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What is a decision tree?
• A tree used to sort a test example through internal nodes to a leaf 

node for decision making
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(Fig. 3.1 in Mitchel)

Shall we play tennis if <Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong>?



Terminology of Decision Trees
• Attributes (features) can be 

categorical or numeric

• Internal node: chooses one 
attribute and split
– Categorical: split fully
– Numerical: split into two

• Leaf node: makes final decision
• Root, descendants and subtrees

• Path from root to a leaf node is 
a conjunction rule

• Learned concept: disjunction of 
conjunctions
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(Fig. 3.1 in Mitchel)



Learning Decision Tree

• Goal: find a decision tree that sorts all training examples to leaf nodes
• Naïve idea: traverse all possible trees
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How many trees are there?
• Let 𝑀𝑀 be the number of attributes, all categorical
• Let 𝑚𝑚𝑖𝑖 be the number of values for the 𝑖𝑖-th attribute
• Let 𝐶𝐶 be the number of classes
• Root: 𝑀𝑀 choices (splitting) + 𝐶𝐶 choices (not splitting)

– If root takes the 𝑖𝑖-th attribute, then it has 𝑚𝑚𝑖𝑖 branches
– Each branch’s root: 𝑀𝑀 − 1 choices (splitting) + 𝐶𝐶 choices (not splitting)

• Recursion till all attributes are traversed
• Let 𝑁𝑁(𝒜𝒜) be the number of possible trees constructed using attribute set 𝒜𝒜 = {1, … ,𝑀𝑀}

𝑁𝑁 𝒜𝒜 = �
𝑖𝑖=1

𝑀𝑀
𝑁𝑁 𝒜𝒜\{𝑖𝑖} 𝑚𝑚𝑖𝑖 + 𝐶𝐶

𝑁𝑁 𝒜𝒜\{𝑖𝑖} = �
𝑗𝑗=1

𝑀𝑀−1
𝑁𝑁 𝒜𝒜\{𝑖𝑖, 𝑗𝑗} 𝑚𝑚𝑗𝑗 + 𝐶𝐶

… …
𝑁𝑁 𝑘𝑘 = 𝐶𝐶𝑚𝑚𝑘𝑘 + 𝐶𝐶
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A Greedy Idea

• Grow a tree from root to leaves; do not backtrack
• Let’s first choose a good attribute for the root
• Choose to split the root or not

– If split: each branch grows into a subtree by recursion
– Else: this is a leaf node, make a decision

• What is a good attribute to choose? 
– The one that better classifies training examples

• How to decide splitting or not?
– Purity of class labels of training examples falling in this node

• How to make decision at a leaf node?
– Majority vote of the training examples falling in this node
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Choosing the Best Attribute
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Split with 
weight

Split with 
hardness

• Which attribute is better?
– Splitting with weight better classifies the balls



Entropy
• Entropy 𝐻𝐻(𝑋𝑋) is a measure of (im)purity of a random variable
• For categorical or discrete variables with 𝐶𝐶 values

𝐻𝐻 = −�
𝑖𝑖=1

𝐶𝐶

𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖

e.g., if 𝐶𝐶 = 2, 𝐻𝐻 = −𝑝𝑝log2𝑝𝑝 − 1 − 𝑝𝑝 log2(1 − 𝑝𝑝)

• It quantifies the number of bits needed to encode the variable
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Information Gain

• Given a collection of training examples 𝑆𝑆, denote the entropy of their class 
labels as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆)

• If we split them according to attribute 𝐴𝐴 into subsets {𝑆𝑆𝑣𝑣}, where 𝑣𝑣 ∈
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴)

• Each subset has its class label entropy as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆𝑣𝑣)
• Information gain: the reduction of entropy

– The information gained for classifying the training examples through this split
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Information Gain Illustration

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2025 10

Split with 
weight

Split with 
hardness

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆) = 1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆1) = 0.72 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆2) = 0.72

𝐺𝐺𝑉𝑉𝑖𝑖𝐸𝐸(𝑆𝑆,𝑤𝑤𝑉𝑉𝑖𝑖𝑤𝑤𝑤𝐸𝐸) = 0.28

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆1) = 0.97 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸(𝑆𝑆2) = 0.97

𝐺𝐺𝑉𝑉𝑖𝑖𝐸𝐸(𝑆𝑆, 𝑤𝑉𝑉𝐸𝐸𝑎𝑎𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉) = 0.03



Other Ways to Select Attributes 

• Information gain = entropy reduction

• There are other ways that only evaluate some post-splitting statistic, e.g., 
weighted average of 𝑄𝑄 of all child nodes, and choose the attribute that 
minimizes it.

• Let 𝐶𝐶 = #classes, 𝑝𝑝𝑖𝑖 be the percentage of examples in a node that belong to 
the 𝑖𝑖-th class, 𝑄𝑄 can be defined as
– Misclassification rate: 𝑄𝑄 = 1 − max

𝑖𝑖∈{1,…,𝐶𝐶}
𝑝𝑝𝑖𝑖

– Gini index: 𝑄𝑄 = 1 − ∑𝑖𝑖=1𝐶𝐶 𝑝𝑝𝑖𝑖2

– Entropy: 𝑄𝑄 = −∑𝑖𝑖=1𝐶𝐶 𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖
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Comparing the Three Criteria

• If C=2 (binary classification)
– Misclassification rate: 𝑄𝑄 = 1 − max(𝑝𝑝, 1 − 𝑝𝑝)
– Gini index: 𝑄𝑄 = 2𝑝𝑝(1 − 𝑝𝑝) 
– Entropy: 𝑄𝑄 = −𝑝𝑝log2𝑝𝑝 − 1 − 𝑝𝑝 log2(1 − 𝑝𝑝)

