
CREDIT CARD FRAUD DETECTION

Colin Blake, Kevin Wang, Eric Wenner

ABSTRACT

With the rise of online commerce and use of credit cards for

day-to-day transactions, credit card fraud has become a

significant issue for both consumers and card-issuing banks.

As data is collected about these transactions, applying

machine learning techniques to the problem of fraud

detection has become an area of interest to researchers. Due

to how these data are usually collected, credit card

transaction datasets are often imbalanced, incomplete,

and/or contain numerous features which may not contribute

meaningfully to the classification. This paper aims to

explore methods for addressing these issues with

preprocessing techniques such as regression imputation,

over-sampling, and feature reduction. With the application

of the developed pipeline, a semi-successful model is

created.

1. INTRODUCTION

Credit cards have become a part of everyday life, and

potential fraudsters have adapted and found ways to take

advantage of this. Based on the reports received by the

Federal Trade Commission, the credit card is the most

common form of payment method involved in fraudulent

transactions, with 88,354 reports and $181M lost in 2021

[1].

 Datasets available for analysis of this problem often

involve some combination of class imbalance, missing

values, and large feature space which create interesting

challenges for the development of a machine learning

model.

1.1 Incomplete Data

As a dataset becomes larger and larger, it becomes more and

more likely that a few data points will fail to be collected

(such as due to sensor error, respondents not filling out all

survey fields, etc. depending on the data collection method).

Handling these missing data is a necessary part of

preprocessing, as many model types can’t tolerate missing

values in the input X.

 There are generally three ways in which data can be

missing from a dataset: missing completely at random

(MCAR), missing at random (MAR), and missing not at

random (MNAR). When data is said to be missing

completely at random, the missing values do not depend on

any aspect of the dataset. When data is said to be missing at

random, missing values depend only on the observable data.

When data is said to be missing not at random, the missing

values depend both on the observable values and the other

missing values. [2]

 The simplest method for handling missing data is

deletion: simply remove any sample that has one or more

features missing. This works when missing data is MCAR,

but not when missing data is MAR or MNAR. This method

also suffers for small datasets, where deleting data can

significantly reduce the amount of data available for

training. [2]

 Another method which can be used when missing data

is MCAR is replacing a missing value with the mean for that

feature. Like deletion, this method is only unbiased when

data is MCAR [3], but it doesn’t require one to dispose of

otherwise potentially useful data from the rest of that

sample.

 When missing data is MAR, it is possible to predict

values for missing data based on the observable data. Data

imputation algorithms typically assume that missing values

are MAR. A common technique for this is regression

imputation, in which a regression model is trained on all of

the complete samples, and then missing values are

calculated using this model (Emmanuel, Maupong,

Mpoeleng, et al. 2021) [2]. SKLearn’s implementation of

this works in a round-robin fashion, where a new regression

model is generated to predict missing values for each

feature, trained with the data from all the other features.

1.2 Imbalanced Data

In some binary classification problems, a case can arise

where there is a clear majority and minority class, and the

difference in proportion of the dataset they make up is

significant. If one were to train a model to classify this data,

the model might optimize its classification accuracy or loss

function simply by always predicting the majority class -

with a large enough class imbalance this would be an

appealing strategy simply to optimize classification

accuracy. This isn’t desirable, as in these imbalanced

classification tasks we want to capture the patterns which

lead to this minority class being present, and be able to

predict it.

 A common technique for addressing this issue is over-

sampling, where synthetic samples from the minority class

are generated based on the real data until a specified class

ratio is reached (often 1:1). This is often done with SMOTE,

or a variation of it.

1.3 Large Feature Space

In high-dimensional data, it can be useful to reduce the

number of features to only the ones with a meaningful

contribution to the classification output. This is helpful to

reduce training time, simplify future data collection, and

reduce the amount of data needed for training.

 In addition to feature selection, feature reduction can

be used for a similar purpose, but with the property of not

preserving the original feature meanings. Principal

Component Analysis (PCA) is commonly used for this task.

