Key Detection for Pop Music Supporting Modulation Point
Locating Based on Transformer

Boning Wang

bwang50@u.rochester.edu

Jiajun Wu

wulQ7@u.rochester.edu

Yichuan Wang

Jiajun Chen

vwang382@u.rochester.edu jchenl92(@u.rochester.edu

ABSTRACT

This research aims to develop a transformer-based deep
learning model for detecting music keys, and specifically
addressing the challenge of modulation—key changes
within a composition. Traditional methods often overlook
this complexity, focusing only on identifying a single key.
Our approach utilizes a dataset of 411 songs across various
languages and genres, including songs with different key
modulations. By using detailed preprocessing and a
transformer model architecture, we demonstrate capabilities
to detect keys and key changes within compositions. This
advancement not only enhances key detection accuracy but
also broadens the scope for future research in automated
music analysis.

1. INTRODUCTION

Introduction

Key is one of the most essential features of a piece of
music. It determines the patterns of notes involved and the
color of emotion. Key detection plays a majority role in
many tasks of contemporary music production, such as
pitch correction and the reproduction of existing music.
Currently, there exist a number of algorithms for key
detection, and they are effectively implemented in
standalone software, audio plug-ins, and music players.
However, the majority of them are only able to output one
result of key detection, but modulation is a common
technique. Therefore, we decided to design an algorithm
that can output several results that consist of all the keys
appearing in the input audio file

Related Works

There’d been significant research done on the algorithms of
music keys detection, and there are also software
applications and websites developed that could recognize
music keys. One of the methods that is commonly
employed is Krumhansl-Schmuchler Profile[1]. This
method is highly arbitrary: it is based on the subjective

perception of music experts in musical psychology
experiments, where after an incomplete tone scale is
played, they judge and score the probability of suitability of
each semitone in the next octave for preceding the scale.
The scores constitute a probability profile, whereby the
chroma vector of a piece of music is compared and the key
information can be detected.

This method is effective because it is immuned from the
negative impacts on the accuracy such as the lack of
absolute tone sense and convoluted music theory
knowledge. However, it is based too much on arbitrary
judgment, which sometimes introduces errors, and it
requires the engagement of extensive human labors.

Presently, there are also a number of key detection
applications based on machine learning, which involve a
large set of training data for the model to learn the spectral
information of music audio wave files of different keys,
then it can predict the key of any unseen audio clips.
Methodologies include K-nearest Neighbors, Support
Vector Machine, etc..[2] Such applications include
Tunebat[3], Vocal Remover[4], apple music, tencent music,
etc.. However, most of these applications can detect only
one key given an audio file, ignoring the situation of
modulation. As mentioned earlier, modulation is a
frequently used technique in music composition, so
musicians would prefer a key detection algorithm that
could detect all the key and modulation information of a
piece of music.

2. METHOD

2.1 Dataset and pre-processing

To train the neural network, we downloaded 411 songs as
our training data including English songs, Mandarin
Chinese songs, Cantonese songs, Japanese songs, and
absolute music without the lyrics. 96 pieces of them include
modulation. The common characteristic of them was that
most of the notes existing are within the scale of local keys,

mailto:bwang50@u.rochester.edu
mailto:jwu107@u.rochester.edu
mailto:ywang382@u.rochester.edu
mailto:jchen192@u.rochester.edu

and there were minor tonicizations and mixtures where
notes outside the scales appear. The purpose was to obtain
stable representations of the features of each key scale, and
simultaneously ensure that those exceptions have also been
captured. Next, we labeled all the keys that had appeared in
a clip and their start time and end time. We used a matrix to
represent all necessary information. There were three
columns representing the start time of a key, end time of the
key, and which key it was respectively. The rows were the
sequence of the keys ordered chronologically. We used 0 to
represent the key C, and with each increase in semitone, the
key number was incremented by 1, whereby the 12 keys
from C to B can be represented by integers from 0 to 11.
For example, there was a clip with length 4:15. At the
beginning, the key was C, and it modulated to C sharp at
2:45. For this clip, we converted the unit of the timestamps
to seconds and created the following matrix to record the
key information:

165 255 1

During the training process, we temporarily only focused
on detecting a single key out of a given clip while
considering the situation where a clip contained
modulations. In order to extract more specific musical
features, we further divided a song to multiple clips.
Considering that the rhythm and the speed of songs varies
remarkably, we assumed that dividing the songs in constant
numbers of beats would provide equal information sums, so
clips from a slow song would be longer than those from a
fast song. To achieve this, we first applied a beat detection
algorithm using the Librosa library[5]. Then, we set up a
clip length in beats and divided the songs into clips. Finally,
we compared the start time and the end time of each clip to
the respective key information matrix mentioned above to
add the key label to the clip. If a clip involved multiple
keys, we would label the key that had the longest duration.

