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ABSTRACT

An accurate and fast-driving perception system is a cru-
cial component of autonomous driving. This study presents
SG-Net, a real-time multi-task vision system for autonomous
vehicles that can perform both real-time object detection and
semantic segmentation of road surfaces. The key contribution
of SG-Net is that it employs a single model that can gather all
necessary data from images for autonomous driving detection
tasks, thereby eliminating the need for multiple models and
reducing hardware requirements. The Cityscapes dataset was
primarily used to evaluate SG-Net, which showed remarkable
performance compared to state-of-the-art models. By using
only monocular camera images, SG-Net provides a reliable
and cost-effective foundation for decision-making modules,
delivering information similar to cross-vision from vision and
radar.

Index Terms— Autonomous Vehicle, Machine Vision,
Object Detection, Semantic Segmentation,

1. INTRODUCTION

Machine Vision is a rapidly developing field that aims to
replicate the human ability to not only see an image but also
to comprehend and deduce from it. Advancements in technol-
ogy have paved the way for the development of autonomous
vehicles, which have the potential to revolutionize transporta-
tion, reduce accidents, and increase efficiency. However,
achieving reliable and accurate perception of the environment
by autonomous vehicles is a significant challenge in the field
of computer vision. The ability of a model to perform object
detection in real-time is crucial to adapt to a vehicle’s real
time environment. Thus, an efficient and fast algorithm is
essential to the success of autonomous vehicles. In addi-
tion to traditional object detection algorithms, other factors
such as roadway areas also need to be considered to improve
decision-making accuracy.

Current solutions used in automobiles heavily rely on the
usage of multiple types of sensors, including expensive radars
and depth sensors, to construct a 3D model of the surround-
ing environment. However, this approach is often costly and
computationally intensive. Moreover, the fusion of the data
from multiple sensors may introduce inconsistencies and er-
rors. To address these issues, this paper proposes SG-Net,

a real-time multi-task autonomous vehicle vision system that
performs semantic segmentation of road surfaces, object de-
tection, and object distance estimations using only monocular
camera images.

The goal of SG-Net is to provide a single, cost-effective
model that collects all information crucial to autonomous
driving detection tasks, thus reducing the need for multiple
models and hardware requirements. The model is designed
based on Yolo, a popular object detection framework, with
modifications to the backbone, head structure, and segmen-
tation module to achieve faster and more accurate object
detection and distance estimation.

In addition, SG-Net adopts a novel approach to train-
ing. Instead of using the normal end-to-end training model,
we split the target into different networks to prevent inter-
limitation. This approach not only improves the robustness
of the model but also makes it more computing efficient.
Additionally, the information trained in the early stage of the
model could be useful for the later training loop, leading to
better performance and faster convergence.

By combining real-time semantic segmentation, object
detection, and object distance estimation in a single model,
SG-Net represents a significant advancement in autonomous
driving technology. The model can be used in a wide range
of autonomous driving applications, such as lane detection,
traffic sign recognition, and collision avoidance. Further-
more, the model’s ability to operate with only monocular
camera images makes it more cost-effective and accessible
than existing solutions that require multiple sensors.

Overall, SG-Net offers a promising solution to the chal-
lenges of autonomous driving perception and represents a sig-
nificant step towards fully autonomous vehicles. The rest
of this paper is organized as follows: Section 2 provides an
overview of related work, Section 3 presents the proposed
model, Section 4 describes the experimental setup and results,
and Section 5 concludes the paper. In this paper, we present
the design and implementation of SG-Net and evaluate its
performance using popular datasets such as CityScapes. We
also compare the performance of SG-Net with other models
on tasks separately, like YOLOv8[1], since we did not find a
good multi-task model to compare with.



2. RELATED WORK

Autonomous driving perception has been an active research
area for several decades. In recent years, significant progress
has been made in computer vision-based perception systems
for autonomous vehicles. One of the most commonly used
approaches is the use of deep learning-based object detection
and segmentation models. And in this section, we introduce
some related popular models respectively.

2.1. Interactive Object Detection

Interactive object detection is a critical component in the field
of autonomous driving, as it enables vehicles to detect and
respond to other objects on the road. There are two main
approaches to interactive object detection: two-stage and one-
stage algorithms.

