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ABSTRACT

Accurate and timely traffic flow information is in high de-
mand due to its ability to enable road users to make informed
travel decisions, mitigating traffic congestion, and improving
traffic management efficiency. Traffic flow prediction aims to
provide this vital information, which typically lies in histor-
ical and real-time traffic data collected from various sensors.
In previous studies, various models such as KNN and LSTM
have been used for traffic flow prediction. However, they only
focus on either spatial information or temporal information
and cannot make fully use of the data. To improve the predici-
ton, we suggest to use Spatial-Temporal Graph Neural Net-
works (STGNN) and the reason is two-fold. First, the traffic
itself is originally a graph structure, so we can use GNNs to
make better use of the spatial information. Second, STGNNs
can combine both spatial and temporal information to pre-
dict with higher accuracy. In this work, we build two STGNN
models based on PyTorch, then train and evaluate them on two
real-world traffic flow datasets. The results show that both
model perform well, while MTGNN performs a little better
on both datasets than GWN, resulting in 23.2-27.13 RMSE
on traffic flow (per 5 minutes).

Index Terms— Traffic flow, Spatial-Temporal prediction,
Graph Neural Networks

1. INTRODUCTION

Traffic congestion is a world-wide problem, which causes
tremendous loss for individuals and governments. A study
[1] shows that about 149 hours are wasted per vehicle due
to traffic congestion, which brings about 2205 dollars to the
driver. Another study [2] shows that traffic congestion brings
about 305 billions dollars of economic loss to the United
States government including the cost of congestion per driver
as well as the extra budget on handling the extra emitted
carbon.

To solve these traffic problems, accurate and timely traffic
flow information is in high demand among individual travel-
ers, businesses, and government agencies[3]. It enables road
users to make informed travel decisions, mitigating traffic
congestion, and improving traffic management efficiency.
Traffic flow prediction aims to provide this vital informa-

tion, gaining increasing attention with the rapid evolution and
adoption of intelligent transportation systems. For instance,
dynamic signal timing [4] technology adjusts the traffic sig-
nal timing based on predicted traffic information, making the
road network work in higher efficiency. As introduced in
[5], it is acknowledged as a crucial element for the success-
ful implementation of various ITS subsystems, particularly
advanced traveler information systems, advanced traffic man-
agement systems, advanced public transportation systems,
and commercial vehicle operations.

The basis of traffic flow prediction typically lies in his-
torical and real-time traffic data collected from various sen-
sors. With the rise of intelligent traffic management and ad-
vancements in sensor technology, there has been an explosive
growth in traffic data, making data-driven prediction more
feasible. In previous studies, various models such as KNN
and LSTM have been used for traffic flow prediction. How-
ever, we believe these models are not the best choices for this
application. The reason is that the traffic flow prediction con-
tains information in two channels: spatial information and
temporal information. To be specific, the spatial information
is like whether two crossroads are connected by a road or how
far are they from each other. The temporal information is the
previous traffic flow of each crossroads. The model KNN and
LSTM, both emphasize only one of the channels. KNN is
better on processing spatial information, and LSTM focus on
temporal prediction. To better solve this problem, the model
we used should be able to combine these two channels of in-
formation.

To better make use of both the temporal and spatial in-
formation, we suggest to use Spatial-Temporal Graph Neu-
ral Networks (STGNN) and the reason is two-fold. First,
the traffic itself is originally a graph structure, i.e., the cross-
roads are the nodes in graph, and the roads are the edges be-
tween nodes. Therefore, we can use GNNs to make better
use of the spatial information. Second, among different kinds
of GNNs, STGNNs are specially designed for this kind of
spatial-temporal prediction problems, combining both spatial
and temporal information to predict with higher accuracy. So,
we believe we can use STGNN models to predict the traffic
flow with better performance than KNN and LSTM models.

STGNN is a special type of graph neural network char-
acterized by its integration of GNNs with various temporal



learning techniques to capture dynamic features across both
spatial and temporal dimensions[6]. It is commonly used
for data with Spatio-Temporal attributes such as transporta-
tion, environment, public safety, health, energy, economy,
and other fields. There are multiple variants of STGNN
in previous researches and we specifically select GWN[7]
and MTGNN[8] considering there good performance and
widespread recognition witnin the community. Both model
are built based on PyTorch and trained on two real-world
traffic flow datasets from the Department of Transportation of
California. After hyper-parameter searching, we finally test
the models on both datasets, showing good performance on
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). The results show that MTGNN performs better on
both datasets than GWN, resulting in 23.2-27.13 RMSE on
traffic flow (per 5 minutes).

2. METHOD

In this section, we first introduce the adopted STGNN mod-
els, then clarify the training and evaluation method. As for
the dataset, a data visualization is shown to better explain the
features in this application.

2.1. GWN and MTGNN

As shown in Fig. 1, GWN consists of K spatial-temporal
layers on the left and an output layer on the right. Input
features are first transformed by a linear layer, then passed
through a gated temporal convolution module (gated TCN),
followed by a graph convolution network (GCN, which in-
cludes two graph convolution layers). Each spatial-temporal
layer has residual connections and can be skip-connected
to the output layer. The key idea of GWN is, by stacking
multiple spatial-temporal layers, GWN can address spatial
dependencies across various temporal scales. For instance, at
the lower layers, GCN deals with short-term temporal infor-
mation, while at the higher layers, GCN addresses long-term
temporal information.

