ECE 208: Project Presentation

Kevin Fobare, Ryan Pappania, Rodney Boone, Mukhtar Suleman

Presentation Overview

13

BRYANT

- Purpose
- Dataset Examples
- Approach
- Model description
 Loss function
 - Issues
- Evaluations
- Results
- Summary

PURPOSE

The original purpose of this project that to create a machine learning model that could be used to predict whether a player would perform over or under their season average performance.
The project was then taken a step further predicting the performance stats of any player based on their productivity throughout the season and the opponent they would face
The sport chosen for our model was Basketball

Dataset Player Example

						<u></u>																						
Rk (G	Date	Age Tm		Opp	(GS MP	FG	FGA	FG%	3P	3PA	3P%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS	GmSc	+/-	
1	1	. ####	35-02 PHO	@	GSW	W (+4	1 ####	7	22	0.32	1	2	0.5	3	5	0.6	2	9	11	3	0	1	2	1	. 18	9.1	0	
2	2	. ####	35-02 PHO	@	LAL	L (-5)	1 ####	14	28	0.5	1	5	0.2	10	13	0.77	0	11	11	2	1	1	8	2	. 39	21.4	18	
3	3	####	35-02 PHO		UTA	W (+2	1 ####	8	11	0.73	1	4	0.25	9	9	1	0	4	4	7	1	1	2	1	26	26.9	30	
4	4	####	35-03 PHO		SAS	L (-1)	1 ####	12	19	0.63	1	3	0.33	1	2	0.5	0	2	2	7	2	0	5	0	26	19.6	3	
5	5	####	35-03 PHO		SAS	L (-11	1 ####	10	15	0.67	3	5	0.6	5	9	0.56	0	6	6	1	0	2	3	3	28	19.6	-17	
6	6	####	35-03 PHO	@	PHI	L (-12	1 ####	9	20	0.45	1	4	0.25	12	14	0.86	1	7	8	3	1	2	5	1	31	21.7	-13	
7	7	####	35-03 PHO	@	DET	W (+1	1 ####	14	27	0.52	1	3	0.33	12	12	1	0	4	4	5	1	2	3	1	41	31.4	7	
8	8	####	35-04 PHO	@	CHI	W (+1	1 ####	7	16	0.44	2	5	0.4	9	9	1	1	6	7	9	2	1	6	2	25	21.3	5	
9	9	####	35-04 PHO		LAL	L (-3)	1 ####	13	27	0.48	4	6	0.67	8	10	0.8	1	8	9	5	0	0	4	4	38	24.5	8	
10	10	####	35-04 PHO		OKC	L (-12	1 ####	7	18	0.39	3	5	0.6	11	11	1	0	9	9	4	1	2	3	1	28	22.7	-13	
11	11	####	35-04 PHO		MIN	W (+1	1 ####	11	15	0.73	2	2	1	7	7	1	0	6	6	6	0	1	2	3	31	28.4	27	
12	12	####	35-04 PHO	@		W (+3	1 ####	15	22	0.68	6	8	0.75	2	2	1	0	9	9	9	0	0	1	1	. 38	36.2	-8	
13	13	####	35-05 PHO	@	UTA	W (+3	1 ####	14	27	0.52	4	9	0.44	7	7	1	0	8	8	10	2	2	7	2	39	30.7	4	
14	14	####	35-05 PHO		POR	W (+1	1 ####	13	21	0.62	2				3	1	0	4	4			1	3	4	31	25.1	20	
15	15	####	35-05 PHO		GSW	W (+8	1 ####	7	14	0.5	3	4	0.75	15	15	1	0	8	8	2	0	2	6	2		23.4	5	
16		####	35-05 PHO	@	MEM	W (+21	Inacti Inact	Inacti	Inacti	Inacti	Inact	Inact	Inacti	Inacti			Inact	Inacti	Inacti	Inact	Inacti	Inact	Inact	Inact	i Inact	Inacti	Inactive	
17		####	35-05 PHO	@			Did N Did N																					lay
18	16	####	35-0€ PHO	@	TOR	L (-7)	1 ####	11	30	0.37	2	8	0.25	6	6	1	0	4	4	6	1	0	1	1	30	18.4	-1	
19	17	####	35-0€ PHO			L (-8)	1 ####	8	25	0.32	1	3	0.33	13	13	1	0	4	4	11	1	3	1	2	30	25.9	-6	
20	18	####	35-0€ PHO			1 W (+7	1 ####			0.71			0.67		7	0.71	0	2	2			1	2	1		23.8	8	
21	19	####	35-0€ PHO	@		L (-3)	1 ####	12	17	0.71	4	7	0.57	3	4	0.75	0	7	7	4	0	1				22.1	6	
22			35-07 PHO	_		10000	Inacti Inact	Inacti										Inacti	Inacti	Inact	Inacti	Inact	Inact	Inact			Inactive	
23		####	35-07 PHO	1			Inacti Inact																					
24	20		35-07 PHO			L (-4)	1 ####														1	2				21.4	0	
25	21	####	35-07 PHO			L (-17	1 ####	10	21	0.48	4	9	0.44		7	0.71	0	3	3	6	0	0	0	1		22.2	-7	
20			00 071110				-	10		0110		-				0.7.1			0					-				

