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What is the key of music
● The key is a form of music 

organization structure[1]. 
● In an octave, the notes of music can be 

divided into 12 semitones.
● Notes in a major scale follows the 

structure W-W-H-W-W-W-H
● Natural minor W-H-W-W-H-W-W 
● Key refers to the note at the first

[2]



Relative Keys
● Major and minor keys are the most 

common in pop and classical music
● Each major key has a corresponding 

minor key that shares the same notes[3]
● To simplify problem, we regard all the 

keys of songs as major scale

[3]



1. Related projects
There have been extensive research and projects on key 
detection

➔ Krumhansl-Schmuckler profile[1]
Based on judgement of music professional

➔ K-nearest neighbor[4]
Compare dataset with templates

➔ SVM[4]
Raise to high dimension to enable linear separation



Most of the current key 
detection
output only one key

Problem:
Is it possible that multiple 
keys appear in a single 
song? 

Of course! Change in key 
is called modulation 
which is a frequently used 
technique



2. Dataset
We manually created our dataset and labels

➔ What
411 songs in English, Mandarin Chinese, 
Cantonese, and absolute music

96 of them involves modulation

➔ How
In order to obtain specific features of 
keys and modulation, we divided each 
song to multiple clips according to 
beats so that clips from fast songs and 
slow songs contains similar amount of 
information. 



Short time Fourier transform (STFT)
● Analyze the waveform in both 

temporal and spectral domain
● Obtain existing notes in an instant 

frame
● 4096 samples window length, 3 times 

zero padding, Blackman Harris 
window, 512 samples hop

[5]



Problem:

Auditory perception of frequency is in 
logarithmic scale

12288 bins * 1k+ samples * 411 songs!

[6]



Harmonic Pitch Class Profile (HPCP)

● Since key information is octave-independent, we can reduce the 
dimension by HPCP[7]

● Convert frequency bins to notes
● Put all Cs regardless of octave to common bins, and so do C#, D, D#, ...
● Choose frequencies in the range [150 Hz, 4000 Hz]



Harmonic Pitch Class Profile (HPCP)
Find peaks 

above -70dB

Convert frequency to 
the distance to a 

reference frequency in 
semitones 

Find the remainders to 
make the distance 

octave-independent

Calculate weights given 
a peak for all HPCP bins

Multiply weights to the 
peak amplitudes and 

find the sum

Normalize to range 
between 0 and 1

Spectrum HPCP

[7]



3. Neural Network Model
We use Transformer as the model

➔ What
Transformer is basically a structure of 
encoder and decoder. For more details 
please refer to paper “Attention is all 
you need[8]”.



Pre-Processed Data

8077 Excel files (2-d data) with:

Row         -> sequence(frames)

Column  ->  classes

Left is an example of data feature files

Batch size -> 128

data .shape->[128,1700-2200, 36]

label.shape->[128]

How We Process

- build a dataset 
class

- Read data and 
label into X and y 
with 
torch.read_excel

- Instantiate
- Load into 

DataLoader



Data Loader
Each Clip has different sequence 
length.

We use pad_sequence from 
torch.nn.utils.rnn (zero padding used)

After padding, each batch have 
difference sequence length, which is 
the longest sequence in the batch

Split data into 80% train, 10% val, 
10%test

Tip
Stories become more 
credible when they use 
concrete details such as 
the specific complex 
moves Alberto learned 
through Translate and 
his 30 goals in 21 games 
performance stats.



Model Architecture

Input Embedding(36->512 d_model)

3 Encoder Layer

- 8 heads, 2048 dim_feedforward

Aggregation([128,1900,512]->[128,51
2]) 512 is dimension of model, d_model

Fully Connected(512->12) 12 classes

Tip
If one example isn’t 
sufficient to help people 
understand the breadth 
of your idea, pick a 
couple of examples.

Story for illustration purposes only



Model Architecture (Data Flow)

Input Embedding

Fully Connected Layer 
512 -> 12

Aggregation Sequence 
Dimension

Data Loader

[128,S,512]
[128,S,36]

3x Encoder 
Layers

Raw Logits

[128,S,512]

[128,512]

[128,12]

Cross Entropy



Tip
Ideally, speak of people 
in very different 
situations, but where 
each could benefit from 
your solution.

Optimizer and Criterion

Optimizer -> Adam, lr=0.001

Criterion   -> CrossEntropyLoss

- Input Shape ([128,12],[128])
- First input: logits for 12 classes with 128 data per batch

- Second input: 128 labels from 0-11 for 12 classes



Training

Device: A100 from Google Colab

We train three times (16 hours)

- 1st 1 epoch (test run 12.62%)
- 2nd 6 epoch(24.38%)
- 3rd 3 epoch (25.87%)

First training does not print out training 
loss and validation loss. Second training 
print out train and val loss. Third time 
the same. Every time after train we save 
the model and reload it back.

Training Result
- Epoch 1/10, Training Loss: 3.4215, Val loss: 2.4502
- Epoch 7/10, Training Loss: 1.9819, Val loss: 1.9580

- Epoch 10/10, Training Loss: 1.9477, Val loss: 2.083

- 25 more epoches on training



4. Prediction
We use the model trained to predict all the 
existing keys of a new song and use a greedy 
algorithm to find the modulation point.

➔ Preprocess
Apply the similar procedures as that of 
the training set: cut a song to clips by 
beats, apply STFT, and convert to HPCP

➔ Predict
Use the model to predict local keys of 
clips and detect the modulation point



Modulation point locating
● After we find the local key of each clip, we observe whose key is 

different from that of the previous one.
● We move the the clip in which a new key appears from the time of half of 

the previous clip to half of the current one and find the probability 
vectors

● We assume that the time when ratio between the two elements in the 
probability corresponding vector reach a certain threshold is the 
modulation point



Potential Problems
Model Problem:
No Positional Encoding

Didn’t use Decoder

Sequence Aggregation

Musical Problems:
Percussion interference

Dominant keys confusion

Tonicizations and mixtures

Preprocessing 
Problems:
Peak threshold

Normalization

Weight width
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