Machine Learning

Gaussian Mixture Models

The Generative Model POV

- We think of the data as being generated from some process.
- We assume this process can be modeled statistically as an underlying distribution.
- We often assume a parametric distribution, like a Gaussian, because they're easier to represent.
- We infer model parameters from the data.
- Then we can use the model to classify/cluster or even generate data.

Parametric Distribution

 Represent the underlying probability distribution with a parametric density function.

• Gaussian (normal) distribution, two parameters:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

• View each point as generated from $p(x; \mu, \sigma^2)$.

Using Generative Models for Classification

Gaussians whose means and variances were learned from data

Answer: the group (class) that calls the new point most probable.

Maximum Likelihood Estimation

- Our hypothesis space is Gaussian distributions.
- Find parameter(s) θ that make a Gaussian most likely to generate data $X = (x_1, ..., x_n)$.
- Likelihood function:

Likelihood Function

$$l(\theta|X) \equiv p(X;\theta) = \prod_{i=1}^{N} p(x_i;\theta)$$

- In our Gaussian example, x_i is a continuous variable, $p(x_i; \theta)$ is the probability density function (pdf).
 - It is meaningless to talk about probability mass here, as the probability mass at any value of x_i is zero.
- If x_i is a discrete variable (e.g. binary), $p(x_i; \theta)$ should be replaced by the probability mass function $P(x_i; \theta)$.
 - It is meaningless to talk about probability density p here, as the density will be infinite at the value of each data point.

Log-likelihood Function

Likelihood function

$$l(\theta|X) \equiv p(X;\theta) = \prod_{i=1}^{N} p(x_i;\theta)$$

Log-likelihood function

$$L(\theta|X) \equiv \log l(\theta|X) = \sum_{i=1}^{N} \log p(x_i;\theta)$$

- Maximizing Log-likelihood ⇔ maximizing likelihood
- Easier to optimize
- Prevents underflow!!! What happens when multiplying 1000 probabilities?

Example Gaussian Log-likelihood

Log-likelihood function

$$L(\theta|X) \equiv \log l(\theta|X) = \sum_{i=1}^{N} \log p(x_i;\theta)$$

Recall Gaussian dist. (probability density function)

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

So the log-likelihood of Gaussian would be:

$$L(\mu, \sigma^{2}|X) = -\frac{N}{2}\log(2\pi) - N\log\sigma - \frac{\sum_{i=1}^{N}(x_{i} - \mu)^{2}}{2\sigma^{2}}$$

a constant term

Maximizing Log-likelihood

Log-likelihood of Gaussian:

$$L(\mu, \sigma^2 | X) = C - N \log \sigma - \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2\sigma^2}$$

• Take the partial derivatives w.r.t μ and σ and set them to 0, i.e. let $\frac{\partial L}{\partial \mu} = 0$ and $\frac{\partial L}{\partial \sigma} = 0$.

• Then solve... (try it yourself), we get

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i; \qquad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

What if...

 ...the data distribution can't be well represented by a single Gaussian?

 Can we model more complex distributions using multiple Gaussians?

Gaussian Mixture Model (GMM)

Represent the dist. with a mixture of Gaussians

$$p(x) = \sum_{j=1}^{K} P(z=j)p(x|z=j)$$

z: a membership r.v. indicating which Gaussian that x belongs to.

Weight of j-th Gaussian. Often notated as w_i

z is a discrete variable, so we use probability mass P.

The *j*-th Gaussian, parameter: (μ_j, σ_j^2)

Generative Process for GMM

- 1. Randomly pick a component j, according to P(z = j);
- 2. Generate x according to p(x|z=j).

What are we optimizing?

GMM distribution:

$$p(x) = \sum_{j=1}^{K} P(z = j)p(x|z = j)$$

$$= \sum_{j=1}^{K} \mathbf{w}_j \cdot \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{(x-\mu_j)^2}{2\sigma^2 j}}$$

- Three parameters per Gaussian in the mixture w_j, μ_j, σ^2_j , where $\sum_{j=1}^K w_j = 1$.
- Find parameters that maximize data likelihood.

