
Key Detection on
Pop Music

Boning Wang
Jiajun Wu
Yichuan Wang
Jiajun Chen

What is the key of music
● The key is a form of music

organization structure[1].
● In an octave, the notes of music can be

divided into 12 semitones.
● Notes in a major scale follows the

structure W-W-H-W-W-W-H
● Natural minor W-H-W-W-H-W-W
● Key refers to the note at the first

[2]

Relative Keys
● Major and minor keys are the most

common in pop and classical music
● Each major key has a corresponding

minor key that shares the same notes[3]
● To simplify problem, we regard all the

keys of songs as major scale

[3]

1. Related projects
There have been extensive research and projects on key
detection

➔ Krumhansl-Schmuckler profile[1]
Based on judgement of music professional

➔ K-nearest neighbor[4]
Compare dataset with templates

➔ SVM[4]
Raise to high dimension to enable linear separation

Most of the current key
detection
output only one key

Problem:
Is it possible that multiple
keys appear in a single
song?

Of course! Change in key
is called modulation
which is a frequently used
technique

2. Dataset
We manually created our dataset and labels

➔ What
411 songs in English, Mandarin Chinese,
Cantonese, and absolute music

96 of them involves modulation

➔ How
In order to obtain specific features of
keys and modulation, we divided each
song to multiple clips according to
beats so that clips from fast songs and
slow songs contains similar amount of
information.

Short time Fourier transform (STFT)
● Analyze the waveform in both

temporal and spectral domain
● Obtain existing notes in an instant

frame
● 4096 samples window length, 3 times

zero padding, Blackman Harris
window, 512 samples hop

[5]

Problem:

Auditory perception of frequency is in
logarithmic scale

12288 bins * 1k+ samples * 411 songs!

[6]

Harmonic Pitch Class Profile (HPCP)

● Since key information is octave-independent, we can reduce the
dimension by HPCP[7]

● Convert frequency bins to notes
● Put all Cs regardless of octave to common bins, and so do C#, D, D#, ...
● Choose frequencies in the range [150 Hz, 4000 Hz]

Harmonic Pitch Class Profile (HPCP)
Find peaks

above -70dB

Convert frequency to
the distance to a

reference frequency in
semitones

Find the remainders to
make the distance

octave-independent

Calculate weights given
a peak for all HPCP bins

Multiply weights to the
peak amplitudes and

find the sum

Normalize to range
between 0 and 1

Spectrum HPCP

[7]

3. Neural Network Model
We use Transformer as the model

➔ What
Transformer is basically a structure of
encoder and decoder. For more details
please refer to paper “Attention is all
you need[8]”.

Pre-Processed Data

8077 Excel files (2-d data) with:

Row -> sequence(frames)

Column -> classes

Left is an example of data feature files

Batch size -> 128

data .shape->[128,1700-2200, 36]

label.shape->[128]

How We Process

- build a dataset
class

- Read data and
label into X and y
with
torch.read_excel

- Instantiate
- Load into

DataLoader

Data Loader
Each Clip has different sequence
length.

We use pad_sequence from
torch.nn.utils.rnn (zero padding used)

After padding, each batch have
difference sequence length, which is
the longest sequence in the batch

Split data into 80% train, 10% val,
10%test

Tip
Stories become more
credible when they use
concrete details such as
the specific complex
moves Alberto learned
through Translate and
his 30 goals in 21 games
performance stats.

Model Architecture

Input Embedding(36->512 d_model)

3 Encoder Layer

- 8 heads, 2048 dim_feedforward

Aggregation([128,1900,512]->[128,51
2]) 512 is dimension of model, d_model

Fully Connected(512->12) 12 classes

Tip
If one example isn’t
sufficient to help people
understand the breadth
of your idea, pick a
couple of examples.

Story for illustration purposes only

Model Architecture (Data Flow)

Input Embedding

Fully Connected Layer
512 -> 12

Aggregation Sequence
Dimension

Data Loader

[128,S,512]
[128,S,36]

3x Encoder
Layers

Raw Logits

[128,S,512]

[128,512]

[128,12]

Cross Entropy

Tip
Ideally, speak of people
in very different
situations, but where
each could benefit from
your solution.

Optimizer and Criterion

Optimizer -> Adam, lr=0.001

Criterion -> CrossEntropyLoss

- Input Shape ([128,12],[128])
- First input: logits for 12 classes with 128 data per batch

- Second input: 128 labels from 0-11 for 12 classes

Training

Device: A100 from Google Colab

We train three times (16 hours)

- 1st 1 epoch (test run 12.62%)
- 2nd 6 epoch(24.38%)
- 3rd 3 epoch (25.87%)

First training does not print out training
loss and validation loss. Second training
print out train and val loss. Third time
the same. Every time after train we save
the model and reload it back.

Training Result
- Epoch 1/10, Training Loss: 3.4215, Val loss: 2.4502
- Epoch 7/10, Training Loss: 1.9819, Val loss: 1.9580

- Epoch 10/10, Training Loss: 1.9477, Val loss: 2.083

- 25 more epoches on training

4. Prediction
We use the model trained to predict all the
existing keys of a new song and use a greedy
algorithm to find the modulation point.

➔ Preprocess
Apply the similar procedures as that of
the training set: cut a song to clips by
beats, apply STFT, and convert to HPCP

➔ Predict
Use the model to predict local keys of
clips and detect the modulation point

Modulation point locating
● After we find the local key of each clip, we observe whose key is

different from that of the previous one.
● We move the the clip in which a new key appears from the time of half of

the previous clip to half of the current one and find the probability
vectors

● We assume that the time when ratio between the two elements in the
probability corresponding vector reach a certain threshold is the
modulation point

Potential Problems
Model Problem:
No Positional Encoding

Didn’t use Decoder

Sequence Aggregation

Musical Problems:
Percussion interference

Dominant keys confusion

Tonicizations and mixtures

Preprocessing
Problems:
Peak threshold

Normalization

Weight width

Reference
[1]Y. Rou, H. Yang, H. Xu, and Y. Zhou, "Music Tonality Detection Based on Krumhansl-Schmuckler Profile,"
2019.
[2]Merriam Music, "The Complete Guide to Music Key Signatures," June 10, 2019. [Online]. Available:
https://www.merriammusic.com/school-of-music/piano-lessons/music-key-signatures/.
[3]Music Theory for Beginners, "Relative Minor Scales," in Piano Music Theory, June 1, 2016. [Online].
Available: https://piano-music-theory.com/2016/06/01/relative-minor-scales/.
[4]S. Campbell, "Automatic Key Detection of Music Expert from Audio," McGill University, Aug. 2010.
[5]MathWorks, "blackmanharris," [Online]. Available:
https://www.mathworks.com/help/signal/ref/blackmanharris.html.
[6]robrt60, "Ultimate Guide to Musical Frequencies," iDrumTune, May 8, 2021.
[7]E. Gómez, "Tonal Description of Polyphonic Audio for Music Content Processing," INFORMS Journal on
Computing, University Pompeu Fabra, Aug. 2006.
[8]A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
"Attention is All You Need," presented at the 31st Conference on Neural Information Processing Systems
(NIPS 2017), Long Beach, CA, USA, 2017.

Key Detection on
Pop Music

Boning Wang
Jiajun Wu
Yichuan Wang
Jiajun Chen

