
Machine Learning 

Expectation Maximization 
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We’ve seen the update eqs. of GMM, but 

• How are they derived? 

 

• What is the general algorithm of EM? 
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General Settings for EM 

• Given data 𝑋 = (𝑥1, … , 𝑥𝑛), where 𝑥𝑖~𝑝 𝑥; 𝜃 . 

 

• Want to maximize log-likelihood log 𝑝 𝑋; 𝜃 . 

 

• 𝑝 𝑋; 𝜃  is difficult to maximize because it involves some 
latent variables 𝑍. 

 

• But maximizing the complete data log-likelihood 
log 𝑝 𝑋, 𝑍; 𝜃  would be easy (if we observed 𝑍). We think 
of 𝑍 as missing data. 

 

• In this scenario, EM gives an efficient method to 
maximize likelihood 𝑝 𝑋; 𝜃  to some local maximum. 
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Basic Idea of EM 

• Since maximizing data log-likelihood log 𝑝 𝑋; 𝜃  is hard 
but maximizing complete data log-likelihood 
log 𝑝 𝑋, 𝑍; 𝜃  is easy (if we observed 𝑍), out bet is to 
maximize the latter and hopefully it also increases the 
former. 

 

• (E step) Since we didn’t observe 𝑍, we cannot maximize 
log 𝑝 𝑋, 𝑍; 𝜃  directly. We will consider its expected value 
under the posterior dist. of 𝑍, using old parameter.  

 

• (M step) We then update parameter 𝜃 to maximize the 
expected complete data log-likelihood. 
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EM Algorithm in General 

• 1. Initialize parameter 𝜃old. 

• 2. E step: evaluate posterior dist. of latent variables 

𝑝 𝑍|𝑋; 𝜃old , using old parameter. Then the expected 

complete data log-likelihood, under this dist. would be 

𝑄 𝜃; 𝜃old = 𝑝 𝑍|𝑋; 𝜃old

𝑍

log 𝑝 𝑋, 𝑍; 𝜃  

 

• 3. M step: update parameters to maximize the expected 
complete data log-likelihood. 

𝜃new = argmax
𝜃
𝑄 𝜃; 𝜃old  

• 4. Check convergence criterion. Return to step 2 if not 
satisfied. 
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GMM Revisited – E step 

• Evaluate posterior dist. of latent variables 

𝑝 𝑍|𝑋; 𝜃old , using old parameters. 

– Since data are i.i.d., we evaluate for each 𝑖.  

 

𝑞𝑖
(𝑗) ≡ 𝑝 𝑧𝑖 = 𝑗|𝑥𝑖 =

𝑝 𝑧𝑖 = 𝑗, 𝑥𝑖
𝑝 𝑥𝑖

=
𝑝 𝑥𝑖|𝑧𝑖 = 𝑗 𝑝 𝑧𝑖 = 𝑗

 𝑝 𝑥𝑖|𝑧𝑖 = 𝑙 𝑝 𝑧𝑖 = 𝑙
𝐾
𝑙=1
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GMM Revisited – E step 

• Then the expected complete data log-likelihood, 
under this dist. would be 

𝑄 𝜃; 𝜃old =  𝑝 𝑧𝑖 = 𝑗|𝑥𝑖 log 𝑝 𝑥𝑖 , 𝑧𝑖; 𝜃
old

𝐾

𝑗=1

𝑁

𝑖=1
 

 

=  𝑞𝑖
(𝑗) log 𝑝 𝑥𝑖 , 𝑧𝑖; 𝜃

old
𝐾

𝑗=1

𝑁

𝑖=1
 

 

=  𝑞𝑖
(𝑗) log 𝑝 𝑧𝑖 = 𝑗 𝑝 𝑥𝑖|𝑧𝑖 = 𝑗

𝐾

𝑗=1

𝑁

𝑖=1
 

=  𝑞𝑖
(𝑗) log 𝑤𝑗 ∙

1

2𝜋𝜎𝑗
𝑒
−
(𝑥𝑖−𝜇𝑗)

2

2𝜎2𝑗
𝐾

𝑗=1

𝑁

𝑖=1
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GMM Revisited – M step (for 𝜇𝑗) 

• Update parameters to maximize the expected 
complete data log-likelihood. 

𝑄 𝜃; 𝜃old =  𝑞𝑖
(𝑗) log 𝑤𝑗 ∙

1

2𝜋𝜎𝑗
𝑒
−
(𝑥𝑖−𝜇𝑗)

2

2𝜎2𝑗
𝐾

𝑗=1

𝑁

𝑖=1
 

• For 𝜇𝑗 , set derivative to 0. 

𝜕𝑄 𝜃; 𝜃old

𝜕𝜇𝑗
= 𝑞𝑖

(𝑗)
𝑥𝑖 − 𝜇𝑗

𝜎2𝑗

𝑁

𝑖=1
= 0 

• We get update equation for means:  

𝜇𝑗 =
 𝑞𝑖

(𝑗)𝑥𝑖
𝑁
𝑖=1

 𝑞𝑖
(𝑗)𝑁

𝑖=1
. 
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GMM Revisited – M step (for 𝜎𝑗) 

• The derivation is similar to the derivation 
for 𝜇𝑗 

• Try it yourself… 

 

 

 

• We get update equation for variances: 

𝜎2𝑗 =
 𝑞𝑖

(𝑗) 𝑥𝑖 − 𝜇𝑗
2𝑁

𝑖=1

 𝑞𝑖
(𝑗)𝑁

𝑖=1
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GMM Revisited – M step (for 𝑤𝑗) 

• For 𝑤𝑗, recall there is a constraint 

 𝑤𝑗
𝐾
𝑗=1 = 1. 

