

Peter Han, Samuel Lee, Manyang Piyin

Introduction

Background

- ANPR adopts optical character recognition on images to read vehicle registration plates to create vehicle location data.
- Application ranges from allowing law enforcement to check if a vehicle is registered to enabling drivers to park conveniently in the parking lot with the ANPR system

Introduction

Why are we interested?

- ANPR is an area of study that is both relevant and practical for those interested in machine learning applications. It has numerous applications, making it a valuable field to explore. It's also deeply intertwined with our daily routines.

Introduction

What we want to achieve?

Enhancing ANPR accuracy and efficiency through algorithm development and modeling

Method

Collect Data

- Collect a large and diverse dataset of annotated images that contain vehicle registration plates.
 - Used to train and test the machine learning algorithm.

Write Algorithm

- Write an algorithm that can detect an segment the number plate from an image.
- Involves technique such as YOLO and Object Character Recognition

Training

- Train the program using the annotated dataset.
- Feed the images into the algorithm and adjusting the weights and parameters to optimize its accuracy.

Post-training

- After training, the algorithm is fine-tuned and optimized to improve its efficiency and accuracy.
- Test the algorithm on a validation dataset and adjusting the parameters to improve performance.

- The ANPR is broken down into 2 sections:
 - 1. License plate detection
 - 2. Reading the license plate for the numbers

License plate detection

- Our job: implement the code that will process each step
 - 1. License plate detection
 - a. Haar Cascades
 - i. Fast, low computational power requirements
 - ii. Limited accuracy, struggles with varying conditions
 - b. Faster R-CNN
 - i. Accurate and excels in varying scenes
 - ii. High computational requirements, relatively slow
 - c. YOLO
 - i. "Goldilocks" Model

YOLO v5 and Implementation

- What is YOLO?
 - an object detection algorithm created by Ultralytics, which is a deep learning model used for detecting and recognizing objects within images and videos
- How do we use it?
 - Create a file to highlight the objects that we are looking to detect
 - In this case vehicles and license plates
 - Also include path to image files

```
1 train: ../CarPhotos/train/images
2 val: ../CarPhotos/valid/images
3
4 nc: 2
5 names: [['license-plate', 'vehicle']]
```

YOLO v5 and Implementation

- How do we use it? (Continued)
 - Training
 - Utilize the included train.py file in the YOLOv5 model alongside the file created previously
 - Detecting
 - Utilize the included detect.py file in the YOLOv5 model, alongside the file created by the training part, as well as the input picture
- The result!`

Reading the license plate for the numbers

- 2. Image pre-processing
 - a. OpenCV (Open Source Computer Vision)
- 3. Reading the plate number (Optical Character Recognition)
 - a. EasyOCR

EasyOCR

- python based pyTorch library that falls upon good GPU to show accurate results
- What are components of easyOCR?
 - Features extraction
 - Sequence labeling
 - Decoding.

Review of the Architecture of Our Model

Input Image YOLOv5 Plate Detection Model

Preprocessing Images

OpenOCR Character Recognition

Text Output

Collecting Dataset (YOLO)

- We looked for online plates dataset to train our YOLOv5 model
- The dataset consists of:
 - 1. Test set: 36 images
 - 2. Training set: 246 images
 - 3. Validation set: 71 images

Labeling Dataset (YOLO)

- The label consists of the following:
 - 1. Class: In our case "license-plate or vehicle"
 - 2. X: The x position of the object within the image
 - 3. Y: The y position of the object within the image
 - 4. Width: the width of the object
 - 5. Height: the height of the object

0 0.46634615384615385 0.5396634615384616 0.17427884615384615 0.09254807692307693 1 0.09735576923076923 0.3641826923076923 0.19471153846153846 0.45913461538461536 1 0.47836538461538464 0.4483173076923077 0.65625 0.7956730769230769 1 0.9122596153846154 0.39903846153846156 0.17427884615384615 0.4074519230769231

Collecting Dataset (Entire Model)

- We looked for online plates dataset for our project
- The dataset consists of 433 images in total

Labeling Dataset (Entire Model)

- We adopted Object Detection to assist us labeling the plates
- The label consists of the following:
 - License plate number

Results

How efficient was our Model?

- 95 % accuracy rate
- Reading a text using easyOCR took 3 seconds to return the results

