

Kevin Fobare, Ryan Pappania, Rodney Boone, Mukhtar Suleman

$0\{$

Presentation Overview

PURPOSE ©
 - The original purpose of this proiec Guafict to create a machine learning

 model that could be used to psedict whether a player would perform over or under theilirseason average performance \qquadThe project was th, in taken a step furtherediedicting the performance stats of any player base屯̂ on their producitity throughout the season s and the opponent they-would face - s

- Eate sport chosen for our model was Basketball

Dataset Player Example

Rk	G	Date	Age Tm		Opp		GS	MP	FG	FGA	FG\％	3P	3PA	3P\％	FT	FTA	FT\％	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS	GmSc＋／－		
1	1	\＃\＃\＃\＃	$35-02 \mathrm{PHO}$	＠	GSW	W（＋L	1	\＃\＃\＃\＃	7	22	0.32	1	2	0.5	3	5	0.6	2	9	11	3	0	1	2	1	18	9.1	0	
2		\＃\＃\＃\＃	$35-02 \mathrm{PHO}$	＠	LAL	L（－5）	1	\＃\＃\＃\＃	14	28	0.5	1	5	0.2	10	13	0.77	0	11	11	2	1	1	8	2	39	21.4	18	
3	3	\＃\＃\＃\＃	$35-02 \mathrm{PHO}$		UTA	W + ＋	1	\＃\＃\＃\＃	8	11	0.73	1	4	0.25	9	9	1	0	4	4	7	1	1	2	1	26	26.9	30	
4	4	\＃\＃\＃\＃	$35-0 ミ \mathrm{PHO}$		SAS	L（－1）	1	\＃\＃\＃\＃	12	19	0.63	1	3	0.33	1	2	0.5	0	2	2	7	2	0	5	0	26	19.6	3	
5	5	\＃\＃\＃\＃	$35-0 ミ \mathrm{PHO}$		SAS	L（－11	1	\＃\＃\＃\＃	10	15	0.67	3	5	0.6	5	9	0.56	0	6	6	1	0	2	3	3	28	19.6	－17	
6	6	\＃\＃\＃\＃	35－0ミPHO	＠	PHI	L（－12	1	\＃\＃\＃\＃	9	20	0.45	1	4	0.25	12	14	0.86	1	7	8	3	1	2	5	1	31	21.7	－13	
7	7	\＃\＃\＃\＃	35－0ミPHO	＠	DET	W（＋1	1	\＃\＃\＃\＃	14	27	0.52	1	3	0.33	12	12	1	0	4	4	5	1	2	3	1	41	31.4	7	
8	8	\＃\＃\＃\＃	$35-04 \mathrm{PHO}$	＠	CHI	W（＋1	1	\＃\＃\＃\＃	7	16	0.44	2	5	0.4	9	9	1	1	6	7	9	2	1	6	2	25	21.3	5	
9	9	\＃\＃\＃\＃	$35-04 \mathrm{PHO}$		LAL	L（ -3 ）	1	\＃\＃\＃\＃	13	27	0.48	4	6	0.67	8	10	0.8	1	8	9	5	0	0	4	4	38	24.5	8	
10	10	\＃\＃\＃\＃	$35-04 \mathrm{PHO}$		OKC	L（－12	1	\＃\＃\＃\＃	7	18	0.39	3	5	0.6	11	11	1	0	9	9	4	1	2	3	1	28	22.7	－13	
11	11	\＃\＃\＃\＃	$35-04 \mathrm{PHO}$		MIN	W（＋1	1	\＃\＃\＃\＃	11	15	0.73	2	2	1	7	7	1	0	6	6	6	0	1	2	3	31	28.4	27	
12	12	\＃\＃\＃\＃	$35-04 \mathrm{PHO}$	＠	UTA	W + ＋	1	\＃\＃\＃\＃	15	22	0.68	6	8	0.75	2	2	1	0	9	9	9	0	0	1	1	38	36.2	－8	
13	13	\＃\＃\＃\＃	$35-05 \mathrm{PHO}$	＠	UTA	W + ＋	1	\＃\＃\＃\＃	14	27	0.52	4	9	0.44	7	7	1	0	8	8	10	2	2	7	2	39	30.7	4	
14	14	\＃\＃\＃\＃	35－05 PHO		POR	W（＋1	1	\＃\＃\＃\＃	13	21	0.62	2	2	1	3	3	1	0	4	4	9	0	1	3	4	31	25.1	20	
15	15	\＃\＃\＃\＃	$35-05 \mathrm{PHO}$		GSW	W $(+\varepsilon$	1	\＃\＃\＃\＃	7	14	0.5	3	4	0.75	15	15	1	0	8	8	2	0	2	6	2	32	23.4	5	
16		\＃\＃\＃\＃	35－05 PHO	＠	MEM	W（ +2 I l	Inacti	inacti	Inacti	Inacti	inacti	Inact	Inacti	I Inacti	Inacti	Inacti	Inacti	Inact	Inact	Inact	Inact	nact	Inact	Inact	Inact	Inact	Inacti	nacti	
17		\＃\＃\＃\＃	$35-05 \mathrm{PHO}$	＠	NYK	W（＋ED	Did N	Not Play																					
18	16	\＃\＃\＃\＃	$35-06 \mathrm{PHO}$	＠	TOR	L（－7）	1	\＃\＃\＃\＃	11	30	0.37	2	8	0.25	6	6	1	0	4	4	6	1	0	1	1	30	18.4	－1	
19	17	\＃\＃\＃\＃	$35-06$ PHO		DEN	L（－8）	1	\＃\＃\＃\＃	8	25	0.32	1	3	0.33	13	13	1	0	4	4	11	1	3	1	2	30	25.9	－6	
20	18	\＃\＃\＃\＃	$35-06$ PHO		MEM	W（＋）	1	\＃\＃\＃\＃	10	14	0.71	2	3	0.67	5	7	0.71	0	2	2	5	1	1	2	1	27	23.8	8	
21	19	\＃\＃\＃\＃	$35-06$ PHO	＠	LAL	L（－3）	1	\＃\＃\＃\＃	12	17	0.71	4	7	0.57	3	4	0.75	0	7	7	4	0	1	5	5	31	22.1	6	