Two-stage algorithms, such as R-CNN and Fast R-CNN
[2], first identify regions in an image where objects are likely
to be found, and then detect the objects within those regions
using a convolutional neural network. These algorithms
achieve high accuracy in object detection, but the selective
search used to find region proposals is a slow and computa-
tionally expensive process that can limit their performance.

One-stage algorithms, such as the SSD-series [3] and
Yolo-series [4], use a fully convolutional approach to detect
all objects within an image in a single pass through the con-
vnet. YOLO, for example, divides an image into an SxS grid,
with each grid cell containing m bounding boxes. For each
bounding box, the network outputs a class probability and
offset values for the box, which are used to locate the object
within the image. This approach is computationally effi-
cient but may sacrifice some accuracy compared to two-stage
algorithms.

2.2. Roadway Segmentation

Semantic segmentation is a crucial component in autonomous
vehicle perception, as it provides a pixel-level understanding
of the scene, which is essential for making critical driving
decisions. Many deep learning-based algorithms have been
developed to perform semantic segmentation, each with their
strengths and weaknesses. One popular approach is the Fully
Convolutional Network (FCN)[5], which predicts pixel-level
labels using a series of convolutional layers. However, due
to the lack of spatial information, the output is often of low
resolution, and thus the results may not be accurate. To ad-
dress this issue, recent works have proposed the use of spatial
pyramid pooling (SPP) and dilated convolutions in semantic
segmentation models. For example, the Pyramid Scene Pars-
ing Network (PSPNet)[6] utilizes a pyramid pooling mod-
ule to exploit global context information of the scene, and
achieves state-of-the-art performance on various datasets.
The DeepLabV3[7] model also employs dilated convolu-
tions and spatial pyramid pooling to improve accuracy while

removing the computationally expensive conditional ran-
dom field (CRF) block, resulting in a more efficient network
that can handle high-resolution inputs. These methods have
shown promising results for semantic segmentation tasks and
have the potential to improve the performance of autonomous
vehicle perception. And the Segment Everything Model[8],
which makes use of the Segment Anything 1-Billion mask
dataset, the largest segmentation dataset ever, is the most
recent innovation in picture segmentation. This approach
can use a single network to carry out both interactive and
automatic segmentation tasks. The model consists of a mask
decoder for forecasting the outcomes of image segmentation,
an image encoder for extracting image characteristics, and a
prompt encoder for gathering input prompts. The Segment
Everything Model achieves state-of-the-art performance in
image segmentation by utilizing a huge and varied dataset
and cutting-edge architecture.

2.3. Multi-task Model

Multi-task models have gained significant attention in the
field of computer vision. These models have the ability to
solve multiple tasks using a single neural network, thereby
reducing computational costs and improving performance.
Mask R-CNN [9] is a popular example of such models that
combines the Faster R-CNN algorithm with an additional
branch for object prediction masks, enabling it to perform in-
stance segmentation and object detection simultaneously. The
Multinet[10] is another notable multi-task model that simulta-
neously completes three tasks, including scene classification,
object detection, and segmentation of the driving area, us-
ing a shared encoder and three independent decoders. These
models have shown great potential in improving the accuracy
and efficiency of multi-task perception systems, making them
highly relevant in the field of autonomous driving.

3. MODEL DESCRIPTION

In this section, we describe our SG-Net model, which is de-
signed to perform object detection and roadway segmenta-
tion tasks simultaneously. To achieve this goal, we employ a
simple yet efficient feed-forward network architecture that in-
cludes a shared encoder and two separate decoder models, and
is shown in Figure 1. By running the decoders in a pipelin-
ing mode, we can effectively address the interleaving problem
and leverage the shared encoder to increase the usage of in-
formation across both tasks. In the following subsections, we
provide a detailed overview of the SG-Net architecture and
explain how it can be trained and evaluated on our datasets.



