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ABSTRACT
This study aims to explore high-risk pedestrians attempting to cross the street at signalized  intersections 
and predict the crossing time. First, the intersection and crosswalk zones were bounded to judge
pedestrian movement status. A coordination transformation was conducted to deal with the distortion of 
raw trajectory data. Then, a  Dynamic Time  Warping  (DTW) based  hierarchical  clustering model was 
adopted to classify pedestrians by evaluating the trajectory similarity. The model identified a group of 
oversized pedestrians who tended to cross the street at a slower speed than other pedestrians. Further,
We improved the traditional CNN & LSTM model structure by adding a time-distributed layer, and we 
used this structure  to  predict pedestrian crossing time. This  new structure  can not only capture the 
historical feature information of the predicted object, but also consider the historical features of the top
ten influential objects around it at the same time,  and  extract the features separately and share the weights.
The results show  that it achieves  an accuracy of  83.3% for the oversized pedestrians, while  a  94.02%
accuracy  for normal-sized  pedestrians.

Keywords:  Hierarchical Clustering  Model, CNN &  Time  Distributed  LSTM, Crossing Time Prediction



  

 

 

 

 

 

 
 
 

 

 
 

 
(a)bird view 

 
(b) zone profile  

Figure 1 Boundary of intersection and zones 
 

Figure 2-a shows the distribution of raw trajectories in the intersection area. The pedestrian 
trajectories are supposed to be distributed in the crosswalk areas, i.e. zones 1 to 4. However, a significant 
distortion was observed that most pedestrian trajectories were not in the crosswalk areas. This might be 
due to the coordination system was drifted between the intersection geometry (defined by A, B, C, D) and 
the LiDAR coordinates. For the LiDAR coordinate system, it was defined by A1, B1, C1, and D1. 
Therefore, a transformation matrix was calculated to map the “A1B1C1D1” coordination system to the 
actual “ABCD” coordination system. Accordingly, the raw pedestrian trajectories were transformed back 
to the correct positions. Figure 2-b shows that after the transformation, the pedestrian trajectories were 
mostly distributed in the crosswalk area.  
 

PROBLEM STATEMENT
  This  problem aims to explore high-risk pedestrians attempting to cross the street at signalized 
intersections.  The proposals mentioned two tasks: (1) classify different pedestrians; (2) predict the time 
needed to cross the street and judge whether the pedestrian can safely cross the street.
  For the first task, the algorithm is supposed to extract features from pedestrian trajectories. Two 
intrinsic trajectory features must be accounted for, i.e. the trajectories are varied in length, and the 
trajectories are not aligned in time. In addition, the dataset provides the size of the bounding box, which 
means the body dimension can be considered.

  For the second task, an algorithm that provides an end-to-end prediction may have better 
accuracy, given that the pedestrian movement can be affected by complicated exogenous and endogenous
processes. An end-to-end based prediction means that the algorithm would directly output the predicted 
crossing time, without modeling the decision process of a pedestrian in an explanation way.
  To support tasks 1 and 2, proper data reduction and pre-processing are necessary. Possible tasks 
related to quality screening and data cleaning would include noise reduction, trajectory transformation,
trajectory filtering, etc.

DATA PREPARATION
  First, the intersection and crosswalk zones were bounded to justify whether a pedestrian crosses 
the intersection or not. Figure 1 shows the profile of the boundary. Zones 1 to 4 represent the crosswalk 
area, and zone 5 is the intersection area. Edge points were identified based on actual geometric designs in
Google Map. Specifically, four nodes A, B, C, and D were given by the proposal, with A as the origin.



  

 

 
(a)raw trajectories  

 
(b)transformed trajectories 

Figure 2 Trajectory Transformation 
 

Further data filtering process was adopted after the trajectory transformation. A trajectory was 
removed if it satisfied any one of the following conditions: 

(1) the trajectory has over 95% of its points outside the boundary OPMN 
(2) the trajectory length is less than 5 points 
(3) distance between the trajectory start point and end point is less than 1.5m 
(4) the trajectory was circling the start point 
(5) the trajectory was failed to traverse the crosswalk boundary (using 1.5m as a buffer to account for 

the localization error), i.e. whether the pedestrian crossed the street is unclear.  
(6) the trajectory has a point that belongs to the “invalidating” status 

 
After the filtering process, 79 pedestrian trajectories were qualified for the analysis. 

