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Abstract— Automatic sleep staging using electroencephalog-
raphy (EEG) and electromyography (EMG) data is a critical
component of sleep-related research. Current sleep staging
approaches have two significant flaws: limited information
exchanges across modalities and a lack of unified models
capable of processing many input sources. To address these
difficulties, we compare three methods to autonomous sleep
staging: a CNN-based model, a transformer-based model, and
an attention-based model. Experiments demonstrate that the
CNN-based approach achieves an average accuracy of 85.81%.
When a self-attention mechanism was added, the average accu-
racy was increased to 86.89%. The transformer and attention-
based models also show promising results. Future research
should focus on improving the classification performance for
challenging sleep stages, such as REM, to enhance the overall
utility of sleep-related research.
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II. INTRODUCTION
Sleep, an essential animal behavior, plays a critical role in

maintaining various physiological and cognitive functions.
The precise classification of sleep stages—namely wakeful-
ness, REM, and non-REM—is pivotal for advancing our
understanding in sleep-related research [1]. The traditional
methodologies in this domain, however, are exceedingly
labor-intensive and necessitate a high level of specialized
knowledge, strongly underscoring the pressing need for
automated systems [2], [3]. Nonetheless, the automated ap-
proaches currently available encounter substantial obstacles.
These include the necessity for improved temporal resolu-
tions, with data granularity improving from intervals ranging
between 4 to 10 seconds, and the integration challenges
posed by the absence of comprehensive models capable
of assimilating heterogeneous data sources effectively. Ad-
dressing these limitations is crucial not only for enhancing
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the effectiveness and efficiency of these systems but also
for transforming how research is conducted in this field,
thereby deepening our insight into the complexities of sleep
dynamics.

In recent years, deep learning-based methods have demon-
strated considerable potential in classification and prediction
tasks. These advanced technologies, when applied to deep
learning, achieve state-of-the-art results in various fields,
including sleep staging [4], [5]. Most existing research
utilizes electroencephalography (EEG) time series signals
for predictive analysis. These signals are instrumental in
classifying sleep into stages such as wakefulness, REM sleep,
and non-REM sleep.

In this study, our aim is to harness the power of machine
learning technologies to forecast sleeping stages using signal
data from EGG and EMG. By employing advanced machine
learning techniques, we anticipate achieving significantly
enhanced accuracy compared to traditional methods.

III. MATERIALS

A. Literature Review

Previous studies have explored various automated sleep
scoring methods for mice, introducing models such as those
detailed by Schwabedal et al. [6], which focus on the
automation of sleep stage classification and EEG artifact
detection using deep neural networks. These approaches
address the labor-intensive nature of manual sleep scoring
in research settings. In this context, our work introduces
SlumberNet, a novel approach leveraging a Residual Neural
Network (ResNet) architecture tailored for the classification
of sleep stages in mice through the analysis of EEG and
EMG data [7]. Notably, SlumberNet not only advances the
methodology in sleep stage classification but also establishes
a relevant connection between the sleep patterns observed in
mice and potential implications for human sleep studies. This
linkage underscores the importance of our model in setting
a foundation for future optimizations aimed at human sleep
analysis. Additionally, the implementation of DeepSleepNet
[8] aligns with the standards set forth in the AASM manual,
further validating the effectiveness of deep learning models
in capturing critical EEG patterns indicative of distinct sleep
stages.

B. Data Collection

This section describes the processes used to obtain data for
mouse sleep staging. The linked dataset is freely accessible
and contains sleep data from mice [2]. The researchers
manually labelled this dataset with sleep stages. All sleep



monitoring data were collected from C57BL/6 mice, includ-
ing both male and female animals. The researchers gathered
EEG and EMG data while the subjects. To improve the
quality of the acquired EEG signals, scientists used filters
such as a band-pass filter at 1 to100 Hz. For EMG signals,
a 10 to 250 Hz bandpass filter is used. Additionally, a 50
Hz notch filter was used to remove power line noise. For a
more detailed description of the dataset, please refer to V.

C. dataset in SlumberNet

The dataset utilized in this study comprises electroen-
cephalogram (EEG) and electromyogram (EMG) signals
collected from mice. The age range of the mice was 9-
11 weeks, and the data was recorded over a period of 6-7
days at a sampling rate of 500 Hz. The collection phases
included baseline sleep, sleep deprivation, and recovery
sleep, ensuring a comprehensive dataset that reflects a wide
range of sleep behaviors.
Data preparation was meticulous, involving the selection of
files containing paired raw voltage data alongside identified
sleep stages. The preprocessing steps were designed to
enhance the quality and usability of the data for model
training. This included the removal of artifacts and the
downsampling of the signal to manage the dataset size and
improve computational efficiency. The cleaned data was then
segmented into 4-second epochs and categorized into one of
three sleep stages: Wake, NREM, and REM. Epochs labeled
as artifacts were systematically excluded from the training
process to maintain the integrity and accuracy of the model
training.
The extensive nature of this dataset provides a robust founda-
tion for developing and optimizing SlumberNet, potentially
enhancing its predictive accuracy and generalizability across
different sleep stages. Also, may help us to expand our
dataset.

