ECE 208/408 Impressionist Painting Classifier

Xiaoshan Liu, Danielle Williams

Introduction

- People learn how to identify the creator of a painting through recognition of patterns in the brushwork, color palette, composition, and subject matter.
- ML algorithms does it's 'identification' based on pixel patterns and vectors.
 - It then assign labels to the elements that it detects based on its configuration.
- Project Aim
 - To conduct a comparative analysis on the performance of pre-trained CNN networks on classifying paintings and their respective artists.
 - ResNet18
 - ResNet34
 - VGG16
 - VGG19

Method

- Data: Impressionist_Classifier_Data from Kaggle and Github
 - with 400 training images, 100 validation images and 70 test images respectively for each of the 10 artists.
- Preprocessing
 - transform
 - create dataloader
- Model configuration
 - loss: CrossEntropyLoss()
 - Optimizer: SGD
 - learning rate: 0.001
- Use Resnet and VGG

Resnet

- Before:
 - \circ The deeper the better
 - But vanishing gradient problem occurs when we stack too many layers
 - Not due to overfitting

Properties of Resnet

- Proposed in 2015 by a Microsoft research team
- Skip connections

Preliminary Results

Confusion Matrix (training/validation) and accuracy Confusion Matrix (training/validation) and accuracy (test) for pre-trained Resnet18 (test) for pre-trained Resnet34

Accuracy of the network on the 714 test images: 79.97% Confusion Matrix

6 4]

4 31

0

2 1]

0 60

21

3

21

21

31

31

1 59]]

1

[[4	49	1	4	0	3	1	3	
Γ	0	60	2	1	0	0	1	
Г	2	1	59	0	2	1	3	

0 5

0 2 0 0 0

P

e

0

2

Cezann	68	1	6	0	6	1	3	1	6	4
Degas	0		3	1	1	0	1	2	5	6
Gauguin	2	1	76	0	2	1	6	2	0	4
Hassam	0	0	2		1	2	2	3	3	4
True Labels onet Matisse	2	1	7	0	79	1	0	3	2	2
True L Monet	1	1	0	10	2		11	0	2	4
Pissarro	1	4	3	2	0	7	71	3	1	5
Renoir	0	0	1	0	1	5	0	85	2	1
Sargent	• 0	4	0	2	1	0	3	3	79	3
VanGogh	1	2	3	0	2	1	0	2	2	84
	Cezanne	Degas	Gauguin	Hassam	Matisse	Monet	Pissarro	Renoir	Sargent	VanGogh

Predicted Labels

Accuracy of the network on the 714 test images: 80.39% Confusion Matrix

- VGG came as a result of the exploration of deeper CNNs
- It contains almost exclusively 3x3 convolutions
 - Smaller filters
 - Induced more non-linearity
 - More degrees of freedom for the network.
 - Limits the number of parameters.
 - Stacking layers enabled the network to see more:
 - With two, receptive field = 5x5
 - With three, receptive field = 7x7
 - Top-5 error on ImageNet database = 7.3%

	i	nput (224×22	24 RGB image	e)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64						
	LRN	conv3-64	conv3-64	conv3-64	conv3-64						
	maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128						
		conv3-128	conv3-128	conv3-128	conv3-128						
	maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
			conv1-256	conv3-256	conv3-256						
					conv3-256						
		max	pool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
		max	pool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
maxpool											
FC-4096											
FC-4096											
FC-1000											
soft-max											

Source: <u>https://stanford.edu/~shervine/blog/evolution-image-classification-explained</u>

Confusion Matrix (training/validation) and accuracy (test) for pre-trained VGG16

Accuracy of the network on the 714 test images: 76.33% Confusion Matrix

[56 ΔΔ 2 52]

Confusion Matrix (training/validation) and accuracy (test) for pre-trained VGG19

Accuracy of the network on the 714 test images: 78.57% Confusion Matrix

Compare

Article

Our implementation

	VGG19	34 layer plain	34 Resnet		VGG16	VGG19	Resnet18	Resnet 34
Properties	-Downsize the resolution -Increase filter -Lots of parameters, hence requires lots of computation -19.6billion floating points	-3.6 billion floating points -not much parameters per layer -less filters	-3.6 billion floating points -not much parameters per layer -less filters -add skip connections -output has to have the same size as input	Accuracy On test data	76.33%	78.57%	79.97%	80.39%
				Best Validation Accuracy	73.83%	76.56%	77.37%	77.68%
				Training time	78m 57s	106m 1s	34m	38m
Performance	middle	worse	best	# of epochs	10	10	10	10
Time	slowest	middle	fastest					

Final Steps & Results

Why do we choose Impressionist Artist?

Train on another dataset

- Use Another dataset to train the model
 - 40 artist
 - 50 training images, 20 validation images for each artist

- Smaller dataset could still achieve good accuracy as long as the artist's style is well-distinguished from others
 - E.g. Monet 55.6% vs 69.4%
 - 5 artists from Renaissance achieved over 70% accuracy.

VGG - Potential Application

Conclusions & Future Applications

- Achieved relatively high accuracy in identifying paintings by different artists.
- Can be used for a variety of applications
 - Art authentication
 - Online Galleries
 - Historical research
 - Education
- Future research could focus on improving the model's performance, addressing the limitations and challenges, and expanding its applications.
 - For example, it could be interesting to apply similar techniques to other types of artwork, such as sculpture or architecture, or to study the evolution of artistic styles over time.

[1]https://canvas.saatchiart.com/art/art-history-101/paul-gauguin-defined-by-his-paintings

[2]https://www.britannica.com/list/10-famous-artworks-by-leonardo-da-vinci

[3]https://www.tripimprover.com/blog/madonna-of-the-pinks-by-raphael

[4]https://stanford.edu/~shervine/blog/evolution-image-classification-explained

[5]https://arxiv.org/pdf/1512.03385.pdf

[6]https://www.youtube.com/watch?v=GWt6Fu05vol

[7]https://thedatafrog.com/en/articles/image-recognition-transfer-learning/

[8] https://claudemonetgallery.org/thumbnail/81000/81119/mini_icon/San-Giorgio-Maggiore-At-Dusk.jpg?ts=1

References (2/2)

[9]https://claudemonetgallery.org/thumbnail/81000/81120/mini_icon/Sandviken-Village-In-The-Snow.jpg?t s=1459229076

 [10]https://www.vangoghstudio.com//Files/6/102000/102147/ProductPhotos/1920x1080/307257209.jpg
[11]https://uploads4.wikiart.org/images/paul-cezanne.jpg!Portrait.jpg
[12]https://th-thumbnailer.cdn-si-edu.com/oYqdpb4yivg--V7XZGFfM1g8-mk=/fit-in/1072x0/filters:focal(211 7x2702:2118x2703)

[13]https://th-thumbnailer.cdn-si-edu.com/oYqdpb4yivg--V7XZGFfM1g8-mk=/fit-in/1072x0/filters:focal(211 7x2702:2118x2703)/https://tf-cmsv2-smithsonianmag-media.s3.amazonaws.com/filer_public/6d/c2/6dc21 502-b34d-407e-b305-103bfa1d208b/cezanne_xray_for_label.jpeg

[14]https://cdn.saam.media/8Dugj35lovqUxxWVZSyGskFc3Cc/2600/0/center/cover/webp/https%3A%2F% 2Fd3ec1vt3scx7rr.cloudfront.net%2Ffiles%2Ffiles%2Fimages%2F1929%2FSAAM-1929.6.56_1.jpg