
DATA AUGMENTATION OF HEAT-LIKE EQUATIONS USING PHYSICS-INFORMED
NEURAL NETWORK

Bin Hoang and Migara Jayasingha

Univeristy of Rochester

ABSTRACT

The past decade has seen an exponential growth of machine
learning applications in all areas of science. In recent years,
there has been mounting interest in combining machine learn-
ing techniques with traditional science to tackle difficult prob-
lems where only partial domain knowledge and limited data
measurements are available. Such problems are frequently
encountered in medical science, where the measurements of
the fluid flows in the domain of interests such as the heart
and brain are limited due to safety concerns. We propose
that physics informed neural network, or PINN, a new type
of physics-guided neural network, can be used to tackle these
problems.

Index Terms— Machine Learning, Physics Informed
Neural Network, Fluid Dynamics

1. INTRODUCTION

PINN stands for Physics-Informed Neural Networks, a type
of machine learning algorithm that combines deep neural
networks with partial differential equations to solve com-
plex physical problems. PINNs are used to model physical
systems, such as fluid dynamics or structural mechanics, by
incorporating knowledge of the underlying physical laws into
the neural network architecture.

The main difference between traditional neural networks
and PINNs is that traditional neural networks are purely data-
driven, while PINNs incorporate prior knowledge of physical
laws into the neural network architecture. By doing so, PINNs
are able to learn from limited data, and also can generalize to
unseen scenarios that obey the same physical laws. The phys-
ical laws are enforced into the network learning process by
defining error terms, which are often referred to as ”physics-
driven” loss terms. In addition to the data-driven error term
in general NNs, PINNs utilize both physics and data-driven
errors to minimize the cost function.

2. METHODOLOGY

The overview of our approach is as follows. Synthetic data
u(x, t) is generated using finite differencing over the entire
simulation domain. Data points within the simulation domain

and at the boundary are randomly selected to create a training
set us(x, t). In our approach, the PINN is a fully connected
neural net (FCC) that takes space-time inputs (x, t) and pro-
duces measurement predictions up(x, t) over the entire sim-
ulation domain. The network learns using a combination of
two different loss components. The first loss component is
the measurement loss, given by the MSE of up(x, t) and the
corresponding ground truths from u(x, t). The second loss
component is the physics-guided loss, given by the square of
the residual given by the governing equations. An example
of a PINN procedure is given in Fig 1, where the network is
used to simulate fluid flow obeying Burgers’ equation:

Figure 1: Example of PINN for simulating fluid flow using
Burgers’ equation. Source: George Karniakadis, 2021 [1].

For all the PINN models in this study, we use the L-
BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shann)
optimizer, which is a widely used optimization algorithm
in PINNs. The L-BFGS optimizer is well-suited for PINNs
because it is a quasi-Newton method that uses the Hessian
approximation to update the weights of the neural network,
making it computationally efficient for problems with large
numbers of parameters. For data preprocessing, we follow a
similar procedure to the public source codes given in [2, 3, 4]
to properly format the physics ground truth data and compute
the physics loss for neural network training.



2.1. Burgers’ equation

The Burgers’ equation is an important equation that occurs in
many areas of fluid dynamics. Due to its inherent nonlinear-
ity, Burgers’ equation can be used to model shock waves and
turbulence. Given space-time coordinate (x, t), the general
1D Burgers’ equation describes the evolution of wave ampli-
tude u(x, t) controlled by a nonlinear convection term and a
diffusivity term:

∂u

∂t
= −u

∂u

∂x
+ α

∂u

∂x2
. (1)

Here u∂u
∂x is the convection term describing bulk flow driven

by a pressure gradient, while α ∂u
∂x2 is the diffusivity term de-

scribing the spread of fluid due to random motion, where α is
the diffusion speed.

Due to its nonlinearity, general solutions for the Burg-
ers’ equation are often not available. Thus, we simulate the
ground truth data using finite differencing, according to the
strong Wolfe condition:

δt ≤
δ2x
2α

. (2)

In our simulation, the initial condition is chosen to be a
square pulse wave reside in the left half of the domain, with
α = 0.1. To initialize PINN, we create three separate types
of input:

• IC input: The entire initial condition is passed to PINN
as input to ensure PINN predicts the correct initial state.