After we obtained the clips, we could further analyze them
in the frequency domain. To obtain the temporal-spectral
information, we applied the short-time Fourier transform
(STFT) to the waveforms and got the spectrograms in terms
of the frequency bins and the time frames. Given that the
key is independent of the octave, that is, a note in different
octaves plays the same role in the harmonic structure, we
could load the frequencies into octave-independent classes.
In this way, not only could the dimension of input data be
diminished from thousands of frequency bins to several
classes, but the relationship between the frequency bin
widths and the notes could be linearized instead of being in
logarithm as well. Therefore, both the efficiency and the
validity of the input data would be boosted significantly.

For the STFT process, we had to choose a window length
that guarantees a high enough frequency resolution so that
the low notes could be intactly represented in
corresponding pitch class bins in the later process. We
were using a window length of 4096 samples, whereby the
frequency resolution would be 10.67Hz given that the
sample rate was 44100 Hz. We also applied a three-times
zero padding to interpolate the spectrum so that the true
frequency peaks could be more precisely located. The
window we chose is Blackman-Harris window, which has
the advantage of low sidelobe amplitude that would
alleviate the problem of frequency leakage to other bins in
later processes.[6] The hop size which determines the time
resolution was 512 samples.

To load the keys to octave-independent classes, we used a
method called harmonic pitch class profile (HPCP)[7].
Since the high frequencies above approximately 4000 Hz,
within which reside almost merely the compositions of
non-musical elements such as cymbals, breaths of voice,
and ambiance textures, and below approximately 150 Hz,
which are dominated by the kick drums, barely contain
harmonic information, we limited our analysis within the
frequency range between 150 Hz to 4000 Hz, whereby the
computational cost was optimized and the non-harmonic
interference was reduced. Next, we took the peaks of the
spectrum within the range. There should be a threshold
only above which we took the peaks, so that those due to
the noise and frequency leakage could be eliminated. After
that, we set up a reference frequency, for which we picked
that of the middle C, 261.63 Hz.[8] Although an octave
contains 12 semitones, we could use a larger number of
bins to increase the accuracy. For example, we set 36 bins,
so each bin corresponds to 5 semitones. Now, all the
frequencies of the bins within the reference octave could be
calculated from the reference frequency, and we could find
the distance in semitones between all the peaks and the bins
in the reference octave. Remainder with respect to 12
should be taken so that the distance would be
octave-independent.

For the sake of further improving the accuracy and
avoiding imprecise calibration, we applied weights, that is,
each peak would contribute to not only one bin but a
sequence of adjacent ones. The weight for the bins was
computed from a single-cycle cosine square function,
which takes only the center cycle of the cosine function and
anywhere else is zero. The angle speed parameter of the
cosine function was determined by a width we set up, for
which we use 4/3 semitones, meaning that each peak will
contribute to 4 bins. Finally, the contribution of each peak
could be found by the weight and the square of the peak
amplitude, and we summed them up for all peaks. More

detailed procedure can be found in the codes in the
appendix. After the procedure elaborated above, we
obtained an HPCP matrix with the size of 36 pitch class
bins times the number of time frames in the clip, which was
the input to our model.

2.2 Data Processing before into Model

The data obtained from pre-processing are Excel files. In
total there are 8077 Excel files as feature data, and 1 single
Excel file as the label. Each feature data file is in the shape
of [Sequence, 36-class], where sequence varies from 1700
to 2200, 36-class represent 36 keys - each key is divided
into three sub keys for better classification, values in the
matrix are normalized energy values.

