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ABSTRACT 

 

With the rise of online commerce and use of credit cards for 

day-to-day transactions, credit card fraud has become a 

significant issue for both consumers and card-issuing banks. 

As data is collected about these transactions, applying 

machine learning techniques to the problem of fraud 

detection has become an area of interest to researchers. Due 

to how these data are usually collected, credit card 

transaction datasets are often imbalanced, incomplete, 

and/or contain numerous features which may not contribute 

meaningfully to the classification. This paper aims to 

explore methods for addressing these issues with 

preprocessing techniques such as regression imputation, 

over-sampling, and feature reduction. With the application 

of the developed pipeline, a semi-successful model is 

created. 

 

1. INTRODUCTION 

 

Credit cards have become a part of everyday life, and 

potential fraudsters have adapted and found ways to take 

advantage of this. Based on the reports received by the 

Federal Trade Commission, the credit card is the most 

common form of payment method involved in fraudulent 

transactions, with 88,354 reports and $181M lost in 2021 

[1]. 

        Datasets available for analysis of this problem often 

involve some combination of class imbalance, missing 

values, and large feature space which create interesting 

challenges for the development of a machine learning 

model.  

 

1.1 Incomplete Data 

 

As a dataset becomes larger and larger, it becomes more and 

more likely that a few data points will fail to be collected 

(such as due to sensor error, respondents not filling out all 

survey fields, etc. depending on the data collection method). 

Handling these missing data is a necessary part of 

preprocessing, as many model types can’t tolerate missing 

values in the input X.  

        There are generally three ways in which data can be 

missing from a dataset: missing completely at random 

(MCAR), missing at random (MAR), and missing not at 

random (MNAR). When data is said to be missing 

completely at random, the missing values do not depend on 

any aspect of the dataset. When data is said to be missing at 

random, missing values depend only on the observable data. 

When data is said to be missing not at random, the missing 

values depend both on the observable values and the other 

missing values. [2] 

       The simplest method for handling missing data is 

deletion: simply remove any sample that has one or more 

features missing. This works when missing data is MCAR, 

but not when missing data is MAR or MNAR. This method 

also suffers for small datasets, where deleting data can 

significantly reduce the amount of data available for 

training. [2] 

        Another method which can be used when missing data 

is MCAR is replacing a missing value with the mean for that 

feature. Like deletion, this method is only unbiased when 

data is MCAR [3], but it doesn’t require one to dispose of 

otherwise potentially useful data from the rest of that 

sample.  

        When missing data is MAR, it is possible to predict 

values for missing data based on the observable data. Data 

imputation algorithms typically assume that missing values 

are MAR. A common technique for this is regression 

imputation, in which a regression model is trained on all of 

the complete samples, and then missing values are 

calculated using this model (Emmanuel, Maupong, 

Mpoeleng, et al. 2021) [2]. SKLearn’s implementation of 

this works in a round-robin fashion, where a new regression 

model is generated to predict missing values for each 

feature, trained with the data from all the other features.  

 

1.2 Imbalanced Data 

 

In some binary classification problems, a case can arise 

where there is a clear majority and minority class, and the 

difference in proportion of the dataset they make up is 

significant. If one were to train a model to classify this data, 

the model might optimize its classification accuracy or loss 

function simply by always predicting the majority class - 

with a large enough class imbalance this would be an 

appealing strategy simply to optimize classification 

accuracy. This isn’t desirable, as in these imbalanced 

classification tasks we want to capture the patterns which 

lead to this minority class being present, and be able to 

predict it.  

        A common technique for addressing this issue is over-

sampling, where synthetic samples from the minority class 

are generated based on the real data until a specified class 

ratio is reached (often 1:1). This is often done with SMOTE, 

or a variation of it. 



 

1.3 Large Feature Space 

 

In high-dimensional data, it can be useful to reduce the 

number of features to only the ones with a meaningful 

contribution to the classification output. This is helpful to 

reduce training time, simplify future data collection, and 

reduce the amount of data needed for training.  