 
 
PEDESTRIAN CLASSIFICATION 

Firstly, the trajectory data is time-series data, which means many traditional clustering methods 
such as the k-means clustering may not be applicable, due to their limitations to account for the time 
information. Secondly, as mentioned above, the trajectories are of different lengths and not aligned in 
time; therefore, a suitable algorithm must be able to account for this. In this study, the Hierarchical 
Clustering model was implemented to classify pedestrians based on trajectory features. Specifically, the 
Dynamic Time Warping (DTW) based hierarchical clustering model was adopted. The DTW is able to 
measure similarity between two temporal sequences that do not align exactly in time, speed, or length [1]. 
 
 
 
 
 
 
 
 



  

 

 

 
Figure 3 CNN & LSTM Algorithm for Crossing Time Prediction 
 

Figure 3 shows the algorithm pipeline for the crossing time prediction. The shape of input data is 
(6751, 30, 10, 11). 6751 means the total number of samples.30 means the time dimension. We select 30 
historical points (about equal 3s) from every object at every time as the individual sequence features. 10 
means the number of closest objects related to the specific pedestrian. 11 means the total features  

Then by capturing the other 10 most recent objects that exist in each time point of the pedestrian, 
and sequentially taking out the data of 30 points in the history of this object as input, if there are less than 
ten objects, it will automatically add 0. If it does not exceed, only 10 are selected. The same strategy is 
used to complete the historical time points. In this way, we finally got 6,540 sample data from 79 
pedestrians.       

Firstly, for the trajectory of each pedestrian, we can create more than one sample. We start with 
the 30th point of every pedestrian, and create num- 30 (num means number of points) samples for one 
person. When the pedestrian actually arrives on the opposite side of the road, and subtract it from the 
historical trajectory time to obtain the true mark value y. 

After creating the data set, we divide all the data sets into three parts, 70% of the data is used as 
the training set, 20% of the data is used as the validation set, and 10% of the data is used as the test set. 
And import it into the model for training.  

The model we choose is CNN as the input layer [2], the feature attributes of the sample as the 
channel dimension, and then through a layer of maximum pooling to extract the coarse features in the 
initial sample, and then through a layer of time distributed, in this layer, our purpose is to use LSTM for 
different objects to extract the features of a separate time series, and share the weights [3]. This can 
greatly take into account the influence of objects around pedestrians on pedestrians themselves. Then 
there is a layer of dropout layer, the purpose is to prevent the model from overfitting, reduce a certain 
calculation unit randomly, here the amount of reduction is set to 30%. Then there is a flatten layer, which 
pulls all the computing units apart, and directly outputs the final predicted value remaining time after 
passing through the dense layer of the two layers through the fully connected network. 

For predicting whether pedestrians can cross the street safely, we predict the remaining time at all 
trajectory points in the entire path of the pedestrian [4] and compare it with the remaining time of the 

CROSSING TIME PREDICTION



  

 

 
    

 
    

  
     

 
 

 
 
 

 
 

 

 

 

 
 

 
(a)zone 1 

 
(b)zone 2 

green light. If it is greater than the remaining time, it is judged as dangerous, if it is less, it is judged as 
safe. Specifically, it is divided into the following situations:

  1. Find out the current traffic light conditions of the start track point and end track point (within
1.5 meters of the target area for the first time) of the track. If the end status is green or yellow, and the
start status is green or yellow, then The real remaining safe crossing time in the middle is the time point
of the first red light after the end minus the current time of each track point and the estimated time 
required. If it is positive, it is safe, if it is negative, it is dangerous.
  2. If the starting state is a red light and the end state is a green light or a yellow light, find the 
time node that turns green for the first time after the starting point. All track points before this time node 
are judged to be dangerous, and all subsequent tracks Point, subtract the current time and predicted time
of all track points from the time of the next red light appearance. If it is positive, it is safe, and if it is 
negative, it is dangerous  [5].

  3. If the end state is a red light, the time when the  red light state appears for the first time after 
the starting point is found. Before that, subtract the current time of the trajectory point and the estimated 
time required. If it is positive, it is safe, if it is negative, then Danger, all points after the red light appears 
are dangerous.
  Finally, by selecting the bottom 20% of the trajectory points of each pedestrian as a feature, if 
more than 80% of the points are judged as safe, the pedestrian is judged as safe, otherwise it is dangerous.

