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Outline

• Basic Concepts of Pitch

• Single Pitch Detection

• Multi-Pitch Analysis
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Pitch (ANSI 1994 Definition)

• That attribute of auditory sensation in terms of which 
sounds may be ordered on a scale extending from low to 
high. Pitch depends mainly on the frequency content 
of the sound stimulus, but also depends on the sound 
pressure and waveform of the stimulus

• (Operational) A sound has a certain pitch if it can be 
reliably matched to a sine tone of a given frequency at 40 
dB SPL
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Pitch and Intensity

• Stevens Rule 

– The pitch of low frequency (below 1000Hz) sine tones 
decreases with increasing intensity -- (low loud sounds go flat)

– The pitch of high frequency tones (over 3000 Hz) increases 
with intensity -- (high loud sounds go sharp)
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Harmonic Sound

• A sound with strong sinusoidal components at integer 
multiples of a fundamental frequency. These components 
are called harmonics or overtones.

• Harmonic sounds are the sounds that may give a 
perception of “pitch”.
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Classify Sounds by Harmonicity

• Sine wave   

• Strongly harmonic
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Classify Sounds by Harmonicity

• Somewhat harmonic (quasi-harmonic)
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Classify Sounds by Harmonicity

• Inharmonic
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Gong

(from Anssi Klapuri, and Manuel Davy, editors. Signal Processing Methods for Music Transcription. Springer, 2006.)



What determines pitch?

• Complex tones

– Strongest frequency?

– Lowest frequency?

– Something else?

• Let’s listen and explore…
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Hypothesis

• Pitch is determined by the lowest strong frequency 
component in a complex tone
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The Missing Fundamental
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Hypothesis

• Pitch is determined by the lowest strong frequency 
component in a complex tone

• The case of the missing fundamental proves that it’s not 
always so
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Hypothesis – “It’s complicated”

• by the loudest frequency

• by the common frequency that divides other frequencies

• by the space between regularly spaced frequencies
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Pitch vs. F0

• A perceptual attribute, so subjective

• Only defined for (quasi) harmonic sounds

– Harmonic sounds are periodic, and the period is 1/F0.

• Can be reliably matched to fundamental frequency (F0)

– In computer audition, people do not often discriminate pitch from F0

• F0 is a physical attribute, so objective
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Pitch and Music

• How do we tune pitch in music?

• How do we represent pitch in music?

• How do we represent the relation of pitches in music?
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Equal Temperament

• Octave is a relationship by the power of 2

• There are 12 half-steps in an octave

𝑓(𝑛) = 2
𝑛

12𝑓ref
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Measurement

• 100 Cents in a half step

• 2 half steps in a whole step

• 12 half steps in an octave

Number of cents 

𝑐 = 1200 log2

𝑓

𝑓ref
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A=440 Equal Temperament Tuning

Music Pitch Analysis - WiSSAP 2023 - IIT Kanpur - Dec 18-21, 2023 18



Musical Intervals (from C)
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Interval Names
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Some Magic
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Half-steps:

C → C: 12 half-steps, 2
12

12 =
2

1

C → G: 7 half-steps, 2
7

12 = 1.4983 ≈
3

2

C → F: 5 half-steps, 2
5

12 = 1.3348 ≈
4

3

C → E: 4 half-steps, 2
4

12 = 1.2599 ≈
5

4

Are these just 
coincidence?



Related to Standing Waves

• How about defining pitches this way, so that they sound more 
harmonic?
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Pythagorean Tuning

• Frequency ratios of all intervals are based on the ratio 3:2, i.e., perfect fifth 
(P5), which is 7 half-steps.
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Circle of Fifths
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Problem with Pythagorean Tuning

• One octave =  2f

• A perfect 5th = (3/2)f

• What happens if you go around the circle of 5ths to get back to your original 
pitch class?

• (3/2)12 = 129.75

• Nearest octave is 27 = 128

• 128 != 129.75

• Not convenient for key changes
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Overtone Series

• Approximate notated pitch for the harmonics (overtones) 
of a frequency
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Outline

• Basic Concepts of Pitch

• Single Pitch Detection

• Multi-Pitch Analysis
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Why is pitch detection important?

• Harmonic sounds are ubiquitous

– Music, speech, bird singing

• Pitch (F0) is an important attribute of harmonic sounds, and it 
relates to other properties

– Music melody → key, scale (e.g., chromatic, diatonic, pentatonic), style, 

emotion, etc.

