
Machine Learning 

Gaussian Mixture Models 
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The Generative Model POV 

• We think of the data as being generated from 
some process. 

• We assume this process can be modeled 
statistically as an underlying distribution. 

• We often assume a parametric distribution, like 
a Gaussian, because they’re easier to represent. 

• We infer model parameters from the data. 

• Then we can use the model to classify/cluster or 
even generate data. 
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Parametric Distribution 

• Represent the underlying probability distribution 
with a parametric density function. 

 

 

                      

 

 

• Gaussian (normal) distribution, two parameters: 

𝑝 𝑥;  𝜇, 𝜎2 = 
1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2  

• View each point as generated from 𝑝 𝑥;  𝜇, 𝜎2 . 
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Using Generative Models for Classification 
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Maximum Likelihood Estimation 

• Our hypothesis space is Gaussian distributions. 

• Find parameter(s) 𝜃 that make a Gaussian most 
likely to generate data 𝑋 = (𝑥1, … , 𝑥𝑛).  

• Likelihood function: 

𝑙 𝜃 𝑋 ≡ 𝑝 𝑋; 𝜃 = 𝑝 𝑥𝑖; 𝜃

𝑁

𝑖=1

 

 

 Only if 𝑋 is i.i.d. 
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𝜃 ={𝜇, 𝜎2} 



Likelihood Function 

𝑙 𝜃 𝑋 ≡ 𝑝 𝑋; 𝜃 = 𝑝 𝑥𝑖; 𝜃

𝑁

𝑖=1

 

• In our Gaussian example, 𝑥𝑖 is a continuous variable, 
𝑝 𝑥𝑖; 𝜃  is the probability density function (pdf). 

– It is meaningless to talk about probability mass here, as the 
probability mass at any value of 𝑥𝑖 is zero. 

 

• If 𝑥𝑖 is a discrete variable (e.g. binary), 𝑝 𝑥𝑖; 𝜃  should 
be replaced by the probability mass function 𝑃 𝑥𝑖; 𝜃 .  

– It is meaningless to talk about probability density 𝑝 here, as the 
density will be infinite at the value of each data point. 
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Log-likelihood Function 

• Likelihood function 

𝑙 𝜃 𝑋 ≡ 𝑝 𝑋; 𝜃 = 𝑝 𝑥𝑖; 𝜃

𝑁

𝑖=1

 

• Log-likelihood function 

𝐿 𝜃 𝑋 ≡ log 𝑙 𝜃 𝑋 = log 𝑝 𝑥𝑖; 𝜃

𝑁

𝑖=1

 

– Maximizing Log-likelihood  maximizing likelihood 

– Easier to optimize 

– Prevents underflow!!! What happens when 
multiplying 1000 probabilities?  
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Example Gaussian Log-likelihood 

• Log-likelihood function 

𝐿 𝜃 𝑋 ≡ log 𝑙 𝜃 𝑋 = log𝑝 𝑥𝑖; 𝜃

𝑁

𝑖=1

 

• Recall Gaussian dist. (probability density function) 

𝑝 𝑥;  𝜇, 𝜎2 = 
1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2  

• So the log-likelihood of Gaussian would be: 

 

𝐿 𝜇, 𝜎2 𝑋 = −
𝑁

2
log(2𝜋) − 𝑁 log 𝜎 −

 𝑥𝑖 − 𝜇
2𝑁

𝑖=1

2𝜎2
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a constant term 



Maximizing Log-likelihood 

• Log-likelihood of Gaussian: 

𝐿 𝜇, 𝜎2 𝑋 = 𝐶 − 𝑁 log 𝜎 −
 𝑥𝑖 − 𝜇

2𝑁
𝑖=1

2𝜎2
 

 

• Take the partial derivatives w.r.t 𝜇 and 𝜎 and 

set them to 0, i.e. let 
𝜕𝐿

𝜕𝜇
= 0 and 

𝜕𝐿

𝜕𝜎
= 0. 

 

• Then solve… (try it yourself), we get  

𝜇 =
1

𝑁
 𝑥𝑖;     

𝑁

𝑖=1

          𝜎2 =
1

𝑁
 𝑥𝑖 − 𝜇

2

𝑁

𝑖=1
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What if… 

• …the data distribution can’t be well 
represented by a single Gaussian? 

