Ensemble Learning

Zhiyao Duan EECS 349 Oct. 22, 2010

Boosting part is adapted from Robert Schapire's tutorial in 2005

What is Ensemble Learning?

- Building a highly accurate classifier is difficult
- Building many not-so-accurate classifiers is easy
- Can we generate a single, highly accurate classifier from these not-so-accurate classifiers?
- Answer: Yes
- Why?
 - Many heads are better than one.
 - 三个臭皮匠, 赛过诸葛亮。(Three Stooges, the top of *Zhuge Liang*.)

Another Evidence

- Homework 1 test set accuracy
 - Mean 83.07%
 - Min = 70.00%

BTW...

- Homework 1 grade
 - Mean: 8.20
 - Min: 4.5
 - Max: 10
 - Median: 8.50

General Steps

- 1. Build a number of weak classifiers from the training data
- 2. Each classifier predicts a classification label on a test instance
- 3. Combine these predicted labels to a single label as the final prediction for the test instance
- Question:
 - How to build these classifiers?
 - How to combine their predictions?

Outline

- Bagging
- Boosting
 - AdaBoost
- Random Subspace
- Random Forests

Bagging

- Bagging = Bootstrap aggregating
- [Breiman '96]
- "pull oneself over a fence by one's bootstraps"

 In statistics, boostrapping means "estimating properties of an estimator (e.g. variance) by measuring those properties when sampling from an approximation distribution." ---- Wikipedia

Bagging

- Given *L* = {*m* training instances}
- For *i* = 1 to *T*
 - Sample *m* instances with replacement from *L* to form a new training set L_i
 - Train a classifier using L_i
- For a test instance, output a prediction label by majority vote of the *T* classifiers.
- Note: classifiers constructed in each round are independent with each other

Properties of Bagging

- Improves accuracy on unstable classification algorithms
 - A algorithm is said unstable if perturbing the training set can significantly change the classifier it constructs
 - E.g. C4.5, neural nets, linear regression, etc.
- Cannot improve accuracy on stable algorithms
 - E.g. Nearest neighbors, etc.
- "Bagging goes a ways toward making a silk purse out of a sow's ear, especially if the sow's ear is twitchy."

Boosting

- Construct a classifier using a weak learning algorithm based on previous classifiers
 - Create a training set which weights more on the "hardest" examples (those most often misclassified by previous classifiers)
 - Combine classifiers by weighted majority vote, putting more weights on accurate classifiers
- Assumptions:
 - The weak learning algorithm can consistently find classifier with error $\leq 1/2-\gamma$
- Conclusion:
 - A boosting algorithm can provably construct a single classifier with arbitrarily small error

A Formal View of Boosting

- Given training set $X = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- For t = 1, ..., T: HOW?

• construct a distribution D_t on $\{1, \ldots, m\}$

- Find a <u>weak classifier</u> $f_t : X \to \{-1,+1\}$ with small error ε_t on $D_t : \varepsilon_t = \Pr_{D_t}[f_t(x_i) \neq y_i]$
- Output a <u>final classifier</u> f_{final} that combines the weak classifiers in a good way

AdaBoost [Freund & Schapire '95]

Toy Example

Weak classifiers: vertical or horizontal half planes

Round 1

Round 2

Round 3

Final Classifier

Analyzing the Training Error

• Theorem [Freund&Schapire '97]:

-write ε_t as $\frac{1}{2} - \gamma_t$ -the training error $(f_{\text{final}}) \le \exp\left(-2\sum_t \gamma_t^2\right)$

- so if $\forall t: \gamma_t \ge \gamma > 0$ then training $\operatorname{error}(f_{\text{final}}) \le \exp(-2\gamma^2 T)$
- <u>Ada</u>Boost is <u>adaptive</u>:
 - does not need to know γ or T a priori
 - -can exploit $\gamma_t >> \gamma$

Proof

• Derive on the blackboard

We expect:

- training error to continue to drop (or reach zero)
- test error to <u>increase</u> when f_{final} becomes "too complex" (Occam's razor)

A Typical Run

- Test error does not increase even after 1,000 rounds (~2,000,000 nodes)
- Test error continues to drop after training error is zero!
- Occam's razor wrongly predicts "simpler" rule is better.

A Better Story: Margins

- Key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- Consider <u>confidence</u> (margin):

$$f_{\text{final}}(x) = \text{sgn}(f(x)) \qquad f(x) = \frac{\sum_{t} \alpha_t f_t(x)}{\sum_{t} \alpha_t} \in [-1,1]$$

• Define: margin of $(x, y) = y \cdot f(x) \in [-1,1]$

Margins for Toy Example

/(0.42 + 0.65 + 0.92)

The Margin Distribution

rounds	5	100	1000
training error	0.0	0.0	0.0
test error	8.4	3.3	3.1
%margins≤0.5	7.7	0.0	0.0
Minimum margin	0.14	0.52	0.55

Analyzing Boosting Using Margins

- Theorem: boosting tends to increase margins of training examples
- Theorem: large margins => better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier
- Consequence: although final classifier is getting larger, margins are likely to be increasing, so final classifier actually getting close to a simpler classifier, driving down the test error.

Practical Advantages of AdaBoost

- Simple + easy to program
- Flexible: can be combined with any classifier (neural net, C4.5, ...)
- Only a single parameter to tune (*T*)
- No prior knowledge
- Provably effective (assuming weak learner)

Cons

- AdaBoost can fail if
 - weak classifier too complex (overfitting)
 - weak classifier is too weak ($\gamma_t \rightarrow 0$ too quickly),
- Empirically, AdaBoost seems especially susceptible to noise

Resources for Boosting

• A demo of AdaBoost:

http://cseweb.ucsd.edu/~yfreund/adaboost/

• A website:

http://www.boosting.org/

• A good bibliography list:

http://www.cs.princeton.edu/~schapire/boost.html

A good viedo lecture:

http://videolectures.net/mlss05us_schapire_b/

Random Subspace

- [Ho '98]
- Create the training set in each round by randomly choosing a subset of all attributes, i.e. using a random subspace of the feature space.
- Train a decision tree using this training set
- Majority vote by these trees

Random Forrests

- [Breiman '01]
- Use decision tree as the weak classifier
- Generate a number of trees
- For each tree, randomly select a subset of features to determine splitting at each node
- Majority vote using all the trees with equal weights

Properties

- Pros
 - as accurate as Adaboost and sometimes better
 - relatively robust to outliers and noise.
 - faster than bagging or boosting.
 - simple and easily parallelized.

Summary

- Ensemble learning:
 - Combine weak classifiers to obtain a strong classifier
- Bagging, Boosting: sample training instances
- Random Subspace, Random Forrests: sample features
- AdaBoost
 - Error on the training set can be arbitrarily small (given enough data and enough rounds)
 - Often resistant to overfitting
 - Margins are increased with more rounds
 - Performs well experimentally
 - Suspicious to noise

Thank you!