Maximum Likelihood Estimation of GMM

- Given $X = (x_1, ..., x_n)$, $x_i \sim p(x)$, log-likelihood is $L(\theta|X) = \sum_{i=1}^{N} \log p(x_i)$ $= \sum_{i=1}^{N} \log \left\{ \sum_{j=1}^{K} P(z_i = j) \cdot p(x_i|z_i = j) \right\}$ $= \sum_{i=1}^{N} \log \left\{ \sum_{j=1}^{K} w_j \cdot \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{(x_i \mu_j)^2}{2\sigma^2 j}} \right\}$
- Try to solve parameters (μ_j, σ^2_j, w_j) by setting their partial derivatives to 0?
- No closed form solution. (Try it yourself)

Why is ML hard for GMM?

- Each data point x_i has a membership random variable z_i , indicating which Gaussian it comes from.
- But the value of z_i cannot be observed as x_i , i.e. we are uncertain about which Gaussian x_i comes from.
- z_i is a latent variable because we can't observe it.
- Latent variables can also be viewed as missing data, data that we didn't observe.

If we know what value z_i takes, ML is easy

•
$$w_j = \frac{1}{N} \sum_{i=1}^{N} 1\{z_i = j\}$$

•
$$\mu_j = \frac{\sum_{i=1}^{N} 1\{z_i = j\} x_i}{\sum_{i=1}^{N} 1\{z_i = j\}}$$

•
$$\sigma^2_j = \frac{\sum_{i=1}^{N} 1\{z_i = j\}(x_i - \mu)^2}{\sum_{i=1}^{N} 1\{z_i = j\}}$$

Indicator function:

$$1\{z_i = j\} = \begin{cases} 1, & \text{if } z_i = j; \\ 0, & \text{if } z_i \neq j. \end{cases}$$

N = number of training examples

Illustration of "Soft" Membership

- Which component does the point i come from?
- The probability that it comes from *j*:

$$q_i^{(j)} \equiv P(z_i = j | x_i)$$

From 1st: 0.99

From 2nd: 0.01

1st: 0.5 2nd: 0.5

1st: 0.1 2nd: 0.9

Improving our posterior probability

 The "posterior probability" of a Gaussian is the probability that this Gaussian generated the data we observe.

 Let's find a way to use posterior probabilities to make an algorithm that automatically creates a set of Gaussians that would have been very likely to generate this data.

Expectation Maximization (EM)

- Instead of analytically solving the maximum likelihood parameter estimation problem of GMM, we seek an alternative way, EM algorithm.
- EM algorithm updates parameters iteratively.
- In each iteration, the likelihood value increases (at least it doesn't decrease).
- EM algorithm always converges (to some local optimum), i.e. likelihood value and parameters converge.

EM Algorithm Summary

• Initialize parameters. w_j, μ_j, σ^2_j for each Gaussian j in our model.

- E step: calculate posterior dist. of latent variables probability that these Gaussians generated the data
- M step: update parameters.

update w_j, μ_j, σ^2_j for each Gaussian j

- Repeat E and M steps until convergence.
 go until parameters don't change much
- It converges to some local optimum.

EM for GMM - Initialization

 Start by choosing the number of Gaussian components K.

• Also, choose an initialization of parameters of all components (w_j, μ_j, σ^2_j) for j = 1, ..., K.

• Make sure $\sum_{i=1}^{K} w_i = 1$.

EM for GMM – Expectation step

For each x_i , calculate its "soft" membership, i.e. the posterior dist. of z_i , using current parameters.

$$q_i^{(j)} \equiv P(z_i = j | x_i) = \frac{P(z_i = j, x_i)}{p(x_i)}$$

$$= \frac{p(x_i | z_i = j) P(z_i = j)}{\sum_{l=1}^{K} p(x_i | z_i = l) P(z_i = l)}$$
e

Prior dist. of component j

Bayes rule

- Note: we are guessing the distribution (i.e. a "soft" membership) of z_i , instead of a "hard" membership.