        In addition to feature selection, feature reduction can 

be used for a similar purpose, but with the property of not 

preserving the original feature meanings. Principal 

Component Analysis (PCA) is commonly used for this task. 

The PCA algorithm creates a new basis for the input X, with 

the first feature in this new space being in the direction of 

maximum variance, the second feature being in the direction 

of second-most variance (while perpendicular to the first 

feature), and so on. The algorithm also provides the 

proportion of the total variance contributed by each feature, 

meaning that the user can select the features with the largest 

variance contributions, and they can select how many 

features they want to keep in order to preserve some 

proportion of the original variance in the data. 

 

2. RELATION TO PREVIOUS WORK 

 

There has been much research done in the field of dealing 

with the issues of class imbalance, missing data, and large 

feature space. In particular, the present work takes 

inspiration from a paper by Chen, Dewi, Huang, et al. [4] 

which describes a process for assessing the performance of 

several different feature reduction techniques using several 

different classifiers on several different datasets. This work 

was important for us to see how exactly we could compare 

these feature elimination techniques and assess the 

performance of machine learning models in this context.  

       The present work, however, has a much greater focus 

on a particular application (fraud detection) while the focus 

in Chen, Dewi, Huang et al.’s paper [4] is on assessing 

performance of models. As a consequence, the present work 

is more exploratory and less structured than the work 

presented in [4].  

 

3. METHODS 

 

The dataset chosen can be found on Kaggle [4]. This dataset 

contains 121 features and a single target class denoting 

whether the transaction is fraudulent. Values are missing 

from a large proportion of the features in this dataset.  

        In creating a model, a pipeline is employed (shown in 

Figure 1) which is meant to address potential performance 

issues which may result from the choice of an imbalanced 

and incomplete dataset. This includes deletion and 

imputation to address the incompleteness of the dataset, 

oversampling to address imbalance in the target class, 

feature selection to reduce the risk of overfitting and to 

improve training time, and model selection to achieve a 

good precision-recall curve and F1 score.  

 
Figure 1: Pipeline used for Credit Card Fraud Classification 

 

        For the first stage in the pipeline, deletion and 

imputation, a combination of techniques is employed. First, 

if any feature contains more than 20% missing values, the 

feature is removed from consideration. For numeric 

features, missing values are assumed to be MAR, permitting 

the use of imputation. A form of regression imputation is 

employed, in which a regression model is fitted to each 

feature based on all other features, and missing values are 

predicted in a round-robin fashion. This is done using the 

SKLearn IterativeImputer. Missing values in the categorical 

features are imputed with the mean value for that feature.  

        For the next stage, SMOTENC (a variant of SMOTE 

which can support both numeric and categorical features) is 

employed in order to alleviate the effects of class 

imbalance.  

        Then, several methods for feature reduction are applied 

with the goal of reducing the risk of overfitting and 

permitting easier data collection going forward. With each 

method of feature reduction, several classifier types are 

employed with the goal of finding a combination which 

yields the best precision-recall curve and F1 score. Special 

emphasis was placed on the Random Forest Classifier, a 

literature review suggested that this model would work well 

with feature reduction [4].  

        A second dataset was used to test how the classifiers 

work on different datasets. This dataset includes 31 

unidentified columns due to privacy reasons but there is still 

a substantial number of data points to work with.  

 

4. EXPERIMENTS 

 

After performing our imputation and oversampling 

techniques, examination of our 121 feature dataset showed 



that not all features may be important in the target class. 

Feature reduction techniques can help improve a model's 

performance by eliminating irrelevant or redundant features, 

and focusing on the most informative features. In our case, 

we wanted to reduce the number of features in our dataset in 

order to reduce any noise or redundancy, prevent overfitting, 

and increase efficiency and scalability while still 

maintaining or improving the model's performance.  

        To accomplish this, we applied three feature reduction 

techniques to our dataset: selectkbest, recursive feature 

elimination, and principal component analysis (PCA). 