The PCA algorithm creates a new basis for the input X, with

the first feature in this new space being in the direction of

maximum variance, the second feature being in the direction

of second-most variance (while perpendicular to the first

feature), and so on. The algorithm also provides the

proportion of the total variance contributed by each feature,

meaning that the user can select the features with the largest

variance contributions, and they can select how many

features they want to keep in order to preserve some

proportion of the original variance in the data.

2. RELATION TO PREVIOUS WORK

There has been much research done in the field of dealing

with the issues of class imbalance, missing data, and large

feature space. In particular, the present work takes

inspiration from a paper by Chen, Dewi, Huang, et al. [4]

which describes a process for assessing the performance of

several different feature reduction techniques using several

different classifiers on several different datasets. This work

was important for us to see how exactly we could compare

these feature elimination techniques and assess the

performance of machine learning models in this context.

 The present work, however, has a much greater focus

on a particular application (fraud detection) while the focus

in Chen, Dewi, Huang et al.’s paper [4] is on assessing

performance of models. As a consequence, the present work

is more exploratory and less structured than the work

presented in [4].

3. METHODS

The dataset chosen can be found on Kaggle [4]. This dataset

contains 121 features and a single target class denoting

whether the transaction is fraudulent. Values are missing

from a large proportion of the features in this dataset.

 In creating a model, a pipeline is employed (shown in

Figure 1) which is meant to address potential performance

issues which may result from the choice of an imbalanced

and incomplete dataset. This includes deletion and

imputation to address the incompleteness of the dataset,

oversampling to address imbalance in the target class,

feature selection to reduce the risk of overfitting and to

improve training time, and model selection to achieve a

good precision-recall curve and F1 score.

Figure 1: Pipeline used for Credit Card Fraud Classification

 For the first stage in the pipeline, deletion and

imputation, a combination of techniques is employed. First,

if any feature contains more than 20% missing values, the

feature is removed from consideration. For numeric

features, missing values are assumed to be MAR, permitting

the use of imputation. A form of regression imputation is

employed, in which a regression model is fitted to each

feature based on all other features, and missing values are

predicted in a round-robin fashion. This is done using the

SKLearn IterativeImputer. Missing values in the categorical

features are imputed with the mean value for that feature.

 For the next stage, SMOTENC (a variant of SMOTE

which can support both numeric and categorical features) is

employed in order to alleviate the effects of class

imbalance.

 Then, several methods for feature reduction are applied

with the goal of reducing the risk of overfitting and

permitting easier data collection going forward. With each

method of feature reduction, several classifier types are

employed with the goal of finding a combination which

yields the best precision-recall curve and F1 score. Special

emphasis was placed on the Random Forest Classifier, a

literature review suggested that this model would work well

with feature reduction [4].

 A second dataset was used to test how the classifiers

work on different datasets. This dataset includes 31

unidentified columns due to privacy reasons but there is still

a substantial number of data points to work with.

4. EXPERIMENTS

After performing our imputation and oversampling

techniques, examination of our 121 feature dataset showed

that not all features may be important in the target class.

Feature reduction techniques can help improve a model's

performance by eliminating irrelevant or redundant features,

and focusing on the most informative features. In our case,

we wanted to reduce the number of features in our dataset in

order to reduce any noise or redundancy, prevent overfitting,

and increase efficiency and scalability while still

maintaining or improving the model's performance.

 To accomplish this, we applied three feature reduction

techniques to our dataset: selectkbest, recursive feature

elimination, and principal component analysis (PCA).

4.1 Finding a Baseline

Before applying feature reduction techniques to our dataset,

we first established a baseline performance by training the

three classifiers (Random Forest, Decision Tree, and

XGBoost) on the dataset after imputation, without any

feature reduction or oversampling. This allowed us to

establish a certain level of performance and compare the

performance of the classifiers before and after applying

feature reduction techniques.

 After applying mode and regression imputation, the

categorial features were given a label encoder and the

models were trained accordingly. Figures 4.1-4.3 shown

below shows the performance of our three classifiers on the

imputed data.