• BC input: The boundary points u(x, t)BC at all time
domain is passed to make sure boundary conditions are
obeyed at all time.

• Collocation input: Randomly sample points inside the
domain that has to obey physical laws. In this case,
we only pass the space-time coordinates (x, t)col and
not their measurements u(x, t)col to simulate the cases
where u(x, t)col inside the domain are not measurable.

From these inputs, we generate 3 corresponding losses
from our network’s prediction up:

• The initial loss is defined as:

LIC =
∑
x

(
u(x, t = 0)− up(x, t = 0)

)2

. (3)

• The boundary loss is defined as:

LBC =
∑
t

(
up(x = 0, t)2−0

)
+
(
up(x = L, t)2−0

)2

.

(4)

• The physics loss is defined as:

Lphys =
∑
x,t

(∂up

∂t
+ u

∂up

∂x
− α

∂up

∂x2

)2

. (5)

In training, the neural network will optimize up according to
the combination loss using tanh activation.

2.2. Diffusion

In the cases where the wave speed is small and the diffusion
term dominates, the Burgers’ equation reduces to the diffu-
sion equation. The diffusion equation is a partial differential
equation that describes the time evolution of a quantity that
diffuses, such as heat, mass, or particles, in a physical sys-
tem. The equation for non-dimensional diffusion is given by:

∂

∂t
u(x, t) = α∇2u(x, t), (6)

where u(x, t) is the concentration of the diffusing quantity at
position x and time t, α is the diffusion coefficient, and ∇2 is
the Laplacian operator, which describes the spatial variation
of u.

Solutions to the diffusion equation can be obtained using
analytical techniques, such as separation of variables, or nu-
merical methods, such as finite differences or finite element
methods. In this study we use finite differences to generate
data for 1D and 2D diffusion equation. To ensure numerical
stability, the following Wolfe condition is applied:

δt ≤
δ2x
4α

, (7)

where δt and δx are the numerical step sizes in time and space
domains respectively.

As aforementioned, the PINN architecture is fully-connected
neural net with tanh activation functions. For diffusion cases,
the physics loss given by equation 6 is:

∂

∂t
up(x, t)− α∇2up(x, t) = residual (8)

We create two data sets using the finite difference method for
two cases of initial conditions with parameters as given be-
low:

• Pulse at the center of the lattice:

radius of the pulse = 4, temperature of the pulse at the
beginning = 100

• Set temperatures at the edges:

temperature at the left and bottom edges = 100, temper-
ature at the top and right = 0



3. RESULTS

3.1. 1D models

We simulate the 1D Burger equation with notation Ψ(x) =
u(x, t), δx = 0.1 and δt = 0.004, with a 1D coefficient dif-
fusion α = 0.1 (Fig. 1). The initial state is given as a square
pulse wave located in the left half of the domain. To check
for robustness of PINN output, we also induce Gaussian noise
into the ground truth and test the performance of the net work
(bottom row). MSE errors is approximately 0.001 for the no
and low noise (noise strength 0.01) case, and 0.0922 (noise
strength 0.3) for the high noise case.

Fig. 1. Snapshot of PINN for simulating fluid flow using
Burgers’ equation at t = 36s. Top row, left to right: Ini-
tial state, simulated ground truth, PINN prediction. Bottom
row, left to right: Ground truth with low noise corruption and
corresponding PINN output, ground truth with high noise cor-
ruption and corresponding PINN output.

3.2. 1D Diffusion Equation

Using the same parameters as the Burgers’ equation, we simu-
late the 1D Diffusion equation with Ψ(x) = u(x, t), δx = 0.1
and δt = 0.004, with a 1D coefficient diffusion α = 0.1. Sim-
ilarly, the initial state is given as a square pulse wave located
in the left half of the domain. Results with both the no noise
and low noise (noise strength = 0.01) are given in Fig. 2.