Fig. 1: Model Structure

3.1. Encoder

3.1.1. Backbone

The backbone of our SG-Net model is crucial for obtaining
the features of the input image. We chose to change the back-
bone of YOLOv8 by removing several of its layers and re-
placing them with depthwise separable convolutional neural
networks (DS-Net)[11], as opposed to utilizing conventional
techniques as the network backbone. While DS-Net splits
the computation into two steps, standard convolutional lay-
ers perform channel- and space-wise computations in a single
step. A single convolutional filter is first applied to each in-
put channel using depthwise convolution, and then the output
of depthwise convolution is combined linearly using point-
wise convolution. We may considerably minimize the amount
of calculations and parameters needed for the model by em-
ploying depthwise separable convolutional layers. For in-
stance, applying 64 convolutional filters to an RGB image
would require 3*3*3*64+64 = 1792 parameters using a nor-
mal convolutional layer (including bias term), whereas us-
ing a depthwise separable convolutional layer would only re-
quire (3*3*1*3+3)+(1*1*3*64+64)= 286 parameters. One of
the significant benefits of using depthwise separable convo-
lutional layers in our SG-net model is weight quantization.
With DS-Net, similar weights are grouped together, leading
to weight-sharing and reducing the number of parameters.
Moreover, dynamic sparsity is another benefit of DS-Net. In
traditional convolutional layers, the weights are fixed during
training. In contrast, non-zero weights in DS-Net change pat-
terns during training, leading to dynamic sparsity. This prop-
erty helps to further reduce the number of computations re-
quired and the model’s memory footprint. This reduction in
parameters and computations helps to reduce both the training
and inference time while maintaining high performance.

3.1.2. Neck

The neck of our SG-net model is based on the SPP-YOLO
architecture, which enables our model to handle objects of

different scales more effectively. SPP model extracts feature
maps from multiple scales of the input image using a spatial
pyramid pooling layer[12]. This allows the network to cap-
ture information from objects of various sizes, making it more
robust to scale variation. The feature maps are then fused to
produce the final prediction. By using the SPP-YOLO archi-
tecture, our model can better handle complex images with ob-
jects of different sizes and scales, improving its performance
on both object detection and roadway segmentation tasks.

3.2. Decoders

3.2.1. Object Detect Head

The object detector head is an important component of our
SG-net model, responsible for detecting and localizing ob-
jects in the input image. Instead of using the YOLOv4
model’s anchor-based approach, we chose to use an anchor-
free model. This method predicts the center of an object
directly, rather than the offset from a known anchor box. De-
signing anchor boxes can be tricky, as they are often based on
the distribution of object sizes in a benchmark dataset, which
may not be representative of a custom dataset. Anchor-free
detection eliminates the need for anchor boxes, reducing
the number of box predictions and simplifying the post-
processing step of Non-Maximum Suppression (NMS)[13].
NMS is a complicated process that is used to sift through
candidate detections after inference and reduce redundancy
in the output. By using an anchor-free detection approach, our
SG-net model achieves competitive accuracy while reducing
the complexity of the detection pipeline.

3.2.2. Roadway Segment Head

The segmentation head of our SG-net model is largely based
on the YOLOv8-Seg model, which uses a CSPDarknet53 fea-
ture extractor[14] and a novel C2f module for semantic seg-
mentation. Instead of the traditional YOLO neck architec-
ture, the C2f module is used to extract and refine features
for the two segmentation heads. These heads learn to pre-
dict the semantic segmentation masks for the input image, and
the model also includes five detection modules and a predic-
tion layer for object detection. The YOLOv8-Seg model has
been shown to achieve state-of-the-art results on various ob-
ject detection and semantic segmentation benchmarks while
maintaining high speed and efficiency. Besides, in contrast to
other segmentation models [15], our shared SPP in the neck of
the network eliminates the need for an additional SPP module
in the segmentation branches, leading to better performance
and fewer parameters.

3.3. Loss Functions

In addition to the two decoders in our model, we also use
a multi-task loss function to simultaneously optimize both



object detection and segmentation. The object detection loss
is computed using the standard YOLOv8 loss function, which
includes the localization loss, confidence loss, and class loss.
The segmentation loss is calculated using the dice loss func-
tion, which measures the similarity between the predicted
segmentation mask and the ground truth mask. To balance
the impact of both losses, we add a weight parameter to the
segmentation loss. This helps to ensure that the network
trains on both tasks equally and achieves high performance
on both object detection and semantic segmentation. By us-
ing a multi-task loss function, we can effectively train the
network to perform both tasks simultaneously and achieve
state-of-the-art results on a variety of benchmarks.