NBA Teams Defensive Stats

NBA TEAM	PA/G	S/G	B/G	T/G	Defensive Efficency	DRB
ATL	120.5	7.5	4.5	13.5	1.156	32.2
BOS	109.2	6.8	6.5	11.9	1.08	35.6
BKN	113.3	6.8	5.2	13.1	1.124	32.6
CHA	116.8	6.9	4.5	13.8	1.164	31
СНІ	113.7	7.8	4.9	12.2	1.127	32.6
CLE	110.2	7.4	4.6	13.6	1.09	33.4
DAL	115.6	6.9	5	12.5	1.118	33.2
DEN	109.6	7.1	5.4	12.6	1.095	33.7
DET	119	6.5	4.7	15.2	1.151	32.8
GSW	115.2	7	4.6	14.3	1.116	34.6
ноц	113.2	7.8	4.6	12.7	1.096	34
IND	120.2	7.5	5.8	12.7	1.143	31.4
LAC	112.3	7.8	5	13.2	1.115	32.9
LAL	117.4	7.3	5.5	13.8	1.118	34.9
MEM	112.8	8.2	6.1	15.1	1.106	31.7
MIA	108.4	7.4	3.4	12.7	1.089	33
MIL	116.4	6.7	5	12.8	1.124	34.8
MIN	106.5	7.9	5.9	14.2	1.056	34.2
NOP	110.7	8.3	4.6	13.3	1.093	33.6
NYK	108.2	7.3	4.3	13.1	1.095	32.5
окс	112.7	8.4	6.5	12.7	1.079	33.2
ORL	108.4	8.1	5.2	14.7	1.071	31.8
PHI	111.5	8.2	6	12	1.099	31.9
PHX	113.2	7.4	5.9	14.9	1.113	33.9
POR	115.4	7.6	4.3	15.2	1.133	30.1
SAC	114.8	7.7	4.2	13.1	1.114	33.2
SAS	118.6	7.1	6.3	15.1	1.13	33.9
TOR	118.8	7.7	4.7	14	1.151	31.8
UTA	120.5	6.5	5.6	15.7	1.163	33.2
WAS	123	7.6	5.1	14	1.161	31.9

Approach

- We started out using the Linear regression model a baseline for predicting whether a player would exceed or fall short of their season average
- Random Forest Model to preserve a payer performance stats
 Individually based on their ency throughout their season and the opponent team
- We switched to the Random Forest Model because of the randomness it provides and additional stats we can add easily

Random Forest Model

https://builtin.com/data-science/random-forest-alg orithm

Number of estimators

Issues: Players are actual people

A players mood

City they are playing in

Game Pressure

Sickness

Attractive game viewers

Issue 2: Trading and Absences

Players being traded in the middle of the season.

Ex: Knicks trading key players halfway through season

Injuries and long term absences is missin

Issue 3: Bench player

Data does not incorporate a players rest per game Bench player may sub in during playoff/ pertime to save energy of starters

Assumes no bench avers have to replace injured player

Evaluation

Linear Regression with

no opponent data

Random Forest Model

with opponent defensive data

A REAL PROPERTY AND A REAL

N-estimators = 100,

Used starting 5,

Results

Results: either sweep or losing team picked up one game

Big gap in points per game

Thunder Celtics Mavs Celtics 4-0 4-0 Mavs Cavs Mavs Celtics 4-0 4-(Timberwolves Pacers Wolves Pacers 4-1 4-1 4-1 Celtics Nuggets Knicks Winner

NBA 2024 Playoffs

NBA 2024 Playoffs

Finals Prediction Match up

NBA 2024 Playoffs

N - estimator = 300

(best estimator)

1 bench player

Most accurate representation

Most tiebreakers

(close)

Our finals championship prediction is...

DALLAS MAVERICKS

TITLE

Summary

This model could be incorporated into any sport as long as the player's performance metrics can be measured and the opposing teams stats as well
The more viable data there is, the more accurate the results

References

https://www.basketball-reference.com/

https://www.researchgate.net/publication/312236952 Predicting the Outcome of

<u>NBA_Playoffs_Based_on_the_Maximum_Entropy_Principle</u>

https://library.ndsu.edu/ir/bitstream/handle/10365/28084/Predicting%20Outcomes %20of%20NBA%20Basketball%20Games.pdf?sequence=1&isAllowed=y

https://builtin.com/data-science/random-forest-algorithm

DESIGNED BY ISHAAN MISHRA OF SOURCE24DESIGNS AT ANGELMAKERGOG DEVIANTART COM IMAGES PROPERTY OF RESPECTIVE OWNERS WALLPAIPER UNDER CREATIVE COMMONS 3.0

í tro

AFina

NBATV

ls

tr

NBAT

SThe j