The model will be developed and trained in Google Colab,
so all feature files and the label file are loaded from Google
Drive into Google Colab notebook by importing “os” and
using “drive.mount”. Then all files are read with panda’s
“read_excel()”. After loading, features and labels are put
into a DataSet class for Dataloader. After all data is put
into the DataSet’s class instance, the instance is split into
80% training data, 10% validation data, and 10% test data.
All data is then loaded into the DatalLoader, with a batch
size of 128.

In order to load the data with different shapes, because the
sequence varies, each feature file is zero-padded with
“pad_sequence” from “torch.nn.utils.rnn”.

2.3 Model

Transformer is used in this case. Inputs are fed into Input
Embedding, to three Transformer Encoder Layers, to one
Fully Connected Layer, to Aggregation, and eventually
output as a vector of 12 classes, with raw logits as the
value. The aggregation process aggregates output from the
Fully Connected Layer of shape [batch size, sequence,
12-class] into shape [batch_size, 12-class], by calculating
the mean over the sequence.

For parameters, in this case, input dimension is 36 to
represent 36 pitch classes, d model is 512 as default,
n_head is 8, number of encoder layers is 3, number of
output classes is 12, and drop out is 0.1.

For more information about model structure and the data
flow. See the following figure.

Model Architecture (Data Flow)

Aggregation Sequence

Add & Norm Dimension
Feed
Forward
e
Add & Norm Fully Connected Layer
Multi-Head 512->12
Attention
A [azsssial]
Data Loader [mmms) | Input Embedding Raw Logits |B| Cross Entropy

2.4 Optimizer and Criterion

Adam optimizer is used with a constant learning rate of
0.001. Cross Entropy Loss from torch.nn is utilized as the
loss function, since our output are 12-class raw logits and
the label value is the index of the ground truth class.

3. EXPERIMENT

3.1 Training

Due to the fact that the dataset is relatively large, the whole
training process is divided into three parts: Test Run,
6-Epoch training, and 3-Epoch training. The Test Run took
three hours, generating an average training loss of 3.4215,
validation loss of 2.45, and accuracy of 12.62%. Here the
validation loss is lower than the training loss because
validation losses are calculated after the Test Run training.
Then the model is saved and reloaded for the next training.

In the second training, 6 epochs are assigned, but this time,
training time for each epoch is reduced to 1 hour. Result:
training loss of 1.9818, validation loss of 1.9580 and
accuracy of 24.38%.

In the third training, 3 epochs are assigned, and the training
time required for one epoch is also around 1 hour. Result:
training loss of 1.9477, validation loss of 2.0823 and
accuracy of 25.87%.

Eventually our model reaches a state of around 25%
accuracy, around 3 times the random guessing accuracy,
which is around 8%.

Following are two training graphs with training loss and
validation loss versus number of epochs.

Loss vs. Epochs

—— Training Loss
25 Validation Loss

Epochs

Loss vs. Epochs

2.15 —— Training Loss
Validation Loss

2.00

0.00 025 050 075 1.00 125 150 175 2.00
Epochs

After that, 25 more epochs are assigned, but the training
does not really improve the model’s accuracy. Training loss
stays around 1.9 but the validation loss varies from 1.9 to
2.7. Reflection will present the potential problem.

3.2 Prediction

Although the model does not reach the expectation well, if
the model was well-trained, we could use it to detect the
keys in unseen songs. We first applied the same
preprocessing methodology as that for the training data to
compute the HPCPs for the clips. Next, we used the model
to find the key probabilities array which contained the
probabilities of the 12 keys that a clip belonged to. We first
took the key with maximal probability for each clip. If we
find that the key of a clip is different from that of the
previous one, we assume there is a modulation happening
between the two clips. Therefore, we took all the clips that
had the fixed length with a hop size of 4 beats whose
starting time was between the middle of the former clip and
that of the current clip and used the model to detect the
probability arrays. As the probability of the current key
reaches a maxima, we could assume that the entire clip
belonged to the key after the modulation, and the start time
of the first clip that the maxima was reached should be the
modulation point. Practically, the probability would
fluctuate, so we set a threshold for the difference in the
probability for each moving. When the difference was
below the threshold, we could assume that the maxima was
reached.

4. CONCLUSION

4.1 Reflection

There are several potential improvements that can be made
to optimize the performance of our algorithm. First,
non-harmonic elements, such as the percussion instruments,
may affect the accuracy of the HPCP. The interference may
be significant because the loudness is higher than that of
other harmonic instruments. Possible solution includes
applying a percussion eliminating algorithm before the
generation of HPCP.

