
ENGLISH-LANGUAGE ACCENT CLASSIFICATION

McCormack Chew, Sydney Haupt, Ahmet Yusuf Salim

University of Rochester
ECE 408 - The Art of Machine Learning

ABSTRACT

Accent detection plays a critical role in accurately captioning
audio and enhancing automatic speech recognition systems.
In this paper, the authors apply 5 different machine-learning
algorithms to two commonly used speech accent datasets
- the University of California Irvine (UCI) ”Speaker Ac-
cent Recognition” corpus and the George Mason University
(GMU) ”Speech Accent Archive”. MFCC features are pro-
vided in the UCI dataset and extracted from the GMU dataset.
Furthermore, various preprocessing methods are applied to
the GMU dataset in order to improve classification accuracy.
Results among trials are compared with one another, as well
as with results of related work utilizing the same dataset.
The authors acheived highest accuracy with the UCI dataset,
wherein a multilayer perceptron classifier performed the best.
The GMU dataset acheived lower accuracy but has greater po-
tential for further work. The highest performing trial with the
GMU dataset had unaccented samples removed and classes
equalized, with a convolutional neural network classifier.

Index Terms— Accent Detection, Machine Learning,
Neural Networks, MFCC, k-NN, SVM, MLP, CNN, LSTM

1. INTRODUCTION

Accents develop due to historical, social, geographic, and lin-
guistic factors. Consequently, the variation in accents among
native and non-native English speakers are incredibly diverse.
As defined by [1], “accent classification refers to the problem
of inferring the native language of a speaker from his or her
foreign accented speech.” There are many practical reasons
to utilize accent classification, including audio captioning and
speech recognition systems.

Social media platforms such as YouTube and Instagram
offer auto-captioning for videos. However, when a speaker’s
accents differs from American-English or British-English, the
auto-captioning system can experience poor accuracy. If the
system were able to identify the speaker’s accent it could
adapt, changing its assumptions about what each word should
sound like and performing better as a result. The same idea
applies to automatic speech recognition systems like Siri or
Alexa, as the success of such systems is entirely dependent
on their ability to understand a speaker [2].

In our project we compare the performance of five dif-
ferent machine learning models at classifying six different
English speech accents. Notably, two sets of accents are con-
sidered native-English speakers (United States and United
Kingdom), and four are considered non-native (Spanish,
French, German, and Italian). The classification methods im-
plemented include two elementary machine learning models
(k-Nearest Neighbors and Support Vector Machine) and three
modern machine learning models (Multilayer Perceptron,
Convolutional Neural Network, and LSTM Recurrent Neural
Network). We extract Mel-Frequency Cepstral Coefficients
to use as features for classification. This work expands on
the existing literature by implementing novel classification
methods on previously explored datasets. Our objective is to
find the best model to identify and classify accented English
speech.

The organization of this paper is as follows: Section 2
explores related work in the literature. Section 3 discusses the
features extraction process and datasets. Section 4 explains
each classification method. Section 5 presents the results, and
Section 6 draws conclusions from our findings. Further data
and figures are available in the index.

2. RELATED WORK

A variety of spectral and temporal features can be extracted
from audio data, but Mel-frequency cepstral coefficients
(MFCCs) are considered one of the most important fea-
tures for audio classification. This is indicated by the use of
MFCCs in [3], [2], [4], [5]. [6] compares the performance of
a variety of audio features including MFCCs, Spectrogram,
Chromagram, and more, finding that MFCCs surpass other
types of spectral features in terms of accuracy.

There are many different approaches to the task of accent
classification in the related literature. Some approach the task
as a binary classification problem, only looking to differenti-
ate between American and non-American speakers as in [4].
Papers typically implement a small number of models, either
focusing on neural networks (as is the case for [5], [1], [3]), or
on elementary machine learning methods (such as [7]). While
some choose to compare elementary machine learning meth-
ods with modern methods (such as [2]), it is relatively uncom-
mon in the literature.

1

Fig. 1: A plot showing the Mel scale

Accuracy varies widely in the related literature, from
around 50 % ([1], [5]) to nearly 90 % ([4]). Variation can
be attributed to differences in machine learning models, fea-
tures, and dataset. Common datasets were the UCI dataset
[8] and the GM dataset [9]. The Wildcat corpus [10] and
INTERSPEECH 16 datasets [11] were also used.

3. FEATURE EXTRACTION AND DATASET

3.1. Feature Extraction

Audio data contains a vast amount of information and is often
too complex to deal with without some type of processing. It
is reported that Mel-frequency ceptral coefficients (MFCCs)
allow more efficient use of memory compared with classic
spectrogram features thanks to modest feature array sizes
[12]. Further, MFCCs are compatible with many classifica-
tion methods ranging from simpler techniques like k-Nearest
Neighbor to more novel neural network implementations.
Due to the above-mentioned advantages, we chose to employ
MFCC features.