 

• Can we model more complex distributions 
using multiple Gaussians? 
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Gaussian Mixture Model (GMM) 

 

 

 

 

 

• Represent the dist. with a mixture of Gaussians 

𝑝 𝑥 = 𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗
𝐾

𝑗=1
 

The 𝑗-th Gaussian, 
parameter:(𝜇𝑗 , 𝜎

2
𝑗) 

Weight of 𝑗-th Gaussian. 
Often notated as 𝑤𝑗 

𝑧: a membership 

r.v. indicating 
which Gaussian 
that 𝑥 belongs to. 
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𝑧 is a discrete variable, so 
we use probability mass 𝑃. 



 

 

 

 

 

𝑝 𝑥 = 𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗
𝐾

𝑗=1
 

   

• 1. Randomly pick a component 𝑗, according to 
𝑃 𝑧 = 𝑗 ; 

• 2. Generate 𝑥 according to 𝑝(𝑥|𝑧 = 𝑗). 

 

Generative Process for GMM 
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• GMM distribution: 

𝑝 𝑥 = 𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗
𝐾

𝑗=1
 

 

            =  𝑤𝑗 ∙
1

2𝜋𝜎𝑗
𝑒
−
(𝑥−𝜇𝑗)

2

2𝜎2𝑗
𝐾

𝑗=1
 

• Three parameters per Gaussian in the mixture 

𝑤𝑗 , 𝜇𝑗 , 𝜎
2
𝑗, where  𝑤𝑗

𝐾
𝑗=1 = 1. 

• Find parameters that maximize data likelihood. 

 

What are we optimizing? 
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Maximum Likelihood Estimation of GMM 

• Given 𝑋 = (𝑥1, … , 𝑥𝑛), 𝑥𝑖~𝑝 𝑥 , log-likelihood is 

𝐿 𝜃 𝑋 = log 𝑝 𝑥𝑖
𝑁

𝑖=1

= log  𝑃 𝑧𝑖 = 𝑗 ∙ 𝑝 𝑥𝑖|𝑧𝑖 = 𝑗
𝐾

𝑗=1

𝑁

𝑖=1

= log  𝑤𝑗 ∙
1

2𝜋𝜎𝑗
𝑒
−
(𝑥𝑖−𝜇𝑗)

2

2𝜎2𝑗
𝐾

𝑗=1

𝑁

𝑖=1
 

• Try to solve parameters 𝜇𝑗 , 𝜎
2
𝑗 , 𝑤𝑗  by setting 

their partial derivatives to 0? 

• No closed form solution. (Try it yourself) 
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Why is ML hard for GMM? 

• Each data point 𝑥𝑖 has a membership random 
variable 𝑧𝑖, indicating which Gaussian it comes 

from. 

• But the value of 𝑧𝑖 cannot be observed as 𝑥𝑖, i.e. 
we are uncertain about which Gaussian 𝑥𝑖 
comes from. 

• 𝑧𝑖 is a latent variable because we can’t observe 

it.  

• Latent variables can also be viewed as missing 
data, data that we didn’t observe. 
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If we know what value 𝑧𝑖 takes, ML is easy 

 

 

 

 

 

• 𝑤𝑗 =
1

𝑁
 1 𝑧𝑖 = 𝑗
𝑁
𝑖  

• 𝜇𝑗 =
 1 𝑧𝑖=𝑗
𝑁
𝑖 𝑥𝑖

 1 𝑧𝑖=𝑗
𝑁
𝑖

   

• 𝜎2𝑗 =
 1 𝑧𝑖=𝑗
𝑁
𝑖 𝑥𝑖−𝜇

2

 1 𝑧𝑖=𝑗
𝑁
𝑖

 

Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 16 

150 160 170 180 190 200 

Height (cm) 

Machine learning students 
&  

NBA players 

210 220 230 240 

Indicator function: 

1 𝑧𝑖 = 𝑗 =  
1, if 𝑧𝑖 = 𝑗;
0,  if 𝑧𝑖 ≠ 𝑗.

 

N = number of training examples 



Illustration of “Soft” Membership 

• Which component does the point 𝑖 come from? 