D. Implement of SlumberNet

We have implemented the SlumberNet model as described
in the referenced paper. SlumberNet is a residual neural
network (ResNet) designed for classifying sleep stages using
electroencephalogram (EEG) and electromyogram (EMG)
signals. Originally developed to analyze sleep conditions
in mice, this model has demonstrated high accuracy and
efficiency in sleep stage classification, significantly reducing
the time required for manual analysis. We have adopted
SlumberNet as the baseline model for our comparative
analysis due to its robust performance and advanced deep
learning architecture.
The training process are shown as the1
Results demonstrate that DeepSleepNet can automatically

learn features for sleep stage scoring from different raw
single-channel EEG datasets with varying properties and
scoring standards, achieving comparable performance to
state-of-the-art methods without altering the model architec-
ture or training algorithm. Based on the confusion matrix in
Fig2, we get:

Fig. 1. Training Accuracy vs. epochs

s

Fig. 2. Confusion Matrix Based on SlumberNet

• Wake Stage: Highly accurate with few misclassifica-
tions.

• Non-REM Stage: Reasonably accurate but shows some
confusion with the REM stage.

• REM Stage: The model struggles here, with notable
misclassifications as Non-REM.

E. Data Prepossessing

The dataset primarily comprises EEG and EMG signal
recordings from sleeping mice, accompanied by sleep stage
labels assigned to every second. However, these raw data
exhibit data. To address these issues, data preprocessing
techniques are employed such as normalization, and segmen-
tation. Throughout the entirety of mice sleep, there are time
periods where experts are uncertain about the corresponding
sleep stage. These unlabeled periods introduce data irregu-
larities. However, since missing values occur in only a small
percentage of the total data, we do not consider these data
for our work. Lastly, to achieve input data with a fixed time
span, we perform temporal slicing. Since our model aims to
provide accurate predictions at the second level, we slice the



input signals into per-second segments. Both EEG and EMG
signals have an equal sampling frequency, which we denote
as T.

IV. METHODS

A. Convolutional Neural Network

In this section, we describe the settings and architecture
of our multi-modal 1D CNN model. The model comprises
four separate 1D convolutional branches, each processing a
different type of signal: EEG and EMG, as well as their
FFT-transformed counterparts.

Each branch is constructed using several 1D convolutional
layers combined with activation functions, normalization,
and pooling layers. The branches share a common convo-
lutional block structure, defined as follows:

1D Convolutional Layer: Applies a 1D convolution to cap-
ture temporal features. PReLU Activation: Introduces non-
linearity with a parametric ReLU activation function. Batch
Normalization: Normalizes the feature maps to improve
training stability. Dropout (Optional): Adds regularization to
prevent overfitting if specified.

Each branch contains several of these convolutional
blocks, which are followed by average pooling, flattening,
dropouts, linear layers, and lastly a normalization of the
activation layer.The classifier combines outputs from all four
branches using a fully connected layer to yield the final
classification. This classifier includes a pair of linear layer+
activation layer blocks, resulting in the final output.

B. Attention-based Network

In the attention-based model, we expanded on the CNN
architecture described in the earlier section. This means that
all of the layer order and parameters were not changed, apart
from the newly added layers. A self-attention approach was
taken, meaning that the signal is used as both the data and the
context. Furthermore, we applied a multi-headed approach
in order to allow the model to learn from multiple different
feature spaces at the same time. The number of heads and
embeddings per head was tweaked during testing for the
EEG and EMG signals as well as their FFT counterparts.
The attention algorithm that was implemented was quite
standard, with no filtering applied. This was because it was
okay for the preceding and following stages to influence the
current stage. The attention modules were applied for each
of these signals, with the hope that a more contextualized
understanding would allow for better performance. Specif-
ically, the attention modules were placed after each of the
1-dimensional convolution layers. This was done in order to
allow the influences to be interconnected, providing a more
global context window for the model.

C. Transformer-based Network

Here, we designed a transform-based model to harness the
capabilities of the widely acclaimed transformer architecture
in machine learning. Our model employs two 6-layer trans-
former encoder blocks, one for EEG signals and the other
for EMG signals. These encoders are designed to extract

Fig. 3. Example of collected raw data: Two graphs illustrating EMG and
EEG data, respectively. Colored backgrounds denote sleep stage labels

Fig. 4. Illustration of class distribution for one LOSO a. traning b.testing

features—or representations—from each input signal. The
extracted features from both signals are then concatenated
into a single vector that represents the overall feature land-
scape. On the decoder side, we opted for a simple Multilayer
Perceptron (MLP) due to the computation limitations. This
MLP processes the concatenated feature vector and outputs
a logit vector, which serves as the prediction feedback. The
final prediction is determined by selecting the entry with
the highest value from the logit vector, which represents our
predicted sleep stage.