• To maximize 𝑄 𝜃; 𝜃old  w.r.t. 𝑤𝑗, we 

construct the Lagrangian 

𝑄′ 𝜃; 𝜃old = 𝑄 𝜃; 𝜃old + 𝛽  𝑤𝑗
𝐾

𝑗=1
− 1  

• Set derivative to 0 

𝜕𝑄′ 𝜃; 𝜃old

𝜕𝑤𝑗
= 

𝑞𝑖
(𝑗)

𝑤𝑗

𝑁

𝑖=1
+ 𝛽 = 0 
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GMM Revisited – M step (for 𝑤𝑗) 

• We get 𝑤𝑗 =
 𝑞𝑖

(𝑗)𝑁
𝑖=1

−𝛽
 

• Sum over 𝑗, and using  𝑤𝑗
𝐾
𝑗=1 = 1, we get 

−𝛽 =  𝑞𝑖
𝑗

𝑁

𝑖=1

𝐾

𝑗=1
 

=   𝑞𝑖
𝑗

𝐾

𝑗=1

𝑁

𝑖=1
= 𝑁 

• So we get update equation for weights:  

𝑤𝑗 =
1

𝑁
 𝑞𝑖

(𝑗)
𝑁

𝑖=1
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More Theoretical Questions 

• We’ve seen how the update equations of 
GMM are derived from the EM algorithm. 

 

• But… do these equations really work? 

– Will the data likelihood be maximized (at least 
to some local maximum)? 

– Will the algorithm converge? 
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Answers 

• We will show that the data log-likelihood 
never decrease in each iteration. 

 

• We also know that log-likelihood (which is 
log of probability) is bounded above by 0. 

 

• Therefore, EM algorithm always 
converges! 
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Expected data log-likelihood increases 

• Recall that in M step, we maximize the 
expected complete log-likelihood 

𝜃new = argmax
𝜃
𝑄 𝜃; 𝜃old

= argmax
𝜃
 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋, 𝑍; 𝜃

𝑍

 

• Therefore 

 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋, 𝑍; 𝜃new

𝑍

≥ 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋, 𝑍; 𝜃old

𝑍
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Therefore… 

• From previous slide 

 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋, 𝑍; 𝜃new

𝑍

≥ 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋, 𝑍; 𝜃old

𝑍

 

• So we also have 

 𝑝 𝑍|𝑋; 𝜃old log
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑍|𝑋; 𝜃old
𝑍

≥ 𝑝 𝑍|𝑋; 𝜃old log
𝑝 𝑋, 𝑍; 𝜃old

𝑝 𝑍|𝑋; 𝜃old
𝑍

= 𝑝 𝑍|𝑋; 𝜃old log 𝑝 𝑋; 𝜃old =

𝑍

log 𝑝 𝑋; 𝜃old  
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Data log-likelihood 
using old parameter 

(1) 



Jensen’s Inequality 

• Let 𝑓 be a convex 
function, 𝑋 be a random 

variable, then 

𝔼 𝑓 𝑋 ≥ 𝑓 𝔼𝑋  
 

• Since log() is a concave 
function, we have 
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 𝑝 𝑍|𝑋; 𝜃old

𝑍

log
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑍|𝑋; 𝜃old

≤ log 𝑝 𝑍|𝑋; 𝜃old
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑋, 𝑍; 𝜃old
𝑍

 

Expectation 
Concave 
function 

Random variable 



Continue… 

 𝑝 𝑍|𝑋; 𝜃old

𝑍

log
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑍|𝑋; 𝜃old

≤ log 𝑝 𝑍|𝑋; 𝜃old
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑋, 𝑍; 𝜃old
𝑍

 

= log 𝑝 𝑋, 𝑍; 𝜃new

𝑍

= log 𝑝 𝑋; 𝜃new  
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Data log-likelihood 
using new parameter 

(2) 



Finally… 

• Putting (1) and (2) together, we get 

log 𝑝 𝑋; 𝜃old

≤ 𝑝 𝑍|𝑋; 𝜃old log
𝑝 𝑋, 𝑍; 𝜃new

𝑝 𝑍|𝑋; 𝜃old
𝑍

≤ log 𝑝 𝑋; 𝜃new  

 

• Data log-likelihood monotonically increases! 
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You Should Know 

• EM algorithm is an efficient way to do maximum 
likelihood estimation, when there are latent 
variables or missing data. 

• The general algorithm of EM 

– E step: calculate posterior dist. of latent variables. 

– M step: update parameters by maximizing the 
expected complete data log-likelihood. 

• How to derive EM update equations of GMM? 

– Can you derive EM update equations for parameter 
estimation of a mixture of categorical distributions? 

• Why does EM always converge (to some local 
optimum)? 
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