• Misclassification rate does not favor pure nodes as entropy and Gini index do
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𝑝𝑝

(Figure 2.10 in LWLS): entropy is scaled by 0.5



The ID3 Algorithm
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(Table 3.1 in Mitchell)

Splitting criterion

Stop growing



Hypothesis Space

• Hypothesis space is the function space that a machine learning model 
explores
– Learning can be viewed as a function search problem

• ID3’s hypothesis space is the set of all possible trees, which is the complete 
space of categorical functions of the attributes
– Because any such function can be expressed as a tree

• Top-down greedy search without backtracking: converging to locally optimal 
solutions

• Maintains a single current hypothesis through the search
• Uses all available training examples at each step of the search; less sensitive 

to errors in individual training examples
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Inductive Bias

• Inductive bias is the set of assumptions based on which the machine learning 
model learns from training data and makes predictions on unseen data 
deductively
– Linear regression: a linear mapping from 𝒙𝒙 to 𝐸𝐸
– Nearest neighbor: label of a test example is the same as that of its nearest neighbor

• A machine learning model cannot learn anything without an inductive bias 
(i.e., assumptions)

• What is the inductive bias of ID3?
– Remember that ID3’s hypothesis space contains all possible trees, but it explores them 

from simple to complex 
– 1) Prefers shorter trees over longer ones
– 2) Prefers trees that place high information gain attributes close to the root over those 

that do not
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Restriction vs. Preference

• Inductive bias may be presented in the hypothesis space, the search 
strategy, or both

• Restriction biases: restrict the hypothesis space
– E.g., linear regression restricts the space to linear functions
– It may exclude the target function from the search

• Preference biases: set search preferences in the complete hypothesis space
– E.g., ID3 prefers shorter trees among all possible trees
– The hypothesis space always contains the target function

• Both: restrict the hypothesis space and set search preferences
– E.g., linear regression with L1 regularization on weights
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Occam’s Razor

Prefer the simplest hypothesis that fits the data.
---- William of Occam, ~1320

• This is a philosophy that many scientists believe

Everything should be made as simple as possible, but not simpler.
---- Albert Einstein

• Whether it is true is debatable
• Its interpretation can also be vague
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Overfitting Issue

• ID3 grows the tree to perfectly classify training examples
– Like NN, it has zero training error, hence likely overfit
– Overfitting may be due to data noise, or coincidental regularities
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Training accuracy increases monotonically

Test accuracy first increases, then decreases



Tree Pruning

• Two ways to avoid overfitting
– Stop growing tree earlier
– Grow to overfit, then post-prune the tree

• Pruning: use a validation set
– Reduce error pruning

• Iteratively prune the node (i.e., remove subtrees + change to leaf node) that results in the most increase 
of validation accuracy

– Rule post-pruning
• Covert tree into an equivalent set of rules (i.e., paths from root to leaf nodes)

• Prune each rule by removing any preconditions that results in a higher validation accuracy
• Sort the pruned rules by their validation accuracy, and use them in this order during classification
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Handling Missing Values
• Some decision trees (e.g., C4.5) can handle missing attributes in the data

• Assume training example (𝒙𝒙,𝐸𝐸) has a missing attribute 𝑥𝑥𝑖𝑖

• Approach 1: assign the most common value among all training examples in the node
• Approach 2: assign the most common value among all training examples in the node that 

share the same class label

• Approach 3: split the example into fractions that take different values on the missing 
attribute, following the probability of those values in the training examples in the node; Then 
pass these fractions to child nodes.
– E.g., 0.6 of the example has 𝑥𝑥𝑖𝑖 = 𝑤𝑉𝑉𝑉𝑉𝑣𝑣𝐸𝐸, 0.4 of the example has 𝑥𝑥𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑤𝑤𝑤𝐸𝐸
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Continuous-Valued Attributes
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• Threshold the attribute to split it into two halves
• Feature space is divided into rectangles, each corresponding to a leaf node

(Figures 2.6 and 2.7 in LWLS)



Continuous-Valued Attributes

• There are infinitely many 
possible values for each 
threshold. Try all?
– No, only needs to try mid points 

between adjacent data points
– Why?

• Compare attributes using its 
best threshold
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(Fig. 2.8 in LWLS)

• For an attribute, how to choose the splitting threshold?
– Choose threshold that minimizes misclassification rate, Gini 

index, or entropy, or maximizes information gain!



Regression Tree

• target 𝐸𝐸 is a numerical variable
• At a leaf node, prediction is made by taking the average of the target values 

of training examples in that leaf
• What kind of function does a regression tree represent?

– Piecewise constant
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How to split a node?

• Try different attributes to split, and choose the one that minimizes the sum 
of squared errors between the prediction and the ground-truth of training 
examples

�
𝑏𝑏∈all branches

�
𝑖𝑖∈𝑏𝑏

𝐸𝐸 𝑖𝑖 − 𝐸𝐸𝑏𝑏
2

• For categorical attributes, #branches = #values
• For numerical attributes, #branches = 2 by thresholding

– Threshold is searched to minimize the sum of squared errors

• All other discussions follow those for classification trees
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Summary

• Decision trees sort test examples from root to leaf nodes 

• They grow in a greedy fashion to fit training data

• ID3 searches a complete hypothesis space

• Inductive bias includes a preference for smaller trees and trees that put 
important attributes closer to the root

• Easy to overfit; Post-pruning is an effective solution
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