V. EXPERIMENTS

A. Setup

The collection includes EEG and EMG data from eight
mouse, each lasting around four hours. Given that the EEG
and EMG signals are captured at 512 Hz, each mouse record
might include around 5 million EEG/EMG data points. To
match the expert labelling span, we set the epoch window
to one second, yielding a total of 11,0000 epoch. For model
evaluation, we employed a leave-one-out (LOSO) criteria,
using records from 7 mice subjects used for training and 1



Fig. 5. Detailed results for CNN-based approach.

Fig. 6. Confusion matrix for CNN-based approach.

mouse subject used for testing. The distribution of stages in
the training and test sets may be seen in 4, respectively.

B. Implementation & Results

1) CNN-based approach: The experiments were con-
ducted using the PyTorch deep learning framework on an
NVIDIA Tesla K80 GPU. The model was trained with a
batch size of 64, using the Adam optimizer with a learning
rate of 0.01, and a OneCycleLR learning rate scheduler. The
training process consisted of 30 epochs, utilizing CrossEn-
tropyLoss as the loss function. Performance metrics such as
accuracy, F1 score, precision, recall, and the misclassification
rate were computed. Additionally, a confusion matrix was
employed to assess classification performance, and the best
model was selected based on the highest F1 score. The
CNN-based model achieved an average accuracy of 85.5%.
Detailed results and confusion matix for all the subjest for
each class, along with aggregate metrics, are presented in
Fig and Fig 6 repectively.

2) Attention+CNN Approach: Similarly to the prior sec-
tion, all of the results gathered were from the Pytorch deep
learning framework run on an NVIDIA A100 GPU. In order
to aid comparisons between the two approaches, the batch
size and learning rate were kept the same as well. The model
performance was monitored with metrics such as accuracy,
F1 score, precision, recall, and the misclassification rate,
derived from a confusion matrix. The highest performing
version of this model achieved an accuracy of 84.65%, which

Fig. 7. Detailed results for Attention+CNN-based approach.

Fig. 8. Confusion matrix for Attention+CNN-based approach.

shows a slight decrease from the pure CNN model. The
confusion matrix shows how the precision on the REM
staging decreased significantly. This is most likely the cause
behind the decrease in accuracy, as the model is worse at
generalizing due to the class-imbalance and small amount
of data. The exact metrics are presented in Fig and Fig 8
respectively.

3) Transformer-based Network: All experiments were
conducted using the PyTorch deep learning framework on an
NVIDIA A100 GPU. The model was trained with a batch
size of 512, employing the SGD optimizer with a learning
rate of 0.1, complemented by a OneCycleLR learning rate
scheduler. The training regimen spanned 30 epochs, with
CrossEntropyLoss serving as the loss function. Performance
metrics including accuracy, precision, recall, F1 score, and
specificity were calculated to evaluate the model. Addition-
ally, a confusion matrix was utilized to assess classification
performance thoroughly. The model achieving the highest F1
score was selected as the best model.

The Transformer-based model reached an average accu-
racy of 76.05%, slightly below the traditional CNN-based
model discussed earlier. This lower performance could be
attributed to the limited number of data samples available.
As a data-intensive model, Transformers require a substantial
amount of data to effectively train their feature extraction
patterns.



TABLE I
ACCURACY(%) OF THE IMPLEMENTED MODELS FOR EACH MOUSE IN

LOSO EVALUATION

Mice CNN CNN + Attention Transformer
1 90.92 88.60 77.88
2 82.3 80.23 85.20
3 87.97 86.92 62.25
4 83.23 83.02 51.42
5 89.83 88.95 80.37
6 91.2 90.23 84.29
7 71.73 78.94 82.27
8 84.79 80.32 84.76
Avg 85.5 84.65 76.05

VI. CONCLUSION

Overall, this paper detailed a few different approaches to
sleep staging in mice, including CNN, CNN + attention, and
transformer-based models. These models aim to alleviate the
high labor cost of manually labeling the sleep stages of mice,
specifically at a granularity of 1 second. The explored CNN
model preformed the best out of those explored, achieving an
accuracy of 85.5%. A limitation which most likely held back
the attention and transformer-based models was the dataset
size, as these approaches tend to be very data hungry. Thus,
a future work may simply include training the model on a
larger dataset of mice, while also synthetically generating
REM sleep data to overcome the class-imbalance issue.
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