BRK	$\mathrm{L}(-4)$	1	$\# \# \# \#$	9	18	0.5	1	5	0.2	8	10	0.8	1	5	6	4	1	2	2	3	27	21.4

NBA Teams Defensive Stats

NBA TEAM	PA/G	S/G	B/G	T/G	Defensive Efficency	DRB
ATL	120.5	7.5	4.5	13.5	1.156	32.2
BOS	109.2	6.8	6.5	11.9	1.08	35.6
BKN	113.3	6.8	5.2	13.1	1.124	32.6
CHA	116.8	6.9	4.5	13.8	1.164	31
CHI	113.7	7.8	4.9	12.2	1.127	32.6
CLE	110.2	7.4	4.6	13.6	1.09	33.4
DAL	115.6	6.9	5	12.5	1.118	33.2
DEN	109.6	7.1	5.4	12.6	1.095	33.7
DET	119	6.5	4.7	15.2	1.151	32.8
GSW	115.2	7	4.6	14.3	1.116	34.6
Hou	113.2	7.8	4.6	12.7	1.096	34
IND	120.2	7.5	5.8	12.7	1.143	31.4
LAC	112.3	7.8	5	13.2	1.115	32.9
LAL	117.4	7.3	5.5	13.8	1.118	34.9
MEM	112.8	8.2	6.1	15.1	1.106	31.7
MIA	108.4	7.4	3.4	12.7	1.089	33
MIL	116.4	6.7	5	12.8	1.124	34.8
MIN	106.5	7.9	5.9	14.2	1.056	34.2
NOP	110.7	8.3	4.6	13.3	1.093	33.6
NYK	108.2	7.3	4.3	13.1	1.095	32.5
OKC	112.7	8.4	6.5	12.7	1.079	33.2
ORL	108.4	8.1	5.2	14.7	1.071	31.8
PHI	111.5	8.2	6	12	1.099	31.9
PHX	113.2	7.4	5.9	14.9	1.113	33.9
POR	115.4	7.6	4.3	15.2	1.133	30.1
SAC	114.8	7.7	4.2	13.1	1.114	33.2
SAS	118.6	7.1	6.3	15.1	1.13	33.9
TOR	118.8	7.7	4.7	14	1.151	31.8
UTA	120.5	6.5	5.6	15.7	1.163	33.2
was	123	7.6	5.1	14	1.161	31.9

Anproach

- We started out sieg the Linear regression 婉idel a baseline for predicting whether a playef. wish exceed or fall short of their season average
- Random Forest Model to pre y y

"mindividually" based on their e mor thro ahout their season
 Toamfouls

 opponent team 4 ToL 5 ค)- We switched to the Rendom ares Mode because of the

Random Forest Model

- Builds

Chooses best feature from random subset of features

- Change number of estimators

Loss function

- Used Squared error
- Showed that around 300 estimators was the best balance between computation time and minimizing loss

Loss against PHI

Issues:Players are actual people

A players mood
City they are playing in
Game Pressure
Sickness
Attractive game viewers

"Issue 2: Trading and Absences

Players being traded in the middle of the season.
= Ex: Knicks trading key players halfway th
Injuries and long term absences is miss

Issue 3: Bench player

Data does not incorporate a players ret. game Bench player may sub during playoff, ertime to save energy of starters

Assumes no ben

Evaluation

Linear Regression with

no opponent data

Random Forest Model
with opponent defensive data

Game Results

- Celtics have best starting 5 players
- On paper this team should win the playoffs/finals with full sweeps

Results

Finals Predictiồ Mata
 NBA 2024 Playoffs

Our finals championship prediction is...

Mavericks
doncic.csv against CLE: 41
allacic
kyrie.csv against CLE: 28
jonesjr.csv against CLE: 7 M (1 1)
washington.csv against CLE: 14
gafford.csv against CLE: 10
hardawayjr.csv against CLE:
Total: 109

Cavaliers
garland.csv against DAL: 11
mitchell.csv against DAL: 31

mobley.csv against DAL: 13
allen.csv against DAL: 21
levert.csv against DAL: 17
Total: 108

Summary

- This model could be incorpora dintoanv sportaclona as the player's performance mettios can be measured and the opposing teams stats as well
- The more viable data there is, the more accu e the results

References

https://www.basketball-reference.com/
https://www.researchgate.net/publication/312236952 Predicting the Outcome of
NBA Playoffs Based on the Maximum Entropy Principle
https://library.ndsu.edu/ir/bitstream/handle/10365/28084/Predicting\ 0utcomes \%20of\%20NBA\%20Basketball\%20Games.pdf?sequence=1\&isAllowed=y
https://builtin.com/data-science/random-forest-algorithm

Artefinals \#NBAFinals

 NBAT
Cornetnals \#NBAFinals

 AFinak NBA

