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Introduction: Background
and Motivation

Sleep Staging and Its Importance

= Sleep, a fundamental behavior with vast
’ biological implications, is typically classified
\ into stages: Wakefulness, REM, and non-REM.

/= Understanding sleep stages is critical for both

preclinical and clinical research, providing
insights into sleep architecture and related
disorders for mice.




Introduction: Background and Motivation

e Traditional methods are labor-intensive and
require expertise, making automated
solutions a necessity.

N Sleep e However, current automated methods face

. challenges, such as larger resolution (4 sec -
Stagl ng 10 sec) and a lack of unified models that can

handle various input sources.

Challenges




Literture review

The research paper by Justus T. C. Schwabedal et al.
focuses on sleep stage classification and EEG artifact
detection in mice using a deep neural network model

artifact-free data VS artifact data

Research by Akara Suprata et al. introduces a deep
learning model that utilizes Convolutional Neural
Networks (CNNSs) to extract time-invariant features from
raw single-channel EEG data
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Baseline and Implement
A novel approach- SlumberNet

Model accuracy
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Dataset

Data Collection

The dataset comprises electrophysiological
time-series data, specifically EEG and EMG
signals collected during sleep studies on
mice.

Expert annotations provide second-by-
second sleep stage labels corresponding to
Wake, SWS (slow-wave sleep), or REM (rapid
eye movement) states.
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Dataset

Dataset Statistics

Subjects: Data from 8 mouse subjects, both male and female.
Sampling Rate: EEG and EMG signals sampled at 512 Hz.

Duration: Approximately 4 hours per subject, leading to millions of
data points.

Labels: Expert-scored stages for rigorous evaluation.

Data Preprocessing

Irregularity Removal: Periods with uncertain stage classification are
excluded to ensure data consistency.

Notch filtering
Bandpass filtering EEG (.5 to 70 Hz), EMG (1 to 250 Hz)

Subject-wise Normalization: Signal normalization accounts for
individual variability in electrophysiological signal features.

Temporal Slicing: Si?nals are segmented into one-second epochs to
match the temporal resolution of sleep stage labels.



CNN-based model e

-Dropout(drop)

Design Approach
Utilize 1D convolutional layers to extract temporal features from raw time-series data.
Apply ReLU activation for non-linearity and Batch Normalization to stabilize training.
Implement Dropout for regularization and to prevent overfitting.
Architecture Components:
Raw Signal Pathways (EEG & EMG):

1. Capture features from raw EEG and EMG signals.

2. Sequential layers of 1D convolutions with progressive downsampling.

3. Adaptive Average Pooling to convert feature maps into a flat vector.
Fourier Transformed Signal Pathways (FFT-EEG & FFT-EMG)

1. Process FFT-transformed signals to exploit frequency domain information.

2. Similar layer structure as raw signal pathways for feature extraction.
Output Layer

1. Concatenates outputs from all pathways.

2. Final classification performed with fully connected layers.



Result for CNN-basec

Approach
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CNN-Based model
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Class Name Precision 1-Precision Recall 1-Recall f1-score
Awake 0.8414 0.1586 0.9321 0.0679 0.8844
NREM 0.9177 0.0823 0.8518 0.1482 0.8835

REM 0.4629 0.5371 0.5413 0.4587 0.4990
Training Set
TARGET
Awake NREM REM SuM
ouTPUT

32895 6073 127 39095
(oo 29.57% 5.46% 0.11% 84.14%
15.86%

2258 58863 3019 64140
NREM 2.03% 52.91% 271% 91.77%
8.23%

138 4169 3712 8019
REM 0.12% 3.75% 3.34% 46.29%
53.71%

35291 69105 6858 95470/ 111254

Sl 93.21% 85.18% 54.13% 85.81%
6.79% 14.82% 45.87% 14.19%
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Adding Attention mechanisms

Using self-attention for contextual

learning
le past/future stages affect probabilities
of current stage

Architecture:

Placed after 1D convolutional layers
for more global context _
Tuned number of embeddings and ¢
heads for different datasets

Adaloglou, N., & Karagiannakos, S. (2020).
https://theaisummer.com/attention/



https://theaisummer.com/attention/

Adding Attention mechanisms

Results:

- Slight decrease in average accuracy:

85.5% -> 84.65%
Limitation in dataset size

Confusion matrix:

- REM precision decreased
Class Name Precision 1-Precision Recall 1-Recall f1-score
Awake 0.7725 0.2275 0.8558 0.1442 0.8120
NREM 0.9064 0.0936 0.8087 0.1913 0.8548
REM 0.2667 0.7333 0.4084 0.5916 0.3227

Training Set
TARGET
Awake NREM REM SUM
OUTPUT
30202 7219 1674 39095
Awake 27.14% 6.49% 1.50% 77.25%
22.75%
3389 55895 2383 61667
SXEM 3.05% 50.24% 2.14% 90.64%
9.36%
1700 6001 2801 10502
REM 1.53% 5.39% 2.52% 26.67%
73.33%
o 35291 69115 6858 83898 / 111264
85.58% 80.87% 40.84% 79.90%
14.42% 19.13% 59.16% 20.10%




Transformer-based model - Model
architecture

[ EEG signals ] [ EMG signals ]
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Transformer-based model - Results

Index 1 2 3 4 5 6 7 8 Averag
e

ACC | 77.88 8520 |6225 | 5142 |80.37 8429 8227 8476 | 76.05
(%)

Matrix Avg-acc Avg- Avg-recall avg- Avg-F1
precision specificity

Result 76.05% 0.5382 0.5307 0.8285 0.4997



Transformer-based model - discussion

Result discussion:

Transformer-based models tend to underperform compared
to traditional CNN-based models when data is limited, as
transformers require larger datasets to achieve optimal results.



Limitations

- Amount of data
- Only 8 mice
- Impacts attention and
transformer performance
- Quality of data
- Class imbalance
- Impacts REM performance



Future work

- Investigating different species of mice
- General model

- Detecting changes in sleep stage

- Combine transformer and CNN models

- Generating synthetic data to overcome class imbalance
-  REM sleep data is limited



Questions?
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