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Importance of Student Engagement

Active student engagement is crucial for
learning outcomes , academic performance,
and overall satisfaction

Traditional assessment methods may lack
objectivity or accuracy , such as teacher
subjective observation or simple attendance
records, failing to provide a comprehensive
understanding of student engagement.
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Methodology for
Evaluating Student
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Facial Recognition

Facial recognition technology
offers an objective, data - driven

| Classroom video |

method to assess student T
engagement. [Cetonefane/inege
| Detecifaces |
We employ face ID recognition , I T . . ‘ y ‘ca .
emotion recognition , and facial | Facelémoda l
orientation recognition models .
to analyze the engagement of Emono:model [ s mose |
each Student_ . [ Headposefalculation ]
We can install a camera ina | —— '
classroom to capture images of

| Average score for each student |

each student, enabling real -
time engagement prediction.
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Face ID Recognition

Model

architecture Train accuracy Test Accuracy

Dataset : Face Recognition Dataset

https://WW\‘)v..kaggle.com/datasets/vasukmatel/f VGG 16 98.71% 44.29%
ace-recognition- dataset/data

Celebrity image dataset with 31 classes with VGG 19 78.86% 36.07%

2562 images

Mobilenet v2 87.96% 35.25%
Augmentations: Custom CNN | 99.88% 44.26%
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Face |ID Recognition
. Face detection model
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Emotion Recognition

fear happy neutral sad surprise

angry disgust

Dataset : Face Expression Dataset

https://www.kaggle.com/datasets/jonathanohei o
x/face- expression-recognition- dataset :
e
Model: Custom CNN
Loss Criterion: Cross Entropy
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Facial Landmarks Prediction

Image Image

@ Original e Original
— @ Predicted

Dataset : LaPa
https://github.com/JDAI- CV/lapa-dataset

Architecture: MobileNetV2
Loss Criterion: Mean Square Error
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https://github.com/JDAI-CV/lapa-dataset

a :left eyebrow center
b: right eyebrow center
c: nose tip

d: chin

m: the midpoint of ab

(face_Ir, face _ud)

(‘forward’, "downward') (‘forward’, 'forward’)

Criteria Facial Orientation ot forwre'
ac/bc <0.95 Left

ac/ bc>1.05 Right

Otherwise Forward

cd/cm>1.15 Upward

cd/cm<0.85 Downward

Otherwise Forward
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Analysis of Student
Engagement




| Classroom video |

.

| Get one frame/ Image |
| Detect faces |
| Face1location | | Face2location | | Face 3location |
| FaceID model |
v
| student'sname |
|
v v
| Face landmarks model |
Emotion model L 2
| Head pose calculation |
v v
Head direction
Happy, Sad, natural, ... left, right, up, down, straight
| |
v
Estimate student's engagement
score

| l
v °

| Average score for each student I
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Name, Emotion and Facial

Img1 - forward forward

neutral

forward | | forward

Img2 - forward downward

Predicted Class: John

Confidence Level: 0.97767764

/1 [====

Emotion

head_1r

angry

forward || downward

Emotion

head_1r

Orientation

Img3 - forward downward

sad

forward | | downward

.



Engagement Rating Criteria

Emotion Combination

Emotion

Combined Emotion

angry, fear, disgust ‘

happy, surprise

neutral, sad

angry

happy
neutral

Score per Frame

initial value of "score” =

10

Condition

Score Adjustment

Emotion is 'angry’

-1

Emotion is 'happy' -1.5
Emotion is 'neutral’ 0
Head_Ir is 'left' or 'right’ -2
Head Iris ‘forward’ 0
Head ud is 'upward' or
, : -2
downward
Head ud is ‘'forward' 0




Engagement Score Prediction
.E:ddym John 99% | S .

forward || forward

John 99%
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forward || downwar:
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Average Score (%)
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Conclusions and Future Directions

Conclusions:

Objective assessment is crucial for improving the teaching methods
and enhancing the learning experience .

Our project demonstrates the effectiveness of  facial recognition
technology in assessing student engagement, offering valuable
insights for educators.

Future directions:

Predicting emotions is challenging , requiring more effective models to
improve accuracy in emotion prediction.

Using real classroom student expressions as a dataset (current datasets
often contain exaggerated facial expressions not representative of real classroom

scenarios.).

Exploring more sophisticated criteria  to improve the accuracy and
robustness of facial orientation assessment ( our method relies on only  four
face landmarks to determine facial orientation ).



THANKS

Do you have any questions?
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