
SHORT-TERM TRAFFIC FLOW PREDICTION USING kNN AND LSTM

ABSTRACT

Short-term traffic flow prediction based on current traffic
flow is useful for warning drivers of an ongoing or
impending traffic jam in time to change routes to avoid the
jam, possibly even preventing the jam from occurring. In
this paper we investigate two different approaches to
short-term traffic flow prediction, using kNN and LSTM
models. In each case the current traffic flow, speed, time of
day, and day of the week are used to predict the traffic flow
5 minutes in the future. The final test set performance
achieved by the two models as measured by the mean
absolute percent error (MAPE) is 8.66% for the kNN model
and 11.88% for the LSTM model.

1. INTRODUCTION

In real life, with the acceleration of urbanization and the
rapid increase in population, traffic problem is gradually
becoming a very headache-inducing issue for citizens.
However, short-term traffic flow prediction can provide
real-time and accurate traffic information and road
conditions so that travelers can make better traffic decisions
and travel plans. In this way, it can improve the traffic
transportation efficiency including buses, taxis, private cars,
trucks and so on. Therefore, it is useful to city planners and
designers to optimize the city traffic and road design as
well.

kNN is a widely used classification algorithm, however
it can also be used to solve the regression problem. Instead
of classifying the unclassified point to the majority class of
the k nearest data points, it calculates the mean value of the
k nearest data points as its prediction value. kNN has
multiple benefits compared to other algorithms. First it is
easy to implement, sklearn provides fully functional and
comprehensive APIs for us to implement; Second, it doesn’t
need an explicit training process, it is flexible and
convenient when dealing with datasets. Besides, according
to Zhang, Lun et al. [1], the kNN prediction MAPE can
reach less than 9% on the short-term traffic flow prediction
task, which means the difference between the predicted
value and the actual value is within 9%. For example, there
are 100 cars in the next 5 minutes, the prediction values are

around 91-109. The result is acceptable and useful to predict
actual value. Therefore, we seek to use kNN to predict
traffic flow in California.

Although a kNN may give good traffic flow prediction
results, a drawback to this approach is that kNN is a lazy
algorithm, requiring all data points to be stored and used at
prediction time, potentially slowing the prediction. An
alternative approach is to use an LSTM model, which may
also give better MAPE performance due to modeling results
from more of the previous points instead of only the current
points. Several groups have successfully implemented
traffic flow prediction using LSTM models, obtaining
(respectively) MAPE of 6.49% over 15-minute prediction
time [2] and 26.4% when fitting the traffic flow curve for 24
hrs [3]. Therefore, we also implement this approach.

2. METHODS

We constructed the dataset used in our implementation by
using the California Department of Transportation website.
In doing so, we looked at different interstate highways
within different districts of California. For our
implementation, we chose interstate highway I10 going
West in District 7. Furthermore, instead of gathering data
from the entire highway we decided to look at vehicle
detection sensor (VDS) 717129 which would give us data
from only a section of the highway. This data contained
vehicle speed (mph), flow (veh/5 mins), number of lanes (4
lanes), and the observation rate of each data point. The
observation rate became critical in choosing how big we
wanted the dataset to be. If the observation rate was less
than 80% then it was most likely that the datapoint was
artificial; however, anything over 80% meant that the
datapoint was observed and true. Therefore, we looked for
data points which had a 100% observation rate. We then
chose data from December 1, 2022, to February 28, 2023,
which gave us 25921 data points for our dataset. 

For preprocessing our dataset which contains 25921
data points and features such as the date, speed, flow, # of
lanes, and observation rate we added two more features and
the output. The first feature added is to determine the day of
the week (0 = Thursday and 6 = Wednesday). Second
feature added is to determine the time of day for every 5



min interval (0-287 for every 5 minutes within a day). Being
that we are predicting traffic flow, the flow column is used
to create our output column. In order words, the output for
the first row will be the flow of the second row, and so forth.
Since we are predicting 5 minutes into the future, we simply
drop the first datapoint in the flow column and set what
remains in our flow column as our output. Moreover, we
also drop the entire last row (datapoint 25919) since it does
not have an output. In adding the three columns we decided
to drop unnecessary columns such as the data, # of lanes,
and observation rate since these columns will not help us for
prediction.

After finalizing the dataset of 25920 data points we
used “train_test_split” from sklearn.model_selection to split
and shuffle the dataset into an 8:1:1 ratio meaning 80%
training, 10% test, and 10% validation. Furthermore, we
normalized only the features by using “StandardScaler"
from sklearn.preprocessing while leaving the original output
as it is. 

Since sklearn provides the kNN Regressor API,
therefore, there is no need to construct the kNN model on
our own. We choose MAPE (Mean Absolute Prediction
Error) as our evaluation metric, because it provides more
intuitive results compared to metrics such as MSE, RMSE.
Because whether the result of these metrics is good or bad
varies depending on the dataset. The KNN implementation
uses knn.neighbors.KNeighborsRegressor.

