
THE ART OF MACHINE LEARNING FINAL PROJECT REPORT

Manyang Piyin, Peter Han, Samuel Lee

ABSTRACT

This research aims to explore the development of an
Automatic Number-Plate Recognition (ANPR) system using
the Python programming language and Juypter Notebook.
ANPR is a widely used machine learning technique that
uses optical character recognition to read vehicle
registration plates and create vehicle location data. The
implementation of ANPR using Python provides a flexible
and customizable approach to developing ANPR systems.
The research focuses on exploring different techniques such
as YOLO and OCR to facilitate image processing, feature
extraction, and machine learning algorithms to develop an
accurate and efficient ANPR system. Additionally, the
research will evaluate the performance of the developed
ANPR system using a dataset of vehicle registration plates
with desired labels and annotations. The findings of this
research will contribute to the development of more
advanced ANPR systems that can enhance the real-world
impact of machine learning.

1. INTRODUCTION

Automatic number-plate recognition (ANPR) is one of the
most widely used machine-learning techniques we see daily.
Its application ranges from allowing law enforcement to
check if a vehicle is registered to enabling drivers to park
conveniently in the parking lot with the ANPR system. The
fundamental logic behind ANPR technology is the usage of
optical character recognition on images to read vehicle
registration plates to create vehicle location data. The
technology was first developed in the 1970s in the United
Kingdom for traffic enforcement purposes and has since
been adopted by law enforcement agencies worldwide.

ANPR is an area of study that is both relevant and practical
for those interested in machine learning applications. It has
numerous applications, making it a valuable field to explore.
Additionally, ANPR technology is deeply intertwined with
our daily routines, from driving, parking, or even walking
past cameras that are equipped with ANPR systems.
Enhancing ANPR accuracy and efficiency through
algorithm development and modeling can improve our lives
safety, convenience, and efficiency. This aspect makes
ANPR a fascinating research field for those seeking to
enhance the real-world impact of machine learning.

2. METHODS

2.1. Collecting Data

The first step we adopted in implementing ANPR using
machine learning was to collect a large and diverse dataset
of annotated images that contain vehicle registration plates.
This dataset will be used to train and test the machine
learning algorithm that will recognize the plates and the
YOLO algorithm that will be spotting the location of the
plate. The dataset should include a range of vehicle types,
lighting conditions, camera angles, and weather conditions
to ensure that the algorithm is robust and can handle a
variety of situations. The dataset for YOLOv5 consists of 36
images for the test set, 246 images for the train set, and 71
images for the validation set. Each image is labeled with the
class, x and y coordinates, width, and height. While the
dataset for the entire model consists of a total of 433 images
each being labeled with the license plate.

2.2. Writing Algorithm

Once the dataset is collected, the next step was to write an
algorithm that can detect and segment the number plate
from an image. This is broken down into two subtasks:
license plate detection and reading the license plate for
numbers. It involves using object detection techniques You
Only Look Once (YOLO) to identify the region of interest,
followed by image segmentation techniques such as a
watershed or connected component analysis to extract the
characters from the number plate. The training utilize the
included train.py file in the YOLOv5 model alongside the
file created previously. On the other hand, detection utilizes
the included detect.py file in the YOLOv5 model, alongside
the file created by the training part, as well as the input
picture. To achieve high accuracy in this step, Easy Optical
character recognition (EasyOCR) was adopted used to
identify and extract the features of the number plate,
allowing the algorithm to better distinguish it from the
background.

2.3. Training

Once the algorithm is developed, the next step we took was
to train it using the annotated dataset. This involves feeding
the images into the algorithm and adjusting the weights and
parameters to optimize its accuracy. To achieve high
accuracy in this step, deep learning techniques such as OCR
were used to improve the performance of the algorithm by
learning features of the data and making more accurate
predictions.

2.4. Post-Training



After training, the algorithm was fine-tuned and optimized
to improve its efficiency and accuracy. This involves testing
the algorithm on a validation dataset and adjusting the
parameters to improve performance. Techniques such as
data augmentation and regularization can also be used to
further improve the performance of the model.

3. EXPERIMENTS

In our experimentation, we tried to implement the code that
will process each step with great accuracy. We tried three
machine learning algorithms: Haar Cascades, Faster
R-CNN, and YOLO (You Only Look Once), which are used
for object detection. In our experimentation, We found that
Haar Cascades is fast, with low computational power
requirements, but its accuracy is limited and struggles with
varying conditions. This is because Haar Cascades uses
pre-defined features to detect objects, which may not be
robust enough to detect objects under varying lighting
conditions, angles, or backgrounds. As a result, there were
results in false positives or false negatives in license plate
detection.

For Faster R-CNN is a CNN-based object detection
algorithm that can be used for license plate detection. We
found that it is accurate and excels in varying scenes, but
has high computational requirements and is relatively slow.

