
Beatbox to Analog Drum Translation Using a Convolutional
Neural Network

Joe Bumpus
University of Rochester

jbumpus2@ur.rochester.edu

Noah Miller
University of Rochester

nmill15@ece.rochester.edu

Julia Weinstock
University of Rochester

jweins10@ece.rochester.edu

ABSTRACT

Beatboxing is a vocal performance technique in which a
vocalist imitates percussive and melodic instrument
sounds. This project aims to translate the recording of a
percussive beatboxing performance into a corresponding
audio track, matching the sound and timing of the
performance using preloaded drum samples. This is
achieved using a convolutional neural network (CNN) in
Python. The mel spectrograms of thousands of labeled
beatboxing sounds were used to train the CNN, making
this audio recognition task actually one of image
recognition. Testing the model on unique recordings, the
model was able to achieve over 95% accuracy in
percussive element recognition. With this, in tandem with
determining the onset locations within the input
recording, a very accurate translated audio file is able to
be created through triggering analog drum samples.

1. INTRODUCTION

Beatboxing can be anything from a personal pastime to a
live musical artform; a staple of the casual, impromptu
musical jam or the driving rhythmic force of an a
cappella performance. From a technical standpoint,
beatboxing is an increasingly popular contemporary
singing style where the vocalist imitates percussive drum
and pitched musical instrument sounds. In this project,
we focus specifically on the percussive elements of
beatboxing and attempt to turn this purely vocal art into a
digital sample controller using a convolutional neural
network.

A convolutional neural network (CNN) is a type
of deep learning model most commonly used for image
recognition tasks as it is particularly effective in pattern
recognition. Here, a recording of human beatboxing is
parsed and separated into individual drum sounds. The
mel spectrogram of each is then taken, giving us a
representative image for each sound. With a CNN model
trained on the mel spectrograms of thousands of labeled
beatboxing drum sounds, we can predict the label of each
individual recorded sound. This, in combination with
detecting the onsets of each sound in the recording,
allows us to compose an audio track by triggering
corresponding analog drum samples in the same timing as
the original recording.

This concept could prove extremely useful for
musicians and producers with limited time or resources,
facilitating quick form musical idea creation in a way that
is far more natural, intuitive, and inspiring than manual
drum programming in typical digital audio workstations.

In the following sections, we will describe the
dataset used in training this model, as well as the data
preparation necessary for training and predicting
validation/test data.. We will then discuss the architecture
of our specific model before detailing exactly how onsets
are detected and the input recording is divided, necessary
for creating the final audio file translation. Finally, we
will discuss the results of this methodology, as well as
some future considerations in implementing this as a
possible product.

Fig. 1. Librosa Onset Detection



Fig. 2. Convolutional Neural Network Model Architecture

2. METHOD

2.1 Dataset

This project uses the Amateur Vocal
Percussionist (AVP) dataset for testing, training, and
validation data [1]. The AVP dataset consists of data from
28 participants with four labels: kick drum, snare drum,
closed hi-hat, and open hi-hat. Each participant folder
contains 5 .wav files. Four files are each of the labels
vocalized 30-40 times, and the fifth file is an
improvisation track. Overall, there are 4873 total sound
events. Along with each .wav file is an accompanying
.csv file which contains the onset location in seconds and
label of each vocal percussion sound event.

2.2 Data Preparation

2.2.1 Data Extraction

Before feeding the samples into the network,
each individual vocal percussion event needs to be
extracted and saved as a mel spectrogram (see section
2.2.3). The samples of one event are taken from the onset
in the .csv to the onset of the following sound. It is then
buffered in the beginning by 1000 samples to center the
event and prevent smearing in the spectrogram. Finally,
each sample is set to a fixed length of 11025 samples for
consistent spectrograms.

2.2.2 Data Augmentation

To increase the robustness of the network, the
clean samples are augmented with samples that have
added noise, pitch shift, time shift, and gain change. After
a clean sample is extracted and added to the dataset,
augmentations are applied with a random probability, and
the resulting augmented audio is also added as an
independent entry to the dataset. In this way, the number
of samples is doubled from 4873 to 9746 samples.

2.2.3 Mel Spectrograms

After extracting each individual sound event, the
audio files are then transformed into mel spectrograms.

Mel spectrograms are used over spectrograms because
they provide more rich information for audio data. As
seen in Fig. 3, the mel spectrograms for a kick and a high
hat closed sound are more visually differentiable than the
spectrogram.