– Speech intonation → word disambiguation (for tonal languages), 

statement/question, emotion, etc.
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What scales are used? What emotion?
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General Process of Pitch Detection

• Segment audio into time frames

– Pitch changes over time

• Detect pitch (if any) in each frame

– Need to detect if the frame contains pitch or not

• Post-processing to consider contextual info

– Pitch contours are often continuous
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An Example
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How long should the frame be?

• Too long:

– Contains multiple pitches (low time resolution)

• Too short

– Can’t obtain reliable detection (low freq resolution)

– Should be at least about 3 periods of the signal

– For speech or music, how long should the frame be?
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Pitch-Related Properties

• Time domain signal is periodic

– F0 = 1/period

• Spectral peaks have harmonic 
relations

– F0 is the greatest common divisor

• Spectral peaks are equally 
spaced

– F0 is the frequency gap
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Pitch Detection Methods

• Time domain signal is 
periodic

– F0 = 1/period

• Spectral peaks have 
harmonic relations

– F0 is the greatest 
common divisor

• Spectral peaks are 
equally spaced

– F0 is the frequency gap

• Time domain

– Detect period

• Frequency domain

– Detect the divisor

• Cepstrum domain

– Detect the gap
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Time Domain: Autocorrelation

• A periodic signal correlates strongly 
with itself when offset by the period 
(and multiple periods)

• Problem: sensitive to peak amplitude 
changes 

– Which peak would be higher if signal 
amplitude increases?

– Lower octave error (or sub-harmonic 
error)
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YIN: Autocorrelation → Difference Function

• Replace ACF with difference function

• Look for dips instead of peaks, which is 
why it’s called YIN opposed to YANG.

• Immune to amplitude changes

• Problem 

– Some dips close to 0 lag might be 
deeper due to imperfect periodicity

• YIN algorithm has several other steps to 
fix this and other issues
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[de Cheveigne, 2002]
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Frequency Domain Approach

• Idea: for each F0 candidate, calculate the support (e.g., spectral 
energy) it receives from its harmonic positions.

• E.g., Harmonic Product Spectrum (HPS)
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[Schroeder, 1968; Noll, 1970]
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Cepstral Domain Approach

• Idea: find the frequency gap between adjacent spectral peaks

– The log-amplitude spectrum looks pretty periodic

– The gap can be viewed as the period of the spectrum

– How to find the period then?

– Cepstrum idea: Fourier transform!
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Cepstrum

power cepstrum = ℱ−1 log ℱ 𝑥 𝑡 2 2
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Signal period

Spectrum   -   Cepstrum
Frequency  -   Quefrency
Filtering     -   Liftering
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Pitched or Non-pitched?

• Some frames may be silent or inharmonic, so they may not contain 
a pitch at all

– Silence can be detected by RMS value

– How about inharmonic frames?

• YIN: threshold on dip, aperiodicity

• HPS: threshold on the peak amplitude of the product spectrum

• Cepstrum: threshold on ratio between amplitudes of the two 
highest cepstral peaks

– [Rabiner 1976]
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How to evaluate pitch detection?

• Choose some recordings (speech, music)

• Get ground-truth

• Pitched/non-pitched classification error

• Calculate the difference between estimated pitch with ground-
truth

– Threshold for speech: 10% or 20% in Hz

– Threshold for music: 1 quarter-tone (about 3% in Hz)
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Different Methods vs. Ground-truth

frame 65frame 25
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He Ba, Na Yang, I. Demirkol and W. Heinzelman, "BaNa: A 

hybrid approach for noise resilient pitch detection,” IEEE 

Statistical Signal Processing Workshop (SSP), 2012
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Pitch Detection with Noise

• Can we still hear pitch if there is some background noise, 
say in a restaurant?

• Will pitch detection algorithms still work?

• Which domain is less sensitive to which kind of noise?

• How to improve pitch detection in noisy environments?
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Violin + babble noise
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Supervised Learning Method
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• Model input: audio frame; model output: target pitch

• Data driven; can be trained on specific type of data or diverse data

• CREPE: Convolutional Representation for Pitch Estimation

Kim, Jong Wook, et al. "CREPE: A convolutional representation for pitch estimation." In Proc. ICASSP 2018.
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More Robust to Noise

• Robustness can be further improved with data augmentation

• Online repo and model: https://github.com/marl/crepe 

• Limitation: Requires annotated data to train
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SPICE: Self-supervised PItCh Estimation
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• Inspiration: relative pitch is 
easier to transcribe than 
absolute pitch

• Training: Feeding CQT 
spectrograms (original and 
transposed)

• Calibration: using a small 
synthetic dataset to get 
absolute pitch

Gfeller, Beat, et al. "SPICE: Self-supervised 

pitch estimation." IEEE/ACM TASLP 2020.
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Result Comparisons
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• Smaller model
• Decent performance
• Better noise robustness
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PESTO
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Alain Riou, Stefan Lattner, Gaëtan Hadjeres, Geoffroy Peeters. “PESTO: Pitch Estimation with Selfsupervised 
Transposition-equivariant Objective,” in Proc. ISMIR, 2023 (best paper award!)