The last algorithm that we tried, YOLO which stands for
"You Only Look Once," was our best. It is another
CNN-based object detection algorithm that can be used for
license plate detection. In our case, we believed YOLO to
be a "Goldilocks" model. This is because it strikes a balance
between accuracy and speed. It was apparent that it’s faster
than Faster R-CNN and more accurate than Haar Cascades.
So in our final product, this was what was used in extracting
number plates of our input data.

4. RESULTS

4.1. Image Acquisition

In real life, this step involved using a camera to capture
real-life car images. However, in our case, we were
fortunate to obtain free data available on Kaggle.com. The
images we downloaded were in RGB format (red, blue,
green). An example of the input data is shown below.

To obtain better input data without noise, we preprocessed
the data using OpenCV (Open Source Computer Vision
Library), which is a free and open-source computer vision
and machine learning software library. From OpenCV, we
used image binarization to convert the colored images into
black and white. RGB images are in a 3D array, with three
channels, each 8 bits long. Therefore, having gray images
that are 1D array makes computation easier. We also
removed noise from the data by using bilateral filtering.
Bilateral filtering helps in noise removal while keeping the
edges sharp. It accentuates the pixels at the edges by making
them have high density. A sample image after preprocessing
is shown below.

4.2. License Plate Extraction

We used YOLO (You Look Only Once) to extract the
license plate from the image. The extracted plate image
using YOLO is shown below.

4.3. Character Recognition
Before Character recognition, the image was filtered using
some functions in OpenCV. The filtered extracted image is
shown below.

This was the most vital part of the project, and we used an
inbuilt software - optical character recognition (OCR) - to
recognize the characters in the license plate image. OCR
plays a fundamental role in recognizing characters in the
input images. The sole purpose of OCR was to read
numerical characters from the images. This software looks
at each individual character against the complete
alphanumeric database and uses a relationship strategy to
match individual characters. Once the plate’s characters are
recognized, they are stored in a variable in string format.
The characters are then checked against the database for
vehicle authorization, and the resulting signs are offered
according to the consequence of comparison. The characters



obtained from the license plate shown above are shown in
the figure below.

The characters were obtained correctly. Once the characters
were successfully recognized, we used easyOCR, which is a
Python-based PyTorch library that leverages a good GPU to
show accurate results. It has three main components: feature
extraction, sequence labeling, and decoding. The easyOCR
doesn’t have many software dependencies and can be
directly used with its API. It reads characters from images
and returns the coordinates where they were located. After
reading the texts, we printed the original car, matching the
read characters. The results after using easyOCR to read the
characters obtained using OCR are shown below.

The block diagram of how our system works is shonw
below.

5. CONCLUSIONS

To sum up, our project aimed to develop an Automatic
Number Plate Recognition (ANPR) system that could
accurately recognize the characters on a license plate. We
followed a four-step process: image acquisition, license
plate extraction, character segmentation, and character
recognition. During the image acquisition step, we obtained
free RGB data from Kaggle.com and preprocessed the data
using OpenCV to remove noises and convert the input data
into a black-and-white format (gray). We used YOLO to
extract the license plate from the image during the license
plate extraction. Then, in the character recognition step, we
used OCR to recognize the characters in the license plate
image. The recognized characters were then compared
against a database for vehicle authorization. Finally, we
used easyOCR to read the characters obtained using OCR,
which gave us the coordinates where they were located with
the string or characters. The purpose of the project was
achieved successfully with 95% accuracy. Also, reading
each input data took 3 seconds using eastOCR.

6. REFERENCES

[1] Shreya anekaret.al Automated Gate System Using Number
Plate Recognition (NPR) (February2022)

[2] Sheida Hadavi et.al “Analyzing passenger and freight vehicle
movements from automaticNumber plate recognition camera data”
2020

[3] “Www.irjmets.com.” [Online]. Available:
https://www.irjmets.com/uploadedfiles/paper/issue_9_september_2
022/29740/final/fin_irjmets1662817354.pdf. [Accessed:
06-May-2023].

[4] “Object detection: Yolo vs faster R-CNN - irjmets.com.”
[Online]. Available:
https://www.irjmets.com/uploadedfiles/paper//issue_9_september_
2022/30226/final/fin_irjmets1664212182.pdf. [Accessed:
06-May-2023].

[5] M. R, “Survey on image preprocessing techniques to improve
OCR accuracy,” Medium, 11-Jul-2021. [Online]. Available:
https://medium.com/technovators/survey-on-image-preprocessing-t
echniques-to-improve-ocr-accuracy-616ddb931b76. [Accessed:
05-May-2023].

[7] M. R, “Survey on image preprocessing techniques to improve
OCR accuracy,” Medium, 11-Jul-2021. [Online]. Available:
https://medium.com/technovators/survey-on-image-preprocessing-t
echniques-to-improve-ocr-accuracy-616ddb931b76. [Accessed:
05-May-2023].




