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Motivation

Source: Karniadakis, George & Kevrekidis, Yannis & Lu, Lu & Perdikaris, Paris & Wang, Sifan & Yang, Liu. (2021). Physics-informed machine learning. 1-19. 10.1038/s42254-021-
00314-5. 

Physics-informed filtering of in-vivo 4D-flow magnetic resonance 
imaging data of blood flow in a porcine descending aorta (Rassi).
a: Noisy GT Velocity, b: Denoised Velocity, c: Inferred Pressure, d: 
Inferred Aterial Shear Stress

PINN’s generated temperature, velocity, and pressure time series of a 
coffee cup from background distortion captured by cameras



PINN: Architecture details
◦ Specialized loss function:

◦ Data driven term 

◦ Physics driven term 

◦ Data driven term:
◦ Fit available data (observations/measurements)

◦ Physics driven term:
◦ Enforce underlying physical laws

◦ Examples: 
◦ Burger’s (1D)

◦ Diffusion (1D)

◦ Diffusion (2D)

Source: Karniadakis, George & Kevrekidis, Yannis & Lu, Lu & Perdikaris, Paris & Wang, Sifan & Yang, Liu. (2021). Physics-informed machine learning. 1-19. 10.1038/s42254-021-
00314-5. 

● Optimizer = LBFGS
○ quasi-Newton approach, full-batch gradient-based optimization algorithm
○ It is commonly used in optimization problems where the number of variables is large



1D PINN architecture
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Burger’s equation:

Initial Condition Simulated Ground Truth PINN output

Noisy Ground Truth (low) Noisy PINN output (low) Noisy Ground Truth (high) Noisy PINN output (high)

MSE: 0.002 (no and low noise), 0.0922 (high noise)



Burger’s equation: Diffusion equation:

Initial Condition Ground truth PINN prediction

noise corrupted ground truth Noisy PINN prediction

MSE: 0.001 (no and low noise)
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Diffusion in 2D

Two initial conditions:

1. Temperature pulse at 

the center

2. Top & Right = 0.0

Left & Bottom = 100.0

Physics loss

Simulated Data

Wolfe Condition
PINN
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Data loss



2D Diffusion Simulation
2D Diffusion Equation:

Generalization for any system

Pulse at the center IC → Left, Bottom =100
Top, 

Right = 0
(IC 1)

(IC 2)



Results : 2D Diffusion PINN Model

Model Outputs for (a) IC 1 and (b) IC 2

(a) (b)



Conclusion

1. PINN performs well as a hybrid method: data augmentation, denoising

2. PINN’s performance is dependent on loss structure

a. BC and IC losses

b. Physics model (wrong model can be misleading)

3. Limitation: high noise, initial condition dependent generalization, prediction



Future improvements

● Improve PINN models
○ Add boundary and initial losses
○ Conservation laws

■ Mass and momentum
○ Different architectures
○ Hyper parameter tuning

● Adapt PINNs for systems in  complex space

● Adapt PINNs for data with different noise sources
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1D Schrodinger Eq:
• Schrodinger wave function in Planck unit:

• All physical information can be inferred 
through Psi(x,t): probabilities of energy, 
momentum, positions

• <A> = <Psi|A|Psi>

• For the case of 1-D infinite potential box, 
we can ignore the potential term V(x)



Data Simulation and PINN architecture
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