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Assignment: Homework 8 

How to Hand It In 

1. Put all your solutions in one folder. Compress this folder and name it 

<firstname>_<lastname>_HW8.zip. For example, “Zhiyao_Duan_HW8.zip”. 

2. Make sure you have a report to show graphs and explain your answers, in addition to source 

code. 

3. Cite resources (e.g., external code repo) in your answers. 
4. Submit to the corresponding entry on Blackboard. 

When to Hand It In 

It is due at 11:59 PM on the date specified on the course calendar. Late assignments will receive a 20% 

deduction of the full grade each day. 

1. (3.5 points) K-means clustering.  

a. (1 point) Implement the K-means clustering algorithm using Euclidean distance. 

The number of clusters, K, should be a parameter, and it determines the number 

of clusters to form as well as the number of centroids to use. Initialize the cluster 

centroids randomly. 

b. (0.5 points) Run K-means on a 2D toy dataset with K=3 (the actual number of 

clusters). The code for generating the synthetic dataset can be found in the 

provided skeleton code. Visualize the clustering results after the 25th iteration. 

Plot the loss value versus the number of iterations. 

c. (1 point) Run K-means on the toy dataset using different K values. Visualize the 

final clustering results for each K value and discuss the differences. Plot a curve 

about the final loss versus K. Based on this curve, discuss which value of K seems 

most suitable. 

d. (1 point) Run K-means on the dataset created in HW1, utilizing only the 

numerical features. Perform feature normalization as appropriate before 

clustering. Select a suitable distance or similarity measure for the K-means 

algorithm. Plot the final loss value versus K. Based on the plot, choose an 

appropriate value for K. Perform clustering using the chosen K value and analyze 

the results. 

Note: Implemented KMeans functions, such as sklearn.cluster.KMeans, cannot be used 

to solve this question. But you can use other functions in sklearn and numpy if needed. 

 

2. (6.5 points) Dimensionality reduction. 

In this section, you will implement Principal Component Analysis (PCA) and an 

autoencoder to learn compressed representations of human faces. You will be using 

Labeled Faces in the Wild (LFW) dataset (http://vis-www.cs.umass.edu/lfw/#download). 

The LFW dataset is designed for face verification and consists of 13,233 images. To 

http://vis-www.cs.umass.edu/lfw/#download
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simplify preprocessing, we provide the LFWcrop version 

(https://conradsanderson.id.au/lfwcrop/), which is a cropped version of the LFW 

dataset that retains only the central portion of each image (i.e., the face), removing 

most of the background. The dataset has been split into training and validation subsets, 

and the loader code is provided in the skeleton.ipynb. 

a. (1 point) Implement PCA from scratch. Note that implemented PCA functions, 

such as sklearn.decomposition.PCA can not be used for this question.  The input 

of your PCA function is the data matrix, the percentage of total variance to 

preserve, and the output is the PCA transformation matrix. 

b. (1 point) Train the PCA on the training dataset. Keep enough components to 

explain at least 90% of the total variance. After implementing PCA, plot the 

eigenfaces, which are the eigenvectors corresponding to the largest eigenvalues. 

c. (1 point) Project the validation subset onto the learned components to realize 

dimensionality reduction (i.e., compression). Reconstruct the faces from the 

compressed representations and report the reconstruction mean squared error 

(MSE). Visualize the original image vs the reconstructed image for several 

pictures. 

d. (1 point) Implement an autoencoder in PyTorch. The input consists of flattened 

grayscale images of size (1, 64 x 64). The encoder starts with a linear layer 

containing 1024 neurons, followed by BatchNorm1d and ReLU activation. The 

next layer (bottleneck layer) in the encoder has the same number of neurons as 

the principal components you choose in b), also followed by BatchNorm1d and 

ReLU activation. The decoder has a linear layer with 1024 neurons with 

BatchNorm1d and ReLU activation. Finally, the last layer in the decoder is a 

linear layer with 64x64 neurons followed by BatchNorm1d and Sigmoid 

activation. 

e. (1.5 points) Train the autoencoder using the training subset with MSE loss, Adam 

optimizer and  learning rate of 0.001 . Set an appropriate batch size and training 

epochs that fit to your computational resources. After training the autoencoder, 

extract the encoder part of the network, which maps the input to the 

compressed representation. Use this encoder to map images in the validation 

subset to the compressed representation, and then use the decoder to 

reconstruct the original images.  Calculate the reconstruction MSE for the 

validation data and compare it with the PCA reconstruction MSE. Visualize the 

original image vs the reconstructed image for several pictures. 

f. (1 point) Finally, visualize the weights of the first layer of the encoder, which can 

be interpreted as the most important patterns in the data. Compare the 

eigenfaces in PCA with the weights learned in autoencoder and describe your 

findings. 

https://conradsanderson.id.au/lfwcrop/