 

4.1 Finding a Baseline 

 

Before applying feature reduction techniques to our dataset, 

we first established a baseline performance by training the 

three classifiers (Random Forest, Decision Tree, and 

XGBoost) on the dataset after imputation, without any 

feature reduction or oversampling. This allowed us to 

establish a certain level of performance and compare the 

performance of the classifiers before and after applying 

feature reduction techniques.  

        After applying mode and regression imputation, the 

categorial features were given a label encoder and the 

models were trained accordingly. Figures 4.1-4.3 shown 

below shows the performance of our three classifiers on the 

imputed data. 

 

 

 
Figure 4.1: Decision Tree Performance on Imputed Data 

 
Figure 4.2: Random Forest Performance on Imputed Data 

 

 
Figure 4.3: XGBoost on Imputed Data 

 

4.2 SMOTE-NC Performance 

 

Now we must perform an oversampling technique known as 

SMOTE-NC onto our training set in order to oversample the 

minority class, which should help our models receive more 

data and learn about the minority class better. We chose 

SMOTE-NC because this method can handle numerical and 

categorical features. After using SMOTE-NC and training 

our model using the oversampled training data, we still test 

using our un-smoted test set to ensure our models can 

handle the original unbalanced dataset. Our results are seen 

in figures 4.4-4.6.  

 



 
Figure 4.4: Decision Tree using SMOTE 

 

 
Figure 4.5: Random Forest using SMOTE 

 

 
Figure 4.6: XGBoost using SMOTE 

 

        After analyzing my results, we can see that SMOTE-

NC has led to a slight improvement in the F1 score for the 

Random Forest and XGBoost classifiers, indicating that the 

algorithm was able to somewhat address the class imbalance 

issue in my dataset. However, it is surprising to both find 

that the Decision Tree classifier did not show any 

improvement in performance, and that the improvement was 

so small after applying SMOTE-NC. 

 

        Our results suggest that the effectiveness of SMOTE-

NC in improving classification performance may depend on 

the specific characteristics of the dataset and the underlying 

assumptions of the classifiers. It is possible that Decision 

Trees are less sensitive to class imbalance compared to other 

classifiers like Random Forest and XGBoost, and thus may 

not benefit from the oversampling of the minority class that 

SMOTE-NC provides. Our results show that other factors 

such as the quality and relevance of the features, or the 

complexity of the classification problem, may also play a 

role in determining the effectiveness of SMOTE-NC. 

 

4.3 Feature Reduction 

 

Next, we perform feature reduction on our large dataset. Our 

goal is to improve, or at least maintain, the predictive 

accuracy of our models while reducing the computational 

complexity and preventing overfitting. We chose to reduce 

the features down to 10. 

        Our first method of feature reduction is SelectKBest, 

which is a simple method that selects the K most important 

features based on their statistical significance. SelectKBest 

works by evaluating each feature individually, and selecting 

the K features with the highest scores. 

 

 
Figure 4.7: Decision Tree w/ KBest 

 
Figure 4.8 XGBoost w/KBest 



 

 
Figure 4.9: Random Forest w/KBest 

 

        From examining figures 4, we can observe that the 

overall shape of the curves still remain similar to the ones 

shown in figures 3, which is not always the case when 

applying feature reduction. Although the F1 scores for all 

models did decrease, the reduction was only marginal. It's 

worth noting that the ROC AUC scores for the XGBoost 

and Random Forest classifiers actually increased slightly 

after feature reduction. 

        These results suggest that the KBest feature reduction 

technique we applied was effective in removing redundant 

or irrelevant features from the models, without significantly 

sacrificing their overall predictive performance. The small 

increase in ROC AUC score for some models is particularly 

promising, as it suggests that feature reduction may help 

improve the models' ability to differentiate between positive 

and negative samples.  

        Another method of feature reduction we performed is 

Recursive Feature Elimination (RFE), which is an iterative 

process that selects the most important features based on 

their contribution to the model's predictive accuracy. RFE 

works by training the model on subsets of the input features, 

and ranking the features based on their importance. The 

least important features are then eliminated, and the process 

is repeated until the desired number of features is reached.  