Fig. 3. Comparison between a spectrogram of a high hat
closed (top left), spectrogram of a kick (top right), mel
spectrogram of a high hat closed (bottom left), and a mels
spectrogram of a kick (bottom right)

2.3 Model Architecture

As a result of the translation from audio signal to
a visual representation, the percussion identification task
can be treated as more conventional image recognition.
Now that we are focusing on image recognition, we can
use the more specialized convolutional neural network
framework, as it is well suited to computer vision
problems. CNNs use convolutional filters to extract
patterns and features from image data, allowing fully
connected classifiers to differentiate between those
feature maps. Specifically, our model will use a
multi-layer convolutional design, introducing further



specificity within the feature maps, taking advantage of
pooling layers to reduce the spatial size of each layer.

Our model takes in the RGB spectrogram of
dimension 3x256x256. The first convolutional layer
translates our spectrogram into 32 feature maps of
dimensions 252x252, followed by a max pooling layer to
reduce the spatial size by half. The second convolutional
layer doubles the filters, with dimensions of 122x122,
followed once again by a max pooling layer, resulting in
dimensions of 64x61x61 [2]. This data is flattened, before
being passed through two fully connected layers,
resulting in a 4-class classifier. No activation is used, as
training utilizes cross entropy loss, which has a softmax
function built-in. Training also uses the AdamW
stochastic optimization method, with a learning rate value
of 0.0001. The CNN model was built using the
Torchvision package library, allowing for seamless
integration, and removing any issues with redundancy by
utilizing the Torch DataLoader class. Fig. 4 shows the
PyTorch summary output of our neural network model.

Fig. 4. Torch Summary of CNN Model

2.4 Input Onset Detection & Sample Triggering

A user may input a beatboxing recording of their
own for translation. Their recording may consist of any
number of the four sound classes (‘hi-hat open’, ‘hi-hat
closed’, ‘kick’, and ‘snare’, as previously mentioned) in
any order. This recording is then broken down by onset to
create a set of individual sounds with which the model
can predict the respective labels. The onsets are detected
using Librosa’s onset_detection function, returning an
array containing the sample index position of each onset
in the audio file, as shown in Fig. 1 using an example
recording containing 20 total utterances.

Just as with the training data, each individual
drum sound is shortened to a uniform length starting with
1000 samples before the onset. The mel spectrogram of
each of these sections is then taken and passed into the
model for prediction. The model returns the predicted
label of each sound. An array of zeros is created equal in
length to the input recording. Based on the predicted label
and array of onset locations, the corresponding analog
drum sample to each onset is appended to the array of
zeros.

3. RESULTS

Training our model on 10 epochs, we were able
to achieve a peak of 97% training accuracy (as seen for
the particular run reflected in Fig. 5) and a peak
validation accuracy of 94%. At 10 epochs, based on the
learning curve, accuracy is likely still improving. This
shows promise for expanded training, which may include
more epochs or more diverse training, and being able to
achieve even more accurate classification.

Fig. 5. Learning curves for 10 epochs.

Completing the example shown above Fig. 1, the
model achieved 95% accuracy in classifying the input
beatbox recording, meaning all but one sound in the

audio file was correctly identified. Based on the returned
predicted labels, triggering the corresponding analog
drum sample at each corresponding onset, we were able
to construct a highly accurate translated audio file. The
waveform for this translation, in comparison to the
original, is as seen in Fig. 6.

4. CONCLUSION

While 94% validation accuracy and 95% test
accuracy are certainly impressive, obviously anything
less than 100% accuracy would create an incorrect
translation. If this were a consumer product, we propose a
method for the user to flag incorrectly identified sounds
so the model can continue to learn. With continued
learning, the model may very well improve to nearly
100% accurate.

This model is clearly more robust, accurate, and
efficient than the previous Non-Negative Matrix
Factorization based solution. For that reason, we consider
this project a success.



Fig. 6. Recreated drum loop (blue) and original beatboxing input (orange)

5. REFERENCES

[1] A. Delgado, S. K. T. McDonald, N. Xu, and M.
Sandler, “A new dataset for amateur vocal percussion
analysis,” Proceedings of the 14th International
Audio Mostly Conference: A Journey in Sound,
2019. DOI: 10.1145/3356590.3356844

[2] “Introduction to Computer Vision with PyTorch.”
[Online]. Available:
https://learn.microsoft.com/en-us/training/modules/in
tro-computer-vision-pytorch/. [Accessed:
05-May-2023].