• Training input: CQT spectrum + its transposed and augmented versions
• Training target: invariance, equivariance, shifted cross entropy
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Result Comparisons

• Extremely light model

• Comparable results to supervised method
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Outline

• Basic Concepts of Pitch

• Single Pitch Detection

• Multi-Pitch Analysis

– Many slides are copied from ISMIR 2015 Tutorial on “Automatic 
Music Transcription”, which provides a much more 
comprehensive review: https://c4dm.eecs.qmul.ac.uk/ismir15-
amt-tutorial/ 
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Multi-pitch Analysis of Polyphonic Music

• Given polyphonic 
music played by 
several harmonic 
instruments

• Estimate a pitch 
trajectory for each 
instrument
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Why is it important?

• A fundamental problem in computer audition for 
harmonic sounds

• Many potential applications

– Automatic music transcription

– Harmonic source separation

– Melody-based music search

– Chord recognition

– Music education

– ……
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How difficult is it?

• Let’s do a test!

– Q1: How many pitches 
are there?

– Q2: What are their 
pitches?

– Q3: Can you find a pitch 
in Chord 1 and a pitch in 
Chord 2 that are played 
by the same instrument?

Chord 1 Chord 2

52

2 3

C4/G4 C4/F4/A4

Clarinet  G4

Horn      C4

Clarinet A4
Viola     F4
Horn     C4
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Our Task

53

Ground-
truth pitch 
trajectories

Spectrogram
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Three Levels of Multi-pitch Analysis

• Frame-level (multi-pitch estimation)

– Estimate pitches and polyphony in 
each frame

– Many methods

• Note-level (note tracking)

– Estimate pitch, onset, offset of notes

– Fewer methods

• Stream-level (multi-pitch 
streaming)

– Stream pitches by sources

– Very few methods
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Iterative Spectral Subtraction

55

[Klapuri, 2003]

Pros: good performance, simple, fast
Cons: hard to subtract the appropriate amount of energy
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Spectral Peak Modeling – Maximum Likelihood

• [Duan et al., 2010]

56

Probability of observing these 
peaks: 𝑓𝑘 , 𝑎𝑘 , 𝑘 = 1, … , 𝐾.

Probability of not having any harmonics 
in the non-peak region

𝑝 𝑶 𝜽 = 𝑝 𝑶peak 𝜽 ⋅ 𝑝 𝑶non−peak 𝜽

True pitch True pitch Pitch hyp

𝑝 𝑶peak 𝜽  is large

𝑝 𝑶non−peak 𝜽  is small

𝑝 𝑶peak 𝜽  is small

𝑝 𝑶non−peak 𝜽  is large

Pitch 
hyp

Pros: balances harmonic and subharmonic errors
Cons: soft notes may be masked by others
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Full Spectrum Modeling – Probabilistic

• Each note = tied- Gaussian 
Mixture Model (tied-GMM)

• Signal = Mixture of GMMs

57

• Key idea: view spectra as (parametric) probabilistic 
distributions

Figures from [Yoshii & Goto, 2012]

Pros: flexible to incorporate priors on 
parameters
Cons: doesn’t model inharmonic and 
transients; many parameters to optimize
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Full Spectrum Modeling – Probabilistic

Non-parametric model

• Probabilistic Latent Component Analysis (PLCA)

58

𝑃𝑡 𝑓 ≈ 

𝑧

𝑃 𝑓 𝑧 𝑃𝑡(𝑧)

Dictionary 
Elements 

𝑃 𝑓 𝑧

Activation 
weights 

𝑃𝑡(𝑧)

Sound quanta 
distribution at 𝑡

Time-invariant 
sound quanta 
distribution for 
each component

Distribution of 
components

[Smaragdis & Raj, 2006]
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Classification-based Piano Transcription

[Poliner & Ellis, 2007]

• 87 independent one-vs-
all SVMs for piano 
(except for the highest 
note C8)

• Trained on MIDI-
synthesized piano 
performances

• Features: magnitude 
spectrum within

• HMM smoothing for each 
class independently 59

൞

0−2 kHz, for notes ≤ B5 (988Hz) 