 

 
Figure 4.10: Decision Tree w/RFE 

 

 
Figure 4.11: XGBoost w/RFE 

 
Figure 4.12: Random Forest w/RFE 

 

        The new graph clearly demonstrates that Recursive 

Feature Elimination did not perform well on our dataset, as 

evidenced by the altered shape of the curve. Our results 

show that the ROC AUC score for all three models after 

applying Recursive Feature Elimination is essentially 

equivalent to random guessing. This suggests that this 

particular feature reduction technique was not effective in 

retaining the most informative features and removing the 

least important ones, which negatively impacted the 

performance of our models. We finally tested one last 

feature reduction method, PCA. 

        One of the most popular methods of feature reduction 

is Principal Component Analysis (PCA), which is a 

mathematical technique that can be used to transform a set 

of correlated features into a set of uncorrelated features, 

while retaining the most important information about the 

data. PCA works by identifying the directions of maximum 

variance in the data, and projecting the data onto a lower-

dimensional space that captures the most important 

features.  



 
Figure 4.13: PCA w/20 components using Random Forests 

 
Figure 4.14: PCA w/20 components using Gradient 

Boosting Classifier 

 

 
 

Figure 4.15: PCA w/20 components using Decision Tree 

 

        Following our initial testing of PCA with 10 

components, we found that its performance was 

unsatisfactory. In an effort to preserve more of the crucial 

information while achieving better or equal performance, we 

made the decision to increase the number of components to 

20. This allowed us to retain a greater amount of important 

information while still reducing the dimensionality of the 

input data. After applying PCA, the structure of the 

classifier was preserved with only minimal decline in 

performance. This indicates that PCA was successful in 

selecting a subset of features that retained most of the 

important information needed for classification, while 

reducing the dimensionality of the input data. 

 

4.4 Applying models to different datasets 

 

Applying the same oversampling techniques to dataset 2 led 

to a much better model. Precision is still extremely high 

when recall approaches 85%, indicating that the model was 

able to correctly identify a large proportion of positive 

samples without an increase of false positives. This high 

performance can be attributed to the fact that this dataset did 

not have any missing values and was more robust and clean 

in general. 

 
Figure 4.16: Random Forests classifier on dataset 2 

 

5. CONCLUSION 

 

From Figure 5 the best results came from PCA using 20 

components. This suggests that retaining more input features 

allowed for our models to better capture patterns in the data. 

The best models were the models that utilized gradient 

boosting which allowed for complex relationships to be 

captured. Overall the figure demonstrates how PCA 

effectively helped increase our performance on a 

troublesome and difficult dataset to work with.  

        Unfortunately we were only able to achieve a small 

improvement in model performance for the 122 column 

dataset. We believe that this is due to the lack of correlation 



between the input features, which made it difficult for the 

models to accurately capture the underlying patterns in the 

data. 

        Despite only having small improvements, we were able 

to successfully apply our models and procedures on to other 

datasets, including the 31 column dataset. For this dataset, 

we were able to create a model with a F1 score of 0.85. 

        These findings highlight the importance of carefully 

selecting and preprocessing input features, as well as 

adapting machine learning models to the specific 

characteristics of each dataset. While some datasets may be 

inherently difficult to work with, careful consideration and 

adaptation of machine learning techniques can still yield 

successful results for other datasets.  

 

 

Model Just 

Imputation 
Imputation 

+ 

SMOTENC 

SelectKBest Recursive 

Feature 

Elimination 

PCA w/20 

Components 

Decision Tree F1: 0.291 F1: 0.271  F1: 0.214  F1: 0.008  F1: 0.324 

Random 

Forest 
F1: 0.261  F1: 0.273  F1: 0.255  F1: 0.007  F1: 0.347 

Boosting: 

XGBoost and  

GradientBoost 

F1: 0.320  F1: 0.329  F1: 0.278  F1: 0.0004  F1: 0.371 

 Figure 5: Conclusion of our findings using F1 score 
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