To form the dataset for the LSTM model, the original
dataset (preprocessed only by defining the output for each
sample as the traffic flow from the next time step) was split
into segments, with the segment length L_in and overlap
between segments being left as a hyperparameter. The
output of each segment was defined to be the output of the
last sample in the segment (the traffic flow during the next
sample following the segment). The dataset was then
randomly split into training, validation, and test sets with the
ratio 8:1:1. Finally the features were normalized based on
the training set: the mean and standard deviation of every
point from every segment in the training set were computed,
the mean was subtracted from all points in each of the data
sets, and the results were divided by the standard deviation.
Note that some of the training points will be counted
multiple times during computation of mean and standard
deviation if overlapping segments are assigned to the
training set during the random partitioning, potentially
resulting in an incorrect mean and standard deviation used
to normalize all the data sets. However, this is not a major
concern because the goal of this normalization was not so
much to ensure a specific distribution (zero mean and
standard deviation of 1) as to ensure that all the features
have similar mean and standard deviation, allowing the
LSTM to consider all features with roughly equal weight.

The LSTM network was implemented using the Pytorch
framework and consists of 2 LSTM layers with hidden
dimension of 512 neurons, followed by 1 fully connected
layer with 512 neurons and ReLU activation, then a dropout

layer with dropout probability p=0.1, and finally a fully
connected layer with 1 neuron for the output.

3. EXPERIMENTS

The kNN has several hyperparameters, in traffic prediction
problem, there are only 2 hyperparameters matters (others
do not change the final prediction MAPE) the number of
nearest training samples (k value) and the Lp distance (this
article only tried Euclidean distance and Manhattan
distance). As the validation result shown in Figure 1.and
Figure 2., the best k = 21 and the best distance is Manhattan
distance. The test set also uses this set of parameters (k=21,
p=1) to evaluate performance. Surprisingly, the test set
performs even better than the validation set, the MAPE
value decreases to 8.6%

Figure 1. kNN validation set MAPE value with Manhattan
distance.

Figure 2. kNN validation set MAPE value with Euclidean
distance.

The LSTM was trained using a GPU on the Google
Colaboratory platform. A batch size of 32 was selected, the
Adam optimizer with learning rate = 0.01 and mean squared
error loss criterion was used, and the network was trained
for 11000 epochs on the training set and evaluated on the
validation set. After tuning the hyperparameters on the
validation set, the final selection was segment length L_in =



36 with a hop size of 1 (overlap of 35) for the maximum
amount of training data. Using the final network trained for
11000 epochs with these parameters, the final test set
performance was MAPE = 11.88%. The MSE measured on
the training and validation sets during training are plotted in
Figure 3 below, showing that the training loss decreases
throughout training and nearly saturates by the end of 11000
epochs, while the validation loss decreases more slowly and
appears to saturate earlier, but does not begin increasing.

Figure 3. LSTM Training and validation set MSE during
training.

4. CONCLUSIONS

In general, both LSTM and KNN perform well in predicting
short-term traffic flows. LSTM has the advantage of
working with sequential data and nonlinear relationships.
However, the training process of LSTM is more complex
and requires more computing resources and time with a little
bit worse performance compared to kNN. kNN, by contrast,
is simpler and easier to implement and adjust parameters. At
the same time, kNN can also make use of the similarity of
historical data to make the prediction result more reliable.

5. FUTURE DIRECTIONS

Comparing the test set performance of the two models, the
kNN model (8.66% MAPE) performs slightly better than the
LSTM (11.88% MAPE). Therefore, future improvements
include adjusting the architecture of the LSTM network to
make it more flexible (since overfitting was not observed
during training). It may also be beneficial to increase the
L_in hyperparameter to model longer dependencies, since
the used value of 36 only accounts for the last 3 hours.
Another idea to investigate is to keep both the kNN and
LSTM models and average their outputs to obtain the final
output. Finally, future directions include predicting farther
into the future than 5 minutes; 15-minute or 30-minute

prediction times would be more useful to drivers to reroute
in time to avoid a traffic jam.

Besides, traffic flow prediction is a very complicated
problem affected by other factor such as weather, major
events (such as pandemic or other big social events) and so
on, in the future, these factors(features) should be taken into
consideration, maybe a more complex model is needed for
example the combination of kNN and LSTM. 

6. REFERENCES

[1] Zhang, Lun & Liu, Qiuchen & Yang, Wenchen & Nai,
Wei & Dong, Decun. (2013). An Improved K-nearest
Neighbor Model for Short-term Traffic Flow Prediction.
Procedia - Social and Behavioral
Sciences.96.653-662.10.1016/j.sbspro.2013.08.076

[2] Y. Tian and L. Pan, “Predicting short-term traffic flow
by long short-term memory recurrent neural network,” 2015
IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), 2015.

[3] Q. Chu, G. Li, R. Zhou, and Z. Ping, “Traffic flow
prediction model based on LSTM with Finnish dataset,”
2021 6th International Conference on Intelligent Computing
and Signal Processing (ICSP), 2021.

[4] “Caltrans, performance measurement system (pems),”
2023. [Online]. Available: http://pems.dot.ca.gov.

[5] “Traffic Prediction: How Machine Learning Helps
Forecast Congestions and Plan Optimal Routes.” AltexSoft,
27 Jan. 2022, www.altexsoft.com/blog/traffic-prediction/.

http://pems.dot.ca.gov/