Figure 4.1: Decision Tree Performance on Imputed Data

Figure 4.2: Random Forest Performance on Imputed Data

Figure 4.3: XGBoost on Imputed Data

4.2 SMOTE-NC Performance

Now we must perform an oversampling technique known as

SMOTE-NC onto our training set in order to oversample the

minority class, which should help our models receive more

data and learn about the minority class better. We chose

SMOTE-NC because this method can handle numerical and

categorical features. After using SMOTE-NC and training

our model using the oversampled training data, we still test

using our un-smoted test set to ensure our models can

handle the original unbalanced dataset. Our results are seen

in figures 4.4-4.6.

Figure 4.4: Decision Tree using SMOTE

Figure 4.5: Random Forest using SMOTE

Figure 4.6: XGBoost using SMOTE

 After analyzing my results, we can see that SMOTE-

NC has led to a slight improvement in the F1 score for the

Random Forest and XGBoost classifiers, indicating that the

algorithm was able to somewhat address the class imbalance

issue in my dataset. However, it is surprising to both find

that the Decision Tree classifier did not show any

improvement in performance, and that the improvement was

so small after applying SMOTE-NC.

 Our results suggest that the effectiveness of SMOTE-

NC in improving classification performance may depend on

the specific characteristics of the dataset and the underlying

assumptions of the classifiers. It is possible that Decision

Trees are less sensitive to class imbalance compared to other

classifiers like Random Forest and XGBoost, and thus may

not benefit from the oversampling of the minority class that

SMOTE-NC provides. Our results show that other factors

such as the quality and relevance of the features, or the

complexity of the classification problem, may also play a

role in determining the effectiveness of SMOTE-NC.

4.3 Feature Reduction

Next, we perform feature reduction on our large dataset. Our

goal is to improve, or at least maintain, the predictive

accuracy of our models while reducing the computational

complexity and preventing overfitting. We chose to reduce

the features down to 10.

 Our first method of feature reduction is SelectKBest,

which is a simple method that selects the K most important

features based on their statistical significance. SelectKBest

works by evaluating each feature individually, and selecting

the K features with the highest scores.

Figure 4.7: Decision Tree w/ KBest

Figure 4.8 XGBoost w/KBest

Figure 4.9: Random Forest w/KBest

 From examining figures 4, we can observe that the

overall shape of the curves still remain similar to the ones

shown in figures 3, which is not always the case when

applying feature reduction. Although the F1 scores for all

models did decrease, the reduction was only marginal. It's

worth noting that the ROC AUC scores for the XGBoost

and Random Forest classifiers actually increased slightly

after feature reduction.

 These results suggest that the KBest feature reduction

technique we applied was effective in removing redundant

or irrelevant features from the models, without significantly

sacrificing their overall predictive performance. The small

increase in ROC AUC score for some models is particularly

promising, as it suggests that feature reduction may help

improve the models' ability to differentiate between positive

and negative samples.

 Another method of feature reduction we performed is

Recursive Feature Elimination (RFE), which is an iterative

process that selects the most important features based on

their contribution to the model's predictive accuracy. RFE

works by training the model on subsets of the input features,

and ranking the features based on their importance. The

least important features are then eliminated, and the process

is repeated until the desired number of features is reached.

Figure 4.10: Decision Tree w/RFE

Figure 4.11: XGBoost w/RFE

Figure 4.12: Random Forest w/RFE

 The new graph clearly demonstrates that Recursive

Feature Elimination did not perform well on our dataset, as

evidenced by the altered shape of the curve. Our results

show that the ROC AUC score for all three models after

applying Recursive Feature Elimination is essentially

equivalent to random guessing. This suggests that this

particular feature reduction technique was not effective in

retaining the most informative features and removing the

least important ones, which negatively impacted the

performance of our models. We finally tested one last

feature reduction method, PCA.

 One of the most popular methods of feature reduction

is Principal Component Analysis (PCA), which is a

mathematical technique that can be used to transform a set

of correlated features into a set of uncorrelated features,

while retaining the most important information about the

data. PCA works by identifying the directions of maximum

variance in the data, and projecting the data onto a lower-

dimensional space that captures the most important

features.

