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ABSTRACT 

 

Side-channel attacks remain a threat to cryptographic 

devices. Attacks such as power analyses have proven 

themselves capable of breaking even AES and other state of 

the art encryption. Chip designers know of this issue and 

implement masking techniques in order to obfuscate side-

channel traces and complicate attacks. We set out to use 

machine learning in order to simplify masked side-channel 

measurements, thus making it easier for attackers to 

determine encryption keys of masked signals. We tested 

multiple machine learning networks including multi-level 

perceptron (MLP), autoencoders (AE), and convolutional 

neural networks (CNN) with generative adversarial 

networks (GAN). We found that our GAN-AE performed 

the best, successfully breaking a masked AES encryption. 

 

1. SIDE-CHANNEL ATTACKS 

All electronic devices emit side-channels. These can include 

power draw, temperature, sound, and many other 

measurable features of a device running. Such side-channels 

can give an attacker information about the device which 

may not be intended by the manufacturer. This is especially 

noticeable in cryptographic chips. Using side-channels 

(usually power traces due to their low noise and ease of 

measurement compared to other side-channels), attackers 

can use this extra information to break encryption (see fig. 

1). This can even affect cutting edge encryption algorithms 

and standards including AES [1]. Though a critical security 

risk, this does not affect most device users since the invasive 

nature of these attacks requires an attacker to have physical 

access to the device under attack. Even so, manufacturers 

recognize the risk side-channels pose to users, intellectual 

property, and more and thus implement countermeasures. 

Often, such countermeasures present as masking. Masking 

obfuscates the data an attacker can collect from a device, 

making power analyses much less successful. Though power 

traces can usually be correlated with the function and key of 

a cryptographic device, masking hides the correlation often 

by performing dummy functions to throw off an attacker. 

 
Figure 1 - Sample power traces collected from cryptographic device 

 

2. USING MACHINE LEARNING TO AID ATTACKS 

Machine learning has already proved itself useful for aiding 

side-channel attacks. Wang et. al. used a GAN to reduce the 

number of power traces needed to successfully attack a chip 

by nearly ½ [2]. Autoencoders have also been used to 

remove noise when preprocessing side-channel attacks with 

success [3]. We set out to use such techniques to combat 

masking in order to perform successful side-channel attacks. 

In our model, a discriminator evaluates traces from both a 

model and attacked device. It then uses back-propagation to 

update the attacked device’s autoencoder to generate signals 

comparable to the model signals. This process is continued 

until the autoencoder can produce traces from the attacked 

signals that are indistinguishable from the model signals. 

With these signals, we should be able to perform an attack 

which we can use to break the encryption. 

 

 
Figure 2 - Our model for enhancing side-channel attacks of masked 

signals 



3. PREPARATION AND RESULTS 

The ASCAD database provided us with a large number of 

masked 128-bit AES samples. We learned the secret key 

used on the device in the ASCAD database, and applied it to 

our own device which performed unmasked 128-bit AES 

encryption. Our device, a Chipwhisperer, is the same device 

as used in the ASCAD database. Once we applied the same 

key, we collected 100,000 unmasked AES power traces 

from our device. From this, we identified the signal-to-noise 

ratio of the 3rd S-Box (a subcomponent of the key). We also 

identified the range of traces which corresponded to the 3rd 

S-Box and trimmed our traces to this range due to the fact 

the ASCAD database published the same 3rd S-Box signals. 

We applied a hamming weight model to the correlation 

between hamming weight and the signal (see fig. 3). We 

then used this data to train our GAN. Examples of masked 

and unmasked AES traces can be seen below in figures 4 

and 5 respectively.  

 
Figure 3 - Signal-to-noise ratio based on hamming weight model of 3rd 

S-Box 

 
        Figure 4 - Masked Traces               Figure 5 - Unmasked traces 

Using the hamming weight model discussed above, we used 

a correlation power analysis (CPA) attack to validate the 

key stored in the ASCAD database with the traces in the 

database. We confirmed that both keys matched, verifying 

that the data was good to use. For the rest of our tests, we 

attacked specifically the 3rd S-Box location (subkey 2 shown 

in fig. 6). We initially trained the GAN-AE described above, 

and successfully found the correct key using the traces 

created by our technique. We decided to test other networks 

as well as shown in fig. 7. We calculated the ranking of each 

network, with the rank value corresponding to how close the 

predicted key was to the correct subkey value. As shown in 

fig. 7, the GAN-AE was the best network, with the others 

getting close, but not finding the key correctly. 

 

 
Figure 6 - CPA Attack results confirming the same key as in the 

database 

Figure 7 – Rank of different networks when attacking 3rd S-Box 

 

Examples of the transformed traces can be seen below in 

figure 8.  

Figure 8 - Masked traces transformed by GAN - MLP and GAN - AE 

into 'unmaksed' traces 
 
As we can see in fig. 8, our networks were able to transform 

the masked signals from the ASCAD database into those 

which resembled unmasked traces gathered from our model 

device. This is apparent when comparing the traces in fig. 8 

to those in fig. 4 and 5. And, as stated above, in the case of 

our GAN – AE, we were able to use these transformed, 

‘unmasked’ traces in order to successfully guess the 

encryption key.  

  

Network 

Best Ranking – Lower is better 

GAN – MLP 10 

GAN – AE 1 

GAN – CNN  6 

CNN 10 



4. FUTURE PLANS 

Although our GAN – AE network was able to produce 

traces which allowed us to guess the key correctly, there 

was substantial variation in our key prediction depending on 

how many traces we used to run the attack. For example, 

when using 2,000 traces to run the attack, we achieved 

generally better results than with higher numbers of traces, 

which is unexpected (usually a higher number of traces 

results in better key predictions). This, we wish to adjust our 

network to be more stable in this respect. We also wish to 

expand our framework to work with other devices and 

different types of countermeasures. Finally, we wish to 

propose a robust denoising framework (also utilizing 

machine learning techniques) which may produce higher 

quality traces and improve the accuracy of our attacks.  

 

5. CONCLUSION 

Overall, we were able to successfully implement machine 

learning techniques to attack masked traces from at least one 

encryption device. Our network was able to take masked 

power traces and transform them into traces which resemble 

those which are unmasked, allowing power analysis attacks 

to succeed. This shows promise for attacks on other devices 

as well. Although our technique was, in the end, successful, 

it did have a high level of variation depending on the 

number of traces used, which we would like to improve 

going forward.  

 

6. REFERENCES 

 
[1] Owen Lo, “Power Analysis Attacks on the AES-128 S-box 

Using Differential Power Analysis (DPA) and Correlation Power 

Analysis (CPA),” Journal of Cyber Security Technology, 1:2, 88-

107, 19 Sep 2016 

 

[2] Wang, Ping, et al. "Enhancing the performance of practical 

profiling side-channel attacks using conditional generative 

adversarial networks." arXiv preprint arXiv:2007.05285 (2020). 

 

[3] Wu, Lichao, and Stjepan Picek. "Remove some noise: On pre-

processing of side-channel measurements with autoencoders." 

IACR Transactions on Cryptographic Hardware and Embedded 

Systems (2020): 389-415. 

 

[4] Zhang, Ziyue, A. Adam Ding, and Yunsi Fei. "A fast and 

accurate guessing entropy estimation algorithm for full-key 

recovery." IACR Transactions on Cryptographic Hardware and 

Embedded Systems (2020): 26-48. 

 

 