• The probability that it comes from 𝑗: 
𝑞𝑖
(𝑗) ≡ 𝑃 𝑧𝑖 = 𝑗|𝑥𝑖  
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1st component 
2nd component 

From 1st: 0.99 
From 2nd: 0.01 

1st: 0.5 
2nd: 0.5 

1st: 0.1 
2nd: 0.9 



Improving our posterior probability 

• The “posterior probability” of a Gaussian is the 
probability that this Gaussian generated the data 
we observe. 

 

• Let’s find a way to use posterior probabilities to 
make an algorithm that automatically creates a 
set of Gaussians that would have been very likely 
to generate this data. 

18 



Expectation Maximization (EM) 

• Instead of analytically solving the maximum 
likelihood parameter estimation problem of 
GMM, we seek an alternative way, EM algorithm. 

 

• EM algorithm updates parameters iteratively. 
 

• In each iteration, the likelihood value increases 
(at least it doesn’t decrease). 

 

• EM algorithm always converges (to some local 
optimum), i.e. likelihood value and parameters 
converge. 
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EM Algorithm Summary 

• Initialize parameters. 
 𝑤𝑗 , 𝜇𝑗 , 𝜎

2
𝑗 for each Gaussian 𝑗 in our model. 

• E step: calculate posterior dist. of latent variables 
 probability that these Gaussians generated the data 

• M step: update parameters. 

 update 𝑤𝑗 , 𝜇𝑗 , 𝜎
2
𝑗 for each Gaussian 𝑗 

• Repeat E and M steps until convergence. 

 go until parameters don’t change much  

• It converges to some local optimum. 
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EM for GMM - Initialization 

• Start by choosing the number of Gaussian 
components 𝐾. 

 

• Also, choose an initialization of parameters 

of all components 𝑤𝑗 , 𝜇𝑗 , 𝜎
2
𝑗  for 

𝑗 = 1,… , 𝐾. 

 

• Make sure  𝑤𝑗
𝐾
𝑗=1 = 1. 
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EM for GMM – Expectation step 

For each 𝑥𝑖, calculate its “soft” membership, i.e. the 
posterior dist. of 𝑧𝑖, using current parameters. 

 

𝑞𝑖
(𝑗) ≡ 𝑃 𝑧𝑖 = 𝑗|𝑥𝑖 =

𝑃 𝑧𝑖 = 𝑗, 𝑥𝑖
𝑝 𝑥𝑖

=
𝑝 𝑥𝑖|𝑧𝑖 = 𝑗 𝑃 𝑧𝑖 = 𝑗

 𝑝 𝑥𝑖|𝑧𝑖 = 𝑙 𝑃 𝑧𝑖 = 𝑙
𝐾
𝑙=1

 

 

– Note: we are guessing the distribution (i.e. a “soft” 
membership) of 𝑧𝑖, instead of a “hard” membership.  
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Bayes rule 

Prior dist. of 
component 𝑗 



EM for GMM – Maximization step 

– M step: update parameters. 

𝑤𝑗 =
1

𝑁
 𝑞𝑖

(𝑗)
𝑁

𝑖=1
 

𝜇𝑗 =
 𝑞𝑖

(𝑗)𝑥𝑖
𝑁
𝑖=1

 𝑞𝑖
(𝑗)𝑁

𝑖=1

 

𝜎2𝑗 =
 𝑞𝑖

(𝑗) 𝑥𝑖 − 𝜇𝑗
2𝑁

𝑖=1

 𝑞𝑖
(𝑗)𝑁

𝑖=1

 

 

• Repeat E step and M step until convergence. 

– Convergence criterion in practice: compare with the 
previous iteration, the likelihood value doesn’t 
increase much, or the parameters don’t change much. 
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Average of their 
membership 

Weighted 
average using 
membership 

Weighted 
variance using 
membership 

Recall 𝑞𝑖
(𝑗) is the 

“soft” membership 
of 𝑥𝑖 of the 𝑗-th 
Gaussian. 



EM Algorithm Summary 

• Initialize parameters. 
 𝑤𝑗 , 𝜇𝑗 , 𝜎

2
𝑗 for each Gaussian 𝑗 in our model. 

