Music Rhythm Analysis

Zhiyao Duan Associate Professor of ECE and CS University of Rochester

Presentation at WiSSAP 2023, IIT Kanpur, December 18-21, 2023

What is rhythm?

• "Movement marked by the regulated succession of strong and weak elements, or of opposite or different conditions."

---- Oxford English Dictionary

Music Rhythm Analysis - WiSSAP 2023 - IIT Kanpur - December 18-21, 2023

Definitions

- **Beat:** basic unit of time in music
- **Tempo:** speed or pace of a given piece, typically measured in beats per minute (BPM)

More Definitions

- Attack: sharp increase of energy
- **Transient**: a short duration with high amplitude within which signal evolves quickly
- **Onset**: single instant marking the beginning of transient
 - Onsets often occur on beats.

More Definitions

• Measure (or bar): segment of time defined by a given number of beats

[http://en.wikipedia.org/wiki/Metre (music)]

More Definitions

• **Meter:** Organization of music into regularly recurring measures of stressed and unstressed beats

Hypermeter: 4-beat measure and 4-measure hypermeasure. Hyperbeats in red. [http://en.wikipedia.org/wiki/Metre (music)]

Rhythm Analysis Tasks

- Onset detection
- Tempo estimation
- Beat tracking
- Down beat tracking
- Meter estimation
- Hierarchical rhythm analysis
- Offline: algorithm accesses the entire song
- Online: algorithm only accesses past signals, good for real-time applications

Why is it important?

- Intellectual merit
 - Important component of music understanding
 - Music cognition research

- Broad applications
 - Identify/classify/retrieve music by rhythmic similarity
 - Music segmentation/summarization
 - Audio/video synchronization
 - Source separation

Onset Detection

- Signal processing: define a detection function
 - Energy-based
 - Spectral-based
 - Phase-based
- Machine Learning: learn patterns from labeled data
 - Probabilistic models
 - Neural networks

Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M. and Sandler, M.B., "A tutorial on onset detection in music signals," *IEEE TSAP*, 2005.

Energy-based Onset Detection

Note: the local energy is typically computed at a lower time resolution than audio samples, e.g., time frames.

Müller, Meinard. *Fundamentals of music processing: Audio, analysis, algorithms, applications*, Springer, 2015.

samples, e.g., time frames. Music Rhythm Analysis - WiSSAP 2023 - IIT Kanpur - December 18-21, 2023

Energy-based Onset Detection

- Pros and Cons
 - Simple
 - Works well for percussive sounds
 - Soft onsets by string/wind instruments are hard to detect
 - Tremolo/vibrato can cause false detections
- How to improve
 - Use logarithmic-energy to replace linear energy
 - Perform analysis in different frequency bands, then summarize

Spectral-based Onset Detection

- STFT to get magnitude spectrogram |χ|
- (optional) compression $\mathcal{Y} := \Gamma_{\gamma}(|\mathcal{X}|) = \log(1 + \gamma \cdot |\mathcal{X}|)$

- Spectral flux:
 - Take derivative w.r.t. time (half-wave rectified)

$$\Delta_{\text{Spectral}}(n) := \sum_{k=0}^{K} |\mathcal{Y}(n+1,k) - \mathcal{Y}(n,k)|_{\geq 0}$$

Müller, Meinard, *Fundamentals* of *music processing: Audio, analysis, algorithms, applications*, Springer, 2015.

Spectral-based Onset Detection

- Pros and Cons
 - More complex than energy-based
 - Can weigh different frequencies differently
 - Works better for soft onsets (e.g., legato notes) and polyphonic music
 - Still doesn't work very well for vibrato

Examples

	Original audio	Original audio + energy-based onsets	Original audio + spectral- based onsets
Рор			
Schumann			
Hayden			Sund's

Tempo Estimation

- Tempo = beats / minutes
- Beat tracking is a sufficient but not a necessary condition for tempo estimation
- How to estimate tempo without tracking beats?
- Idea: look at the regularity of onsets
- Assumptions
 - Onsets mostly occur on beats
 - Tempo is constant within a period of time

Tempo Estimation

- Take the onset strength curve and analyze its periodicity
 - Autocorrelation
 - STFT

Tempogram

- Perform STFT on the onset strength curve
- What is the fundamental frequency?

Beat Tracking

- Identify the beat times, i.e., the times to which we tap our feet
 - Detected onsets provide useful but noisy information, since not all onsets are on beats.
 - Estimated tempo tells us the space between two beats, but not the exact locations (i.e., phase).
- To simply the problem, we assume
 - Onsets, especially strong ones, are mostly on beats.
 - Tempo is constant.

Beat Tracking

- A 2-step approach
 - Step 1: Tempo estimation
 - Step 2: Identify beats from onsets using the tempo
 - Create an impulse train (i.e., "comb") with the tempo
 - Cross-correlate the "comb" with the onset strength curve.
 - The lag that gives us the highest cross-correlation value tells us the beat phase.

• A 2-step approach, illustration

• Problem: too rigid about beat spacing

- Beat tracking: finding a sequence of beat locations such that they
 - -1) are well aligned with strong onsets
 - -2) mostly regularly spaced

Daniel PW Ellis, "Beat tracking by dynamic programming." Journal of New Music Research 36.1 (2007): 51-60.

Music Rhythm Analysis - WiSSAP 2023 - IIT Kanpur - December 18-21, 2023

Rough

- Suppose beat locations are precise to audio frames, and suppose there are *N* frames, then how many possible sequences?
 - 2^{N} (although many are bad ones!)
 - Can't enumerate all!