RESULT
Pedestrian Classification

  The clustering result is shown in  Figure 4 and  Table  1. The algorithm classified the pedestrian 
trajectories into four types for each zone respectively. The pedestrians in the same crosswalk area (i.e.
zone area) were supposed to  be affected by similar exogenous factors; therefore, a separate classification 
process on each zone would be more accurate to capture a pedestrian’s intrinsic features.
  It is expected that a pedestrian type that had a slow velocity may indicate a special  pedestrian 
cluster, and these pedestrians would be more likely to be at risk when they cross the street. In zone 1,
pedestrian type 4 had a significantly slow velocity (i.e. 0.44m/s); this pedestrian type was likely an old 
man. In zones 2 to zones 4, when  looking at the slowest pedestrian type, it is very interesting that these 
pedestrians tended to have an oversized body dimension. Specifically, in zone 2, the pedestrian type 4 had
the slowest velocity; for these pedestrians, both the rate of bounding box  size Y over X, and the rate of 
bounding box size Z over X are the largest compared with other pedestrian types; in zone 3, the
pedestrian type 3 had the slowest velocity; for these pedestrians, the rate of bounding box size Y over X is
smallest; similarly,  in zone 4, the pedestrian type 4 had the smallest rate of bounding box size Y over X,
and this pedestrian type has the slowest velocity. The rate of bounding box dimension indicates the 
pedestrian body dimension to some extent; either a larger rate or a smaller rate means an oversized body 
dimension compared with the normal. The result indicates that oversized pedestrians tended to have a 
slower crossing speed.



  

 

 
(c)zone 3 

 
(d)zone 4 

Figure 4 Pedestrian Trajectory Classification in Each Zone 
 
 
TABLE 1 Pedestrian Classifications 

Crosswalk Area Type BBox_Size_XY_rate BBox_Size_XZ_rate Velocity 

zone1 

1 1.089 2.911 1.096 
2 0.947 1.909 2.264 
3 1.080 2.471 1.237 
4 1.030 2.468 0.445 

zone2 

1 0.867 2.246 1.357 
2 0.945 1.758 1.033 
3 0.943 2.214 1.699 
4 0.987 2.527 0.799 

zone3 

1 1.109 2.863 0.669 
2 1.274 2.518 1.008 
3 1.005 2.600 0.498 
4 1.144 2.742 0.697 

zone4 

1 1.318 2.528 1.315 
2 1.082 2.465 0.814 
3 1.301 2.326 1.228 
4 1.120 2.370 0.884 

 
 
 
Pedestrian Crossing Time prediction 

After using the CNN to extract features from the object, we used multiple LSTMs to analyze each 
dimension of the object, and let the LSMTs share the weights, finally we combined the features from 
LTSMs and fed it into the remained network. The model achieved a MSE of 7.2 on the training dataset, 
11.4 on the validation set, and 17.6 on the test dataset (Figure 5-b). Figure 5-a shows the results from 
traditional CNN, which is significantly worse compared with our improved algorithm.  



  

 

 
(a)traditional CNN 

 
(b)CNN & LSTM with time-distributed layer 

Figure 5 CNN & LSTM Algorithm for Crossing Time Prediction 
 
 
DISCUSSION AND CONCLUSION 

The study used a Dynamic Time Warping (DTW) based Hierarchical Clustering model to classify 
pedestrians, by evaluating the trajectory similarity. The advantage of this clustering algorithm is that it is 
suitable for the time-series data, and it is able to account for trajectories that is either of different length or 
not aligned in time. By using this algorithm, a type of oversized pedestrians who tended to cross the street 
at a slower velocity was identified.  

Further, the study used an improved CNN & LSTM network to predict the pedestrian crossing 
time. Traditional CNN & LSTM network can only capture the historical feature of the object itself, while 
it can ignore the influence from other objects in the scene. Therefore, we added a time-distributed layer, 
and we embedded the LSTM in it, so that it can generate multiple LSTM to extract object features.  

Finally, we applied the crossing time prediction model to two types of pedestrians that we 
classified, i.e. the oversized pedestrians and the normal sized pedestrians; the results show that the model 
achieved an accuracy of 83.3% and 94.02% respectively.  
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