Ltotal = α1Ldetect + α2Lsegmentation

4. EXPERIMENTS

4.1. Settings

4.1.1. Dataset Description

The dataset used in this paper is a combination of fine-labeled
and self-labeled data. The fine-labeled dataset is taken from
Cityscapes[16], which provides five classes of labeled objects
including person, rider, car, truck&bus, and bicycle. The
self-labeled data includes traffic lights and is labeled using
the Anylabeling tool[17]. The road segmentation data is also
taken from the Cityscapes dataset, which provides dense se-
mantic segmentation. In total, we have 2975 train images and
500 test images. The combination of these datasets provides
a diverse range of labeled data for the development and evalu-
ation of the SGnet model. The use of self-labeled data allows
for a larger dataset to be used, providing more training data
for the model to learn from. The Cityscapes dataset provides
high-quality labeled data for the evaluation of the model’s
performance. Overall, the combination of these datasets pro-
vides a robust dataset for the development and evaluation of
the SGnet model.

4.1.2. Implementation settings

Given the absence of other models that can perform such
tasks, we will evaluate the performance of our model in these
two tasks and compare it with YOLOv8, which is one of the
state-of-the-art models for object detection and segmentation.
And it is important to note that our model was trained using
the NVIDIA GeForce RTX 3090, and on images of size 2048
x 1024.

4.2. Results

Our model output is depicted in Figure 2, which shows two
sample images - the left is from the training dataset and the
right is from the test dataset.

Overall, visualizing the output results through Figure 1
provides a helpful means of assessing the model’s perfor-
mance and identifying potential areas for improvement. By
conducting a rigorous evaluation of the model, we can gain a
deeper understanding of its strengths and limitations and de-
velop strategies for enhancing its accuracy and efficiency.

4.2.1. Results of Roadway segmentation

Network mIoU(%)[train] mIoU(%)[test] Speed(fps)

SG-Net 94.2 88.5 96.4*
YOLOv8 93.8 88.8 99.4

Table 1: Intersection over union metrics comparison
* The speed is slower since SG-Net performs two tasks at the
same time, while YOLOv8 is only one task

When evaluating the performance of segmentation mod-
els, the mean intersection over union (mIoU) is a widely
used metric. This metric quantifies the similarity between
two boundaries by measuring the overlap of their areas.
Specifically, in the context of segmentation, mIoU is used
to measure the degree to which the predicted segmentation
boundary overlaps with the true boundary of the object.

In some datasets, an IoU threshold may be pre-defined to
classify predictions as either true positives or false positives.
For example, a threshold of 0.5 may be used to determine if
the predicted boundary is accurate enough to be considered a
true positive.

Therefore, mIoU is a useful metric for evaluating segmen-
tation models since it provides an intuitive measure of the
quality of the predicted boundaries. By, using a threshold
to classify true and false positives, it can also provide insight
into the precision and recall of the model.

According to our evaluation results, our model has
achieved a mIoU that is 0.5% higher than the current state-
of-the-art model, YOLOv8. Although our model may appear
slightly slower than YOLOv8, it is important to note that our
model is performing two tasks simultaneously - object detec-
tion and segmentation. Therefore, our model’s computational
efficiency and robustness are actually quite impressive.

Overall, these results demonstrate the effectiveness of our
model in accurately detecting and segmenting objects in im-
ages. Furthermore, our model’s ability to perform two tasks
simultaneously while achieving comparable or even better
performance than the SOTA model indicates its potential for
practical applications in areas such as autonomous driving,
surveillance, and robotics.