• Key idea: reuse calculations by recursion!

- Consider a beat sequence $B_{n,L} = (b_1, b_2, \dots, b_L)$ where $b_L = n$.
- Let D(n) be the maximal score among all sequences that end at n with various lengths.
- Assume B_n^* is the optimal sequence, then it can be constructed from optimal subsequences $B_{n-1,L-1}^*$ or $B_{n-2,L-1}^*$ or $B_{n-3,L-1}^*$..., by appending one more beat, and choosing the best one.

• Then if
$$L = 1$$

 $\mathbf{D}(n) = \Delta(n)$ recursion
if $L > 1$

$$\mathbf{D}(n) = \Delta(n) + \lambda P_{\hat{\delta}}(n - b_{L-1}) + \mathbf{D}(b_{L-1})$$

• Considering the two cases, we have

$$\mathbf{D}(n) = \Delta(n) + \max \begin{cases} 0, \\ \max_{m \in [1:n-1]} \left\{ \mathbf{D}(m) + \lambda P_{\hat{\delta}}(n-m) \right\} \end{cases}$$

- We can calculate D(n) from $D(1) = \Delta(1)$.
- Record the preceding beat

$$\mathbf{P}(n) := \operatorname*{argmax}_{m \in [1:n-1]} \left\{ \mathbf{D}(m) + \lambda P_{\hat{\delta}}(n-m) \right\}$$

• Best score $\mathbf{S}(B^*) = \max_{n \in [0:N]} \mathbf{D}(n)$

Pop + beats

• Trace back from $b_L = n^*$ to get the best sequence

Deep Learning Based

- Feature extraction: log-mel spectrogram, CQT spectrogram, chromagram, onset strength curve, etc.
- Activation estimation: using neural networks (e.g., RNN, CRNN, Transformers) to estimate the salience of beats or downbeats
- Post-processing: make the final (binarized) decision for beats or downbeats

Joint Beat/Downbeat Tracking (offline)

S. Böck, F. Krebs, and G. Widmer. Joint beat and downbeat tracking with recurrent neural networks. In Proc. ISMIR, 2016.

- Feature extraction: STFT and temporal difference at 3 temporal resolutions
- Activation estimation: 3 layers of Bidirectional LSTM with 3 outputs through softmax (beat, downbeat, non-beat) for each audio frame

Music Rhythm Analysis - WiSSAP 2023 - IIT Kanpur - December 18-21, 2023

BLSTM

Network

STFT &

Difference

STFT &

Difference

STFT & Difference

Signal

Joint Beat/Downbeat Tracking (offline)

 Post-processing: dynamic Bayesian network

- State space
 - Transition model shown in figure
 - Observation model using activation values estimated from neural network

Implemented in Madmom: https://github.com/CPJKU/madmom

F. Krebs, S. Bock, and G. Widmer. An Efficient State Space Model for Joint Tempo and Meter Tracking. In *Proc. ISMIR*, 2015.

Beat Tracking (online)

• Key idea: using particle filtering to replace dynamic Bayesian network inference

Mojtaba Heydari and Zhiyao Duan, "Don't look back: An online beat tracking method using RNN and enhanced particle filtering," in by *Proc. ICASSP 2021.*

Joint Beat & Downbeat Tracking (online)

• First real-time joint beat/downbeat/meter tracking model

Mojtaba Heydari, Frank Cwitkowitz, and Zhiyao Duan, "BeatNet: A real-time music integrated beat and downbeat tracker," in *Proc. ISMIR*, 2021.

Evaluation of Online Beat Tracking

Dataset	# Files	Total Length
Ballroom [33, 34]	685	5 h 57 m
Beatles [2]	180	8 h 9 m
Carnatic [35]	176	16 h 38 m
GTZAN [36,37]	999	8 h 20 m
Rock Corpus [38]	200	12 h 53 m

Training and test data combined

BeatNet repo: https://github.com/mjhydri/BeatNet

Method	F-Measure	F-Measure			
	Beats	Downbeats			
Comparison of Online Methods					
GTZAN Dataset					
Aubio	57.09				
BeatNet	<u>75.44</u>	46.49			
Böck ACF	64.63				
Böck FF	74.18	_			
DLB	73.77	_			
IBT	68.99	_			
B	allroom Dataset				
Aubio	56.73				
BeatNet	<u>77.41</u>	<u>47.45</u>			
IBT	70.79				
Roc	k Corpus Dataset	t			
Aubio	59.83				
BeatNet	<u>73.13</u>	44.98			
IBT	68.55				
Comparis	son of Offline Me	ethods			
(GTZAN Dataset				
BeatNet + DBN	80.64	<u>54.07</u>			
Böck	79.09	51.36			

Singing Voice Beat/Downbeat Tracking (online)

- Similar architecture to BeatNet
 - Using speech self-supervised learning features (wavLM)

Mojtaba Heydari, Ju-Chiang Wang, and Zhiyao Duan, SingNet: a real-time singing voice beat and downbeat tracking system, in *Proc. ICASSP*, 2023.

Summary

- Important tasks
 - Onset detection
 - Beat tracking
 - Downbeat tracking
- Signal processing vs. machine learning
- Online vs. offline
- ISMIR 2019 Tutorial on "Tempo, Beat, and Downbeat Estimation": <u>https://tempobeatdownbeat.github.io/tutorial/intro.html</u>