• E step: calculate posterior dist. of latent variables 
 probability that these Gaussians generated the data 

• M step: update parameters. 

 update 𝑤𝑗 , 𝜇𝑗 , 𝜎
2
𝑗 for each Gaussian 𝑗 

• Repeat E and M steps until convergence. 

 go until parameters don’t change much  

• It converges to some local optimum. 
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What if… 

• …our data isn’t just scalars, but each data 
point has multiple dimensions? 

 

• Can we generalize to multiple dimensions? 
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Multivariate Gaussian Mixture 

 

 

 

 

 

 

𝑝 𝑥 = 𝑤𝑗 ∙
1

2𝜋
𝑑
2 𝑆𝑗

1
2

exp −
1

2
𝑥 − 𝜇𝑗

𝑇
𝑆𝑗
−1 𝑥 − 𝜇𝑗

𝐾

𝑗=1
 

 

• Parameters: 𝜇𝑗 , 𝑆𝑗 , 𝑤𝑗  for 𝑗 = 1,… , 𝐾, with  𝑤𝑗
𝐾
𝑗=1 = 1. 

 

• How many parameters?  

 

First dimension 

Second dimension 
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𝑆𝑗, the covariance 

matrix (𝑑 × 𝑑), 
describes the shape 
and orientation of a 
ellipse. 

𝜇𝑗, a mean 

vector, marks 
the center of a 
ellipse. 

𝑑: dimensionality 

means covariance's 
weights 

𝑑𝐾 +
𝑑(𝑑 + 1)

2
𝐾 + 𝐾 



Example: 
Initialization 

(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#1 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#2 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#3 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#4 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#5 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#6 
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(Illustration from Andrew 
Moore's tutorial slides on 
GMM) 

After Iteration 
#20 
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GMM Remarks 

• GMM is powerful: any density function can be 
arbitrarily-well approximated by a GMM with 
enough components. 

• If the number of components 𝐾 is too large, data 
will be overfitted. 

– Likelihood increases with 𝐾. 

– Extreme case: 𝑁 Gaussians for 𝑁 data points, with 
variances → 0, then likelihood → ∞. 

• How to choose 𝐾? 

– Use domain knowledge. 

– Validate through visualization. 
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GMM is a “soft” version of K-means 

• Similarity 
– 𝐾 needs to be specified. 

– Converges to some local optima. 

– Initialization matters final results. 

– One would want to try different initializations. 

 

• Differences 

– GMM Assigns “soft” labels to instances. 

– GMM Considers variances in addition to 
means. 
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GMM for Classification 

1. Given 𝐷 = 𝑥𝑖 , 𝑦𝑖 , where 𝑦𝑖 ∈ 1,… , 𝐶 . 

2. Model 𝑝 𝑥|𝑦 = 𝑙  with a GMM, for each 𝑙. 

3. Calculate class posterior probability. 

𝑃 𝑦 = 𝑙 𝑥 =
𝑝 𝑥 𝑦 = 𝑙 𝑃(𝑦 = 𝑙)

 𝑝 𝑥 𝑦 = 𝑘 𝑃(𝑦 = 𝑘)𝐶
𝑘=1

 

4. Classify 𝑥 to the class having largest posterior. 
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Bayes 
optimal 
classifier 

(illustration from 
Leon Bottou’s slides 
on EM) 



GMM for Regression 

• Given 𝐷 = 𝑥𝑖 , 𝑦𝑖 , where 𝑦𝑖 ∈ ℝ. 

• Model 𝑝 𝑥, 𝑦  with a GMM. 

• Compute 𝑓 𝑥 = 𝔼 𝑦|𝑥 , conditional expectation 
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(illustration from 
Leon Bottou’s slides 
on EM) 



You Should Know 

• How to do maximum likelihood (ML) estimation? 

• GMM models data dist. with a mixture of 𝐾 

Gaussians, with para 𝜇𝑗 , 𝑆𝑗 , 𝑤𝑗 , for 𝑗 = 1,… , 𝐾. 

• No closed form solution for ML estimation of 
GMM parameters. 

• How to estimate GMM parameters with EM 
algorithm? 

• How is GMM related to K-means? 

• How to use GMM for clustering, classification 
and regression? 
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