, touch, gesture, brain signals)

System (or instrument, machine, agent, robot)
Are they interactive music systems?

Little interactivity
No intelligence
Not for fun
Interaction Is the Primary Goal

“One does not ‘use’ an instrument to accomplish some ultimate goal: one plays it, and often that is the only goal.”

Automatic Music Accompaniment Systems

Plays solo and leads
Receives limited cues for coordination

Audio and (visual)

Plays back pre-recorded accompaniment
Follows human
Limited understanding of human performance
Limited expressiveness

Piano Tutor (Dannenberg et al., 1993)
Music Plus One (Raphael, 1999)
Antescofo (Cont, 2008)
Eurydice (Nakamura et al., 2015)
Humanoid Robot (Xia et al., 2016)
Interactive Music Systems
Beyond Automatic Accompaniment

Cypher (Rowe, 1992)
Music Mouse (Spiegel, 1986)
Voyager (Lewis, 1999), started in 1986
GenJam (Biles, 1994)
Continuator (Pachet, 2002)
BoB (Thom, 2000)
Omax-Ofon (Assayag et al., 2006)
Shimon (Hoffman & Weinberg, 2006)
LL (Collins, 2009)
Reflexive Looper (Pachet et al., 2013)
BachDuet (Benetatos & Duan, 2019)
A.I. Duet (Magenta, 2016)
CIM (Brown, 2018)
Omax-Ofon (Assayag et al., 2006)
CIM (Brown, 2018)

Toby Gifford, et al., Computational systems for music improvisation, Digital Creativity, 2018.
Categorization

• Three dimensions classifying interactive music systems
 (Rowe, Interactive Music Systems, 1992)

• E.g., automatic accompaniment systems
 • Score-driven, sequenced, player

• This perspective is more on functionality design instead of capability
Four Dimensions of Capability

- Perception (感知力)
- Creativity (创造力)
- Interactivity (交互性)
- Expressiveness (表现力)
Let’s measure some systems
(Laurie Spiegel, 1986)

- Rule-based music harmonization and improvisation
 - User moves mouse in 2D space, controlling 2 voices
 - System generates the other 2 voices
 - User uses keyboard commands to control orchestration, harmonic mode, tempo, etc.

https://www.youtube.com/watch?v=D-mmEvGOopk
Cypher
(Robert Rowe, 1992)

- Multi-agent system responding to human MIDI input in real time
 - Listener analyzes MIDI input (e.g., vertical density, attack speed, loudness, register, duration and harmony, beats, tonal pivots, etc.)
 - Player produces musical output in a virtually deterministic way

(Rowe, Interactive Music Systems, 1993)
GenJam (Al Biles, 1994)

- Genetic algorithm for jazz improvisation (trade fours)
 - Listens to human’s four measures
 - Maps to its chromosome representation
 - Mutates the chromosomes
 - Generates the next four measures

https://www.youtube.com/watch?v=rFBhwQUZGxg
Voyager
(George Lewis, 1999)

• Multi-agent system with stochastic selection of agent combinations
 • Listens to MIDI or acoustic data (e.g., tempo, note spacing, melodic interval width, primary pitch material, octave range, microtonal transposition, and volume)
 • Improvises on many musical aspects (e.g., timbre, volume, microtonal transposition, tempo, tactus, note probability distributions, pitch interval range, and inter-onset time intervals)

https://www.youtube.com/watch?v=IBPJ2HAmse8
Continuator
(François Pachet, 2002)

- Continuing music in the same style
 - Modeling user MIDI input sequences with a variable-order Markov model and builds pre-fix trees
 - Random traversals of trees to generate continuations

https://www.youtube.com/watch?v=ynPWOMzossI
Omax-Ofon
(Assayag, Bloch, & Chemillier, 2006)

• Improvising based on what users just played
 • Modeling note sequences with factor oracle (a finite state automaton for efficient string matching)
 • Sampling sub-sequences to play back
 • Supports MIDI/audio input and multi-player/system settings

Now it's Steve, Mari + Steve2, Mari2 :)
Shimon
(Hoffman & Weinberg, 2006)

- A robotic marimba player for interactive improvisation
 - Physical embodiment greatly helps the audience to enjoy the performance
 - Beat tracking and chord matching to adapt to human’s tempo variation
 - Improvisation centered around the choreographic aspect of the movement
• Rule-based system for free improvisation with humans
 • Rhythm tracking: onset, inter-onset interval
 • Silence detection: perceived loudness
 • Timbral state clustering: using low-level acoustic features
 • Generation: choose among 10 agents to follow the human’s timbral state
Reflexive Looper
(Pachet et al., 2013)

- A system allowing users to play with past virtual copies of themselves
 - Takes simultaneous MIDI and audio input: MIDI for analysis and audio for resynthesis
 - Uses an SVM classifier trained on MIDI data to classify the mode of user playing: bass, chords, and melody
 - Resynthesizes the other modes using past input audio

https://www.youtube.com/watch?v=oquvn8GybRs
A.I. Duet
(Google Magenta, 2016)

- A neural network model that responds to tunes played by the user on a MIDI keyboard using a similar style.
Piano Genie
(Donahue, Simon, & Dieleman, 2019)

- Allowing users to improvise piano music on an 8-button controller
 - Uses an autoencoder to map note sequences in the 88-d space (corresponding to the 88 piano keys) to sequences in the 8-d space
 - Trained on 1400 piano performances by skilled pianists

https://www.youtube.com/watch?v=YRb0XAnUplk
BachDuet (https://bachduet.com/) (Benetatos & Duan, 2019)

- A neural network based system to allow human-AI duet improvisation in the style of Western counterpoint
 - Trained on outer voices of 370+ Bach chorales
 - Relatively equal role between human and AI – 6:4
 - Only supports MIDI input and fixed tempo

A Brief History of Interactive Music Systems, Tutorial for CICAI, August 27, 2022
Interactive Music Systems
Beyond Automatic Accompaniment
The Trend?

Perception

Creativity

Expressiveness

Interactivity

1986

now

A Brief History of Interactive Music Systems, Tutorial for CICAI, August 27, 2022
The Trend?

• **Perception**: was improved due to audio analysis and music language modeling techniques
• **Creativity**: was improved due to machine learning based music generation techniques
• **Expressiveness**: a few systems started to leverage physical embodiment and visual rendering techniques
• **Interactivity**: did not seem to be improved, yet different ways of interaction were attempted
Human Musicians in a Jazz Combo

A Brief History of Interactive Music Systems, Tutorial for CICAI, August 27, 2022
I think this is what we need

Transcription
Source separation
Score following

Gesture/movement analysis
Fingering analysis
Emotion/intension estimation

Sound synthesis
Expressiveness modeling

Integration (e.g., improvisation)

Music language models
Music generation

Visual rendering
Physical embodiment

Perception

Theory / Composition

Performance

A Brief History of Interactive Music Systems, Tutorial for CICAI, August 27, 2022