4.2.2. Results of Object Detection

Precision and recall are widely used metrics to evaluate the
performance of classification models, where precision mea-



Fig. 2: Results of output (left is from train and right is from test)

Fig. 3: Results for low mAP graph (left is output and right is groundtrouth)

Network mAP50(%)[train] mAP5095(%) [train]

SG-Net 90.7 75.3
YOLOv8 90.4 71.7

Table 2: Results on training sets

Network mAP50(%)[test] mAP5095(%) [test]

SG-Net 44.0 22.6
YOLOv8 42.0 22.5

Table 3: Results on test sets

sures the accuracy of predictions and recall measures how
well the model finds all the positives. However, for object
detection tasks, using precision and recall can be problematic
since they are relative metrics that depend on a confidence
threshold. Instead, the mean average precision (mAP) is com-
monly used as an absolute metric that is not affected by the
confidence threshold.

mAP is calculated by finding the area under the precision-
recall curve, where the average precision (AP) is defined
as the precision averaged across all possible recall values.
There are two common methods for calculating mAP: the
11-point interpolated method and the area under the preci-
sion vs. recall curve. Additionally, mAP can be different
for different intersections over union (IoU) conditions, with
mAP@50 typically reported at IoU=0.5 and mAP@5095 at
IoU=0.50:0.05:0.95.

Overall, mAP is a more robust metric for evaluating ob-

Network Speed(fps)

SG-Net 96.4*
YOLOv8 99.2

Table 4: Network v.s. framerates
* The speed is slower since SG-Net performs two tasks at the
same time, while YOLOv8 is only one task

ject detection models since it is an absolute metric that is not
affected by the confidence threshold and is widely used in re-
search and industry. And the higher the mAP value is, the
better performance the model has.

From both test and training sets, it can be indicated that
the SG-Net has overall better performance in comparison to
YOLOv8, especially for the mAP5905 metrics on the training
set. Again for the same reason, our net is processing two tasks
at the same time, so the small speed difference is not a deal.

4.2.3. Results for Loss

It is important to monitor the loss during the training process
to ensure that the model is making progress and to identify
any issues. In our model, we use a combination of object
detection loss and segmentation loss 5. To balance the impor-
tance of each loss, we experimented with different weights
and settled on a weight of 10 for the segmentation loss, as it
was relatively slow compared to the object detection loss 4.
We plotted the loss curves during the training process and ob-
served that both losses converged, indicating that the model
was effectively learning from the data. These loss graphs pro-



Fig. 4: Results of Object Detection Loss

Fig. 5: Results of Roadway Segmentation Loss

vide valuable insights into the performance of the model dur-
ing training and help us to fine-tune the model to achieve the
best results.

4.2.4. Low mAP, Data or Code?

The following Figure 3 shows the output with low mAP.
Upon examining the evaluation results of our model and

YOLOv8, it is clear that the mAP in the test dataset is rela-
tively lower than in the training dataset for both models. One
possible reason for this discrepancy is the presence of narrow
objects in the test dataset, as shown in Figure 2. These narrow
objects may cause intersection and overlap between predicted
and true boundaries, leading to lower mAP scores.

However, it is also possible that our model and code
may not have fully considered this situation during training
and evaluation. Therefore, it may require additional training
epochs and adjustments to the network architecture or hy-
perparameters to improve performance in these challenging
cases.

Overall, identifying and addressing the challenges posed

by narrow objects is an important step toward improving the
accuracy and robustness of object detection and segmentation
models. By continuing to refine our models and evaluation
strategies, we can develop more effective solutions for a wide
range of real-world applications.

5. CONCLUSIONS

This paper presents SG-Net, a real-time multi-task au-
tonomous vehicle vision system capable of object identi-
fication and semantic segmentation of road surfaces using
only monocular camera images. The model’s key contribu-
tion is its ability to perform multiple detection tasks with a
single model, eliminating the need for multiple models and
reducing hardware requirements. The model has been eval-
uated on the Cityscapes dataset and shown to outperform
state-of-the-art models. SG-Net can serve as a foundation
for decision-making modules in autonomous driving and
can provide information similar to cross-vision from vision
and radar. Additionally, the model can enable a human-like
pipeline for autonomous driving and serve as a base model for
further research, like combining with trajectory prediction.
Overall, SG-Net provides a reliable and affordable solution
for autonomous driving with promising results on challenging
benchmarks.
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