EM for GMM – Maximization step

M step: update parameters.

Recall $q_i^{(j)}$ is the "soft" membership of x_i of the j-th Gaussian.

- Repeat E step and M step until convergence.
 - Convergence criterion in practice: compare with the previous iteration, the likelihood value doesn't increase much, or the parameters don't change much.

EM Algorithm Summary

- Initialize parameters. w_j, μ_j, σ^2_j for each Gaussian j in our model.
- E step: calculate posterior dist. of latent variables probability that these Gaussians generated the data
 - M step: update parameters.
 - update w_j, μ_j, σ^2_j for each Gaussian j
 - Repeat E and M steps until convergence.
 go until parameters don't change much
 - It converges to some local optimum.

What if...

 ...our data isn't just scalars, but each data point has multiple dimensions?

Can we generalize to multiple dimensions?

Multivariate Gaussian Mixture

Second dimension

 $\overline{\mu_i}$, a mean vector, marks the center of a ellipse.

 S_i , the covariance matrix $(d \times d)$, describes the shape and orientation of a ellipse.

First dimension

$$p(\vec{x}) = \sum_{j=1}^{K} w_j \cdot \frac{1}{(2\pi)^{\frac{d}{2}} |S_j|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\vec{x} - \overrightarrow{\mu_j})^T S_j^{-1} (\vec{x} - \overrightarrow{\mu_j})\right\}$$

$$d: \text{ dimensionality}$$

- Parameters: $(\overrightarrow{\mu_j}, S_j, w_j)$ for j = 1, ..., K, with $\sum_{j=1}^K w_j = 1$. weights
- How many parameters? $\frac{d}{dK} + \frac{d(d+1)}{2}K + K$

Example: Initialization **p**=0.333 p=0.333 (Illustration from Andrew Moore's tutorial slides on GMM)

GMM Remarks

- GMM is powerful: any density function can be arbitrarily-well approximated by a GMM with enough components.
- If the number of components *K* is too large, data will be overfitted.
 - Likelihood increases with K.
 - Extreme case: *N* Gaussians for *N* data points, with variances \rightarrow 0, then likelihood \rightarrow ∞.
- How to choose *K*?
 - Use domain knowledge.
 - Validate through visualization.

GMM is a "soft" version of K-means

Similarity

- K needs to be specified.
- Converges to some local optima.
- Initialization matters final results.
- One would want to try different initializations.

Differences

- GMM Assigns "soft" labels to instances.
- GMM Considers variances in addition to means.

GMM for Classification

- 1. Given $D = \{\langle x^i, y^i \rangle\}$, where $y^i \in \{1, ..., C\}$.
- 2. Model p(x|y=l) with a GMM, for each l.
- 3. Calculate class posterior probability.

$$P(y = l|x) = \frac{p(x|y = l)P(y = l)}{\sum_{k=1}^{C} p(x|y = k)P(y = k)}$$

Bayes optimal classifier

4. Classify x to the class having largest posterior.

(illustration from Leon Bottou's slides on EM)

GMM for Regression

- Given $D = \{\langle x^i, y^i \rangle\}$, where $y^i \in \mathbb{R}$.
- Model p(x, y) with a GMM.
- Compute $f(x) = \mathbb{E}[y|x]$, conditional expectation

(illustration from Leon Bottou's slides on EM)

You Should Know

- How to do maximum likelihood (ML) estimation?
- GMM models data dist. with a mixture of K Gaussians, with para $(\overline{\mu_j}, S_j, w_j)$, for j = 1, ..., K.
- No closed form solution for ML estimation of GMM parameters.
- How to estimate GMM parameters with EM algorithm?
- How is GMM related to K-means?
- How to use GMM for clustering, classification and regression?