Figure 4.13: PCA w/20 components using Random Forests

Figure 4.14: PCA w/20 components using Gradient

Boosting Classifier

Figure 4.15: PCA w/20 components using Decision Tree

 Following our initial testing of PCA with 10

components, we found that its performance was

unsatisfactory. In an effort to preserve more of the crucial

information while achieving better or equal performance, we

made the decision to increase the number of components to

20. This allowed us to retain a greater amount of important

information while still reducing the dimensionality of the

input data. After applying PCA, the structure of the

classifier was preserved with only minimal decline in

performance. This indicates that PCA was successful in

selecting a subset of features that retained most of the

important information needed for classification, while

reducing the dimensionality of the input data.

4.4 Applying models to different datasets

Applying the same oversampling techniques to dataset 2 led

to a much better model. Precision is still extremely high

when recall approaches 85%, indicating that the model was

able to correctly identify a large proportion of positive

samples without an increase of false positives. This high

performance can be attributed to the fact that this dataset did

not have any missing values and was more robust and clean

in general.

Figure 4.16: Random Forests classifier on dataset 2

5. CONCLUSION

From Figure 5 the best results came from PCA using 20

components. This suggests that retaining more input features

allowed for our models to better capture patterns in the data.

The best models were the models that utilized gradient

boosting which allowed for complex relationships to be

captured. Overall the figure demonstrates how PCA

effectively helped increase our performance on a

troublesome and difficult dataset to work with.

 Unfortunately we were only able to achieve a small

improvement in model performance for the 122 column

dataset. We believe that this is due to the lack of correlation

between the input features, which made it difficult for the

models to accurately capture the underlying patterns in the

data.

 Despite only having small improvements, we were able

to successfully apply our models and procedures on to other

datasets, including the 31 column dataset. For this dataset,

we were able to create a model with a F1 score of 0.85.

 These findings highlight the importance of carefully

selecting and preprocessing input features, as well as

adapting machine learning models to the specific

characteristics of each dataset. While some datasets may be

inherently difficult to work with, careful consideration and

adaptation of machine learning techniques can still yield

successful results for other datasets.

Model Just

Imputation
Imputation

+

SMOTENC

SelectKBest Recursive

Feature

Elimination

PCA w/20

Components

Decision Tree F1: 0.291 F1: 0.271 F1: 0.214 F1: 0.008 F1: 0.324

Random

Forest
F1: 0.261 F1: 0.273 F1: 0.255 F1: 0.007 F1: 0.347

Boosting:

XGBoost and

GradientBoost

F1: 0.320 F1: 0.329 F1: 0.278 F1: 0.0004 F1: 0.371

 Figure 5: Conclusion of our findings using F1 score

6. REFERENCES

[1] Federal Trade Commission. 2021. Consumer Sentinel

Network Data Book 2021.

https://www.ftc.gov/system/files/ftc_gov/pdf/CSN%20Annu

al%20Data%20Book%202021%20Final%20PDF.pdf

[2] Emmanuel, T., Maupong, T., Mpoeleng, D. et al. A

survey on missing data in machine learning. J Big Data 8,

140 (2021). https://doi.org/10.1186/s40537-021-00516-9

[3] Liu, Y.; Gopalakrishnan, V. An Overview and

Evaluation of Recent Machine Learning Imputation

Methods Using Cardiac Imaging Data. Data 2017, 2, 8.

https://doi.org/10.3390/data2010008

[4] Chen, RC., Dewi, C., Huang, SW. et al. Selecting critical

features for data classification based on machine learning

methods. J Big Data 7, 52 (2020).

https://doi.org/10.1186/s40537-020-00327-4

https://www.ftc.gov/system/files/ftc_gov/pdf/CSN%20Annual%20Data%20Book%202021%20Final%20PDF.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/CSN%20Annual%20Data%20Book%202021%20Final%20PDF.pdf
https://doi.org/10.3390/data2010008
https://doi.org/10.1186/s40537-020-00327-4