In addition, It is relatively a hard task to distinguish keys
with dominant relationship, such as the C key and the G
key, whose scales have only one different note: F sharp.
This requires more training and a better model.
Tonicization and mixture, which are temporary changes in
key, is also another problem we need to consider, and it
requires a more specific definition to differentiate between
them and modulation.

The performance can also be improved by fine tuning the
preprocessing and training parameters, such as the
threshold for the peaks, pitch class weight, and learning
rate. We should try more combinations of parameters so
that the best one can be found.

For the Model part, the problem might come from not using
positional encoding, aggregation of output sequence. Both
of these two actions will lead to sequential information
loss.

4.2 Future Work

For the model part, one way to improve is to first aggregate
the sequence of each feature file, feed the whole song as a
sequence into the encoder part with positional encoding, to
the decoder part and generate the key in order. The second
way is to add multiple fully connected layers with ReL.U or
Sigmoid activation function to increase the nonlinearity of
the model.

5. TASK ASSIGNMENT

Boning Wang: Raise of topic, design of preprocessing
method, design of prediction method, creation of dataset
Jiajun Wu: Design of data loading for training, Design of
neural network architecture

Yichuan Wang: Fine tuning of parameters and program
running, paper formatting

Jiajun Chen: Implement of algorithm, design of
presentation slides

6. REFERENCE

[17Y. Rou, H. Yang, H. Xu, and Y. Zhou, "Music Tonality
Detection Based on Krumhansl-Schmuckler Profile,"
2019.[1]Y. Rou, H. Yang, H. Xu, and Y. Zhou, "Music
Tonality Detection Based on Krumhansl-Schmuckler
Profile," 2019.

[2]S. Campbell, "Automatic Key Detection of Music
Expert from Audio," McGill University, Aug. 2010.
[3]"Tunebat," Tunebat, [Online]. Available:
https://www.tunebat.com. [Accessed: 7-April-2024]
[4]"Song Key and BPM Finder," Vocal Remover, [Online].
Available:
https://vocalremover.org/key-bpm-finder.[Accessed:
7-April-2024]

[5]B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M.
McVicar, E. Battenberg, and O. Nieto, "librosa: Audio and
music signal analysis in Python," in Proc. 14th Python in
Science Conf., 2015, pp. 18-25.

[6]MathWorks, "blackmanharris," [Online]. Available:
https://www.mathworks.com/help/signal/ref/blackmanharri
s.html. [Accessed: 20-April-2024]

[7]E. Gémez, "Tonal Description of Polyphonic Audio for
Music Content Processing," INFORMS Journal on
Computing, University Pompeu Fabra, Aug. 2006.
[8]robrt60, "Ultimate Guide to Musical Frequencies,"
iDrumTune, May 8, 2021.

def find_hpcp(peaks, amps, 1):

clas = np.arange(n_class, dtype = np.float64)

hpcp = np.zeros_like(clas)

for peak, amp in zip(peaks, amps):
fn = 261.63 * (2 **x (clas / n_class))
d = (12 % np.log2(peak / fn)) % 12
d[d > n_class / 2] = d[d > n_class / 2] - n_class
w = np.cos(np.pi *x d / 1) *x 2
wlabs(d) > 0.5 x 1] = 0
hpcp += w % (amp *x 2)

max = np.max(hpcp)
if max != 0:

hpcp = hpcp / np.max(hpcp)
return hpcp

def preproc(clip, m, n_fft, hop, window, p_th, 1, n_class, lowest_freq, highest_freq):
spec = librosa.stft(clip, win_length = m, n_fft = n_fft, hop_length = hop, window = window)
lowest_bin = int(lowest_freq * n_fft / sr)
highest_bin = int(highest_freq * n_fft / sr)
spec = spec[lowest_bin : highest_bin]
spec = np.abs(spec) / (n_fft / 2 + 1)
hpcps = []
for frame in spec.T:
peaks_idx, _ = signal.find_peaks(frame, height = p_th)
amps = frame[peaks_idx]
peak_freqs = (peaks_idx + lowest_bin) *x sr / n_fft
hpcp = find_hpcp(peak_freqs, amps, 1)
hpcps.append (hpcp)
return hpcps