1−3 kHz, for C6 ≤ notes ≤ B6

2−4 kHz, for notes ≥ C7 (2093Hz)

SVM output

HMM output
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Classification-based Piano Note Transcription 
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Multi-Instrument Transcription

• MusicNet [1]

– 330 classical pieces with MIDI alignments 
using Dynamic Time Warping (DTW)
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[1] J. Thickstun, Z. Harchaoui, and S. Kakade, Learning features of music from scratch, 
ICLR, 2017.
[2] J. Thickstun, Z. Harchaoui, D.P. Foster, S.M. Kakade, Invariances and data 
augmentation for supervised music transcription, ICASSP, 2018.



State of the Art of Multi-pitch Analysis

• Frame-level (multi-pitch estimation)

– Estimate pitches and polyphony in 
each frame

– Many methods

• Note-level (note tracking)

– Estimate pitch, onset, offset of notes

– Fewer methods

• Stream-level (multi-pitch 
streaming)

– Stream pitches by sources

– Very few methods
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Frame Level → Note Level 

• Based on pitch salience/likelihood/activations

– Thresholding, filling, pruning

– Median filtering: [Su & Yang, 2015]

– Pitch-wise on/off HMMs

63

Figure from [Benetos & Dixon, 2013]
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Note Tracking from Audio Directly

[Kameoka et al., 2007] 

• Harmonic temporal 
structured clustering 
(HTC)

• EM algorithm

64

Note model

Along frequency

Along time

Activation of 
sources (latent 
variables)

Mixture 
spectrogram

Source 
signal parameters
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State of the Art

• Frame-level (multi-pitch estimation)

– Estimate pitches and polyphony in 
each frame

– Many methods

• Note-level (note tracking)

– Estimate pitch, onset, offset of notes

– Fewer methods

• Stream-level (multi-pitch 
streaming)

– Stream pitches by sources

– Very few methods
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Multi-pitch Streaming (Timbre Tracking)

• Supervised

– Train timbre models of sound sources

– Apply timbre models during pitch estimation: [Cont et al., 2007; Bay et al., 2012; 
Benetos et al., 2013]

– Classify estimated pitches/notes: [Wu et al. 2011]

• Supervised with timbre adaptation

– Adapt trained timbre models to sources in mixture: [Carabias-Orti et al., 2011; 
Grindlay & Ellis, 2011]

• Unsupervised

– Cluster pitch estimates according to timbre: [Duan et al., 2009, 2014; Mysore & 
Smaragdis, 2009; Arora & Behera, 2015]
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Timbre Tracking – Unsupervised (1)

[Duan et al., 2009, 2014]

• Constrained clustering

– Objective: maximize timbre 
consistency within clusters

– Constraints based on pitch 
locations: must-links and 
cannot-links

• Timbre representation: 
harmonic structure feature

• Iterative algorithm: update 
clustering to monotonically 
decrease objective function 
and satisfy more constraints

67
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Timbre Tracking – Unsupervised (2)

[Arora & Behera, 2015]

• Constrained clustering

– Objective: maximize timbre consistency within clusters

– Constraints based on pitch locations: grouping constraints (i.e., 
pitch continuity) and simultaneity constraints (i.e., simultaneous 
pitches)

• Timbre representation: MFCC

• Clustering algorithm: hidden Markov random field
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Timbre Tracking – Unsupervised (3)

[Mysore & Smaragdis, 2009] for relative pitch tracking

• Shift-invariant PLCA on constant-Q spectrogram

– Assumption: instrument spectrum shape invariant to pitch

– Constraints: 1) note activation over frequency shift is unimodal; 

2) note activation over time is smooth

• Can be viewed as a pitch clustering algorithm

69

• Pros: pitch estimation and 
timbre tracking are performed 
at the same time

• Cons: does not recognize the 
absolute pitch
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MT3: Multi-Task Multitrack Music Transcription 
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Josh Gardner, Ian Simon, Ethan Manilow, Curtis Hawthorne, Jesse Engel, “MT3: Multi-task multitrack music transcription,” in Proc. 
ICLR, 2022. 
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Transformer Training

• Model input: log-mel spectrogram

• Model output: MIDI-like tokens
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Result Comparisons
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Summary

• Basic Concepts of Pitch

– Pitch perception

– Pitch and music

• Single Pitch Detection

– Time domain

– Spectral domain

– Cepstral domain

– Machine learning methods

• Multi-Pitch Analysis

– Frame-level

– Note-level

– Stream-level
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