The framework of MTGNN is shown in Fig. 2, where a
graph learning layer, m graph convolution modules, m tem-
poral convolution modules, and an output module are con-
nected to build the whole framework. To better learn the hid-
den associations among nodes, the graph learning layer com-
putes a graph adjacency matrix, which is then used as input to
all graph convolution modules. Graph convolution modules
and temporal convolution modules are interleaved, capturing
spatial and temporal dependencies respectively. Like GWN,
MTGNN also includes Residual connections and skip con-
nections to avoid gradient vanishing problem.

Fig. 1. The framework of GWN[7].

Fig. 2. The framework of MTGNN[8].

2.2. Training and Evaluation Methods

The training of the models are also implemented based on
PyTorch library. During training, three input features are
learned, including the Graph topology, the previous traffic
flow, and the time embedding. The graph topology is repre-
sented by an adjacent matrix where the connections between
nodes are defined according to the physical distance between
the sensors. This provides the model a spatial information to
conduct the graph convolution modules. The previous traffic
flow contains both temporal and spatial information. The time
embedding works like labels to help the model understand the
temporal information.

During both training and evaluation, we use 1 time slice to
predict 1 time slice, which means in the forwarding process,
the input of model is only one slice of previous traffic flow
and its corresponding time embedding, and the output is thus
the predicted traffic flow in the next time slice.

To evaluation the performance of the models, the MAE
and RMSE are calculated to measure the distance between
predicted values and the ground truth. The difference is that
RMSE emphasizes larger errors more than smaller ones.



2.3. Data pre-processing and Visualization

In this work, we adopt two real-world traffic flow datasets,
PEMS04 and PEMS08, which come from the website of the
Department of Transportation of California (https://pems.dot.ca.gov).
PEMS04 records two months of traffic flow on 307 sensors
on the California freeway. PEMS08 contains two months of
traffic flow on 170 sensors on the California freeway. The key
parameters of both datasets are listed in Table 1.

Dataset Nodes Time steps Data range Interval
PEMS04 307 16992 0-919 5min
PEMS08 170 17856 0-1147 5min

Table 1. PEMS04 and PEMS08 datasets.

To clearly show the features in the datasets, we visualize
three nodes in each dataset to show the variation of traffic flow
versus time. As shown in Fig. 3, the traffic flow of different
sensor shows very similar temporal variation tendency.

Fig. 3. Visualization of datasets.

Considering the feature of traffic flow application, two
time embedding are added in our experiments, including
time-in-day (1 day) and day-in-week (7 days). Both datasets
are normalized with following formulation:

Datanorm = (Data−mean)/std (1)

3. EXPERIMENTS

In this section, we first show the training loss curve of the
selected models on each dataset, then report the inference ac-

curacy on test-set. Both two datasets are split in chronological
order with 70% for training, 10% for validation, and 20% for
testing. The device we used is an NVIDIA RTX 3090 GPU
via PyTorch GPU computing support. Recall that during both
training and evaluation, we use 1 time slice to predict 1 time
slice, i.e., the input of model is one slice of previous traffic
flow and its corresponding time embedding, and the output is
the predicted traffic flow in the next time slice.

3.1. Training loss of STGNNs

As shown in Fig. 4, on PEMS04 dataset, the training loss of
both GWN and MTGNN reduces rapidly in the first epochs
and then converge to a stable value. Since the lower loss is
better, the curve shows that MTGNN need longer time to con-
verge but finally get better results than GWN. This is because
the network of MTGNN is more complex and have stronger
presentation ability than GWN.

Fig. 4. Training loss of GWN and MTGNN versus epoch on
dataset PEMS04.

Similar results can be achieved on PEMS08 dataset,
which is shown in Fig. 5. The difference between the two
dataset is, on PEMS08 both MTGNN and GWN converge
very fast. This is because the nodes of PEMS08 (170) is
much less than PEMS04 (307), therefore the difficulty of
learning the feature is also less. In this case, MTGNN con-
verges as fast as GWN and still have better performance.

3.2. Inference Performance

After showing the Training loss curve, we summarise the in-
ference performance in Table 2. The results show consistency
with the training loss curve, i.e., MTGNN overperforms
GWN on both datasets on MAE and RMSE. Additionally,
since PEMS08 has less nodes and thus easier to learn, both
MTGNN and GWN get better accuracy on PEMS08 than
PEMS04, showing high relationship between the prediction
accuracy and traffic graph scale.



Fig. 5. Training loss of GWN and MTGNN versus epoch on
dataset PEMS08.

Method PEMS04 PEMS08
GWN-MAE 21.3659 16.9493

MTGNN-MAE 16.9265 15.0600
GWN-RMSE 33.9601 26.1909

MTGNN-RMSE 27.1356 23.2096

Table 2. Inference Accuracy of GWN and MTGNN on
PEMS04 and PEMS08 datasets.

4. CONCLUSION

In this work, we implement traffic flow prediction via STGNNs
which have high potential to make use of both the Spatial in-
formation and Temporal information. Two selected model,
GWN and MTGNN are built and trained on two real-world
traffic flow datasets PEMS04 and PEMS08. Both training
loss curves and inference accuracy results show that GWN
and MTGNN work well on Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). While MTGNN performs
better on both datasets than GWN, it achieves MAE 21.4 (per
5 mins) on PEMS04 and 16.9 on PEMS08, showing good
performance on traffic flow prediction.

5. CONTRIBUTIONS OF EACH STUDENTS

Chuan Liu: Discussion and model selection, implementation
of GWN, model evaluation, mid-term presentation, report
writing.

Qingyuan Hou: Discussion and model selection, dataset
preprocessing, hyper-parameter searching, presentation prepa-
ration.

Ruibing Song: Discussion and model selection, imple-
mentation of MTGNN, data visualization, report writing.
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