Facial Recognition for Student Engagement

Jiachun Guo, Jianan Wu, Yifeng Tan, Sasanka Munasinghe

TABLE OF CONTENTS

- O1 Project Background
- 02 Methodology for Evaluating Student Engagement
- 03 Model Selection and Training
- 04 Analysis of Student Engagement
- 05 Conclusions and Future Directions

Project Background

Importance of Student Engagement

- Active student engagement is crucial for learning outcomes, academic performance, and overall satisfaction.
- Traditional assessment methods may lack objectivity or accuracy, such as teacher subjective observation or simple attendance records, failing to provide a comprehensive understanding of student engagement.

Methodology for Evaluating Student Engagement

Facial Recognition

- Facial recognition technology
 offers an objective, data driven
 method to assess student
 engagement.
- We employ face ID recognition, emotion recognition, and facial orientation recognition models to analyze the engagement of each student.
- We can install a camera in a classroom to capture images of each student, enabling real time engagement prediction.

Model Selection and Training

Face ID Recognition

- Dataset: Face Recognition Dataset

 https://www.kaggle.com/datasets/vasukipatel/face-recognition-dataset/data
- Celebrity image dataset with 31 classes with 2562 images

Augmentations:

- Shear transformations
- Zoom
- Horizontal flip
- Rotation
- Hight shift
- Width shift
- Brightness

Model architecture	Train accuracy	Test Accuracy
VGG 16	98.71%	44.29%
VGG 19	78.86%	36.07%
Mobilenet v2	87.96%	35.25%
Custom CNN	99.88%	44.26%

Face ID Recognition

Face detection model
OpenCV neural network
model

Face ID model

Dataset : Real Images

Architecture: VGG16 + custom layers

Loss Criterion: Cross Entropy

Supun

Emotion Recognition

https://www.kaggle.com/datasets/jonathanoheix/face-expression-recognition-dataset

Model: Custom CNN

• Loss Criterion: Cross Entropy

Facial Landmarks Prediction

Dataset : La Pa

• https://github.com/JDAI- CV/lapa-dataset

• Architecture: MobileNetV2

• Loss Criterion: Mean Square Error

Facial Orientation Estimation

a :left eyebrow centerb: right eyebrow center

c: nose tip d: chin

m: the midpoint of ab

Criteria	Facial Orientation
ac / bc < 0.95	Left
ac/ bc>1.05	Right
Otherwise	Forward
cd/cm>1.15	Upward
cd/cm<0.85	Downward
Otherwise	Forward

(face_lr , face_ud)

('right', 'forward')

Analysis of Student Engagement

Name, Emotion and Facial Orientation

Predicted Class: Teddy Confidence Level: 0.9991215 Emotion neutral forward || forward

Predicted Class: John Confidence Level: 0.97767764 Emotion angry head lr: forward || head ud: downward

1/1 [========] Predicted Class Sasanka Confidence Level: 0.85546094 1/1 [=======] Emotion: sad head lr: forward || head ud: downward

Engagement Rating Criteria

Emotion Combination

Emotion	Combined Emotion
angry, fear, disgust	angry
happy, surprise	happy
neutral, sad	neutral

Score per Frame

initial value of "score" = 10

Condition	Score Adjustment
Emotion is 'angry'	-1
Emotion is 'happy'	-1.5
Emotion is 'neutral'	0
Head_Ir is 'left' or 'right'	-2
Head_Ir is 'forward'	0
Head_ud is 'upward' or 'downward'	-2
Head_ud is 'forward'	0

Engagement Score Prediction

Average Score Over Time

Average Score = Current Cumulative Score / (10 * Current Frame Number)

Conclusions and Future Directions

Conclusions and Future Directions

Conclusions:

- Objective assessment is crucial for improving the teaching methods and enhancing the learning experience.
- Our project demonstrates the effectiveness of facial recognition technology in assessing student engagement, offering valuable insights for educators.

Future directions:

- Predicting emotions is challenging , requiring more effective models to improve accuracy in emotion prediction.
- Using real classroom student expressions as a dataset (current datasets often contain exaggerated facial expressions not representative of real classroom scenarios.).
- Exploring more sophisticated criteria to improve the accuracy and robustness of facial orientation assessment (our method relies on only four face landmarks to determine facial orientation).

THANKS

Do you have any questions?