3.3. 2D Diffusion Equation

For the generalization of the model, the 2D diffusion coeffi-
cient α is set to 1. The square lattice is generated with a step
size of δt = 0.001, δx = δy = 1, and when generating data,
we have used two different initial conditions. The simulated
data at a random time and the PINN output at the same time
for the two initial boundary conditions are shown in the fol-
lowing figures.

Fig. 2. Snapshot of PINN for simulating fluid flow using dif-
fusion equation at t = 96s. Top row, left to right: Initial state,
simulated ground truth, PINN prediction. Bottom row, left to
right: Ground truth with low noise corruption (noise strength
= 0.1) and corresponding PINN output

For the PINN, we use 6 dense layers each with tanh ac-
tivation function. The input layer has 3 neurons to input posi-
tional (x, y) and time (t) features and the output layer is just
one neuron to get the model-calculated concentration up.

3.3.1.

Set each edge at zero temperature and create a temperature
pulse in the middle of the lattice.

(b) Simulation result (c) PINN output

Fig. 3. The comparison of the simulated result (expected out-
put) and the model output at a random temperature t = 22.5

3.3.2.

Set two edges (left and bottom) to a high value while keeping
the other two edges at zero temperature.



(b) Simulation result (c) PINN output

Fig. 4. The comparison of the simulated result (expected out-
put) and the model output at a random temperature t = 37.5

4. DISCUSSION

4.1. Data inference results

4.1.1. 1D PINN:

We see that for the 1D case, PINN is able to achieve good
performance for both Burgers’ and the diffusion equations. In
the case of no and low noise (noise strength < 0.2), PINN is
able to infer accurate physical predictions throughout the en-
tire domain (MSE ≈ 0.001) with only the initial and bound-
ary points as measurement inputs. For the case of higher noise
(noise strength ≥ 0.2), PINN’s prediction suffers from noise-
induced artifacts. Nevertheless, PINN are able to capture the
significant features of the system and showcase strong denois-
ing capability in all 1D cases.

4.1.2. 2D PINN:

In general, both PINN models have shown acceptable results
for both cases of the diffusion equation in 2D by capturing the
general diffusivity of temperature in the two systems. How-
ever, the model has performed better in the system with initial
case 1 (high temperature pulse at the center of the lattice) than
in case 2 (L-shaped temperature edges), as shown in figures
3 and 4. One possible reason for this is that in case 2, the
solution is more sensitive to the boundary error propagation
because the initial heat source is located at the boundary.

4.2. Limitations and possible solutions

Our models show that in addition to the physics loss, initial
and boundary losses are essential for a PINN architecture to
produce accurate prediction. Moreover, the current architec-
ture could be expanded to accommodate conservation laws,
such as conservation of mass, momentum, and energy. We
believe adding these addition constraints will be beneficial,
especially in the case of significant noise corruption.

5. CONCLUSION

PINN performs well as a hybrid method particularly for data
inference and denoising. Nevertheless, there are some lim-
itations that might reduce the overall performance of the
model. Such limitations include the background noise and
the choice of the initial and boundary conditions. Inclusion of
the initial and boundary condition losses can greatly improve
the model’s performance. Additionally, the accuracy of the
model can be increased by introducing new losses governed
by physics, such as conservation of energy, mass, and mo-
mentum. Choosing the correct physics model is crucial when
creating PINN models, because the wrong model choice will
output misleading predictions. Despite its limitations, our
results have demonstrated that PINN has a lot of potentials in
tackling real world problems and could open many opportu-
nities for future research.

6. REFERENCES

[1] Karniadakis et al, “Physics-informed machine learning,”
in Nature Review Physics, 2021, vol. III, p. 422–440.

[2] Maziar Raissi, Paris Perdikaris, and George Em Karni-
adakis, “Physics informed deep learning (part i): Data-
driven solutions of nonlinear partial differential equa-
tions,” arXiv preprint arXiv:1711.10561, 2017.

[3] Maziar Raissi, Paris Perdikaris, and George Em Karni-
adakis, “Physics informed deep learning (part ii): Data-
driven discovery of nonlinear partial differential equa-
tions,” arXiv preprint arXiv:1711.10566, 2017.

[4] Maziar Raissi, Paris Perdikaris, and George E Karni-
adakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707,
2019.