Unlike conventional cepstral coefficients, the Mel fre-
quency scale is designed to better reflects human ear per-
ception, particularly in detecting pitch differences between
sounds. The Mel scale emphasizes low-frequency compo-
nents by applying a logarithmic transformation to the fre-
quency scale. The Mel scale is given with the following Eq.
(1) in [13].

fmel = 2595 log10

(
1 +

f

700

)
(1)

Fig. 1 shows the frequency to Mel scale conversion be-
tween 100 Hz to 10000 Hz

The first step in extracting MFCCs is to frame the audio
signal at specific intervals. Subsequently, the framed data
is processed with a windowing function, such as rectangu-
lar, Hamming, or Hann and a certain hop size is applied for

Fig. 2: A Mel frequency cepstrogram computed over a 1-
second time frame

overlap. The next step involves transforming the audio data
into the frequency domain using a Discrete Fourier Transform
(DFT).

In practice, the frequency domain representation of the
data is typically calculated using the Fast Fourier Transform
(FFT) due to its superior computational efficiency. Next,
the power spectrum is passed to the Mel Filter Bank rather
than directly computing Mel scale values. This approach
captures more information by averaging power across various
frequency regions instead of taking discrete values.

The boundaries of the filter bank are evenly spaced in the
Mel scale; therefore, the power spectrum is converted to the
Mel spectrum after filtering [13]. In the subsequent phase,
energy in each filtered region is calculated by Eq. (2) given in
[13].

E(i) =

N−1∑
k=1

|X(k)|2ψi(k) (2)

Following this, the log energies E(i) are passed through
the Discrete Cosine Transform (DCT), analogous to the in-
verse Fourier transform used in cepstrum algorithms. This
operation ensures that the energies are not correlated, accord-
ing to [13]. In the final step, the coefficientsCm are calculated
using the following Equation (3) [13].

Cm =

√
2

M

Q−1∑
l=0

log[E(l + 1)] cos

(
m

(
2l + 1

2

)
π

Q

)
(3)

The coefficient Cm is the m-th cepstral coefficient. Typi-
cally, the first 12 or 13 coefficients are used, although up to 40
of them may be employed. The cosine term in the equation
represents the DCT transform mentioned earlier. We utilized
LibROSA [14], a Python package for audio processing, to ex-
tract the MFCCs of samples from George Mason University’s
”Speech Accent Archive.” Fig. 2 shows the progression of
MFCCs for a one-second frame sampled from a recording in
the GMU corpora.

Furthermore, Fig. 3 depicts the process flow diagram.
Initially, the silent parts of the audio are trimmed, as they
contain no information. Next, the trimmed audio file is seg-
mented into frames ranging from 1 second to 10 seconds of

2

Fig. 3: MFCC feature extraction process

the recording. Subsequently, the MFCCs are extracted using
LibROSA. For this extraction, a boxcar window with a 512-
point FFT and a 16-point hop size is employed. The average
of the MFCCs is then computed for each recording. Finally,
the resulting coefficients are recorded into a comma-separated
values (CSV) file with their country labels.

3.2. Datasets

Feature extraction and by extension training method selec-
tion are driven by dataset selection. We initially chose to
work with the UC Irvine (UCI) “Speaker Accent Recogni-
tion” dataset [8] but after encountering limitations, chose to
work with a subset of the George Mason University (GMU)
“Speech Accent Archive” as well. We implemented a variety
of preprocessing methods on the GMU dataset, leading to the
creation of six GMU dataset variations.

In total we applied seven datasets to our models:

1. The UCI dataset

2. Six countries from the GMU Dataset

3. A reduced version of (2) with neutral accented samples
removed

4. A version of (3) with MFCCs standardized

5. A version of (3) with an additional 12 features that are
the standard deviation of each MFCC

6. A version of (3) with minority classes upsampled

7. A version of (3) with binary classes representing Amer-
ican versus non-American samples

An LSTM classifier requires sequential data, so a se-
quential version of each dataset was created when possible.
Datasets (1), (5), and (6) were not tested with the LSTM.

3.2.1. UC Irvine Dataset

UC Irvine’s Machine Learning Repository hosts a ”Speaker
Accent Recognition” database which contains the first 12
MFCCs extracted from 329 different .wav files. Each au-
dio segment, spanning approximately one second, contains
a single English word spoken by somebody from one of six
countries: the United States, the United Kingdom, Spain,
Germany, France, and Italy. This dataset is among the most

Fig. 4: UCI Dataset Feature Visualization

widely used in existing literature, making it a good choice for
the comparison of results.

Initial results with this dataset were promising. However,
when we sought to improve accuracy, we were faced with
some major limitations of the dataset. Not all of the origi-
nal audio files are available for download, meaning it would
be impossible to extract any features beyond the 12 MFCCs.
Furthermore, the specifics of the feature extraction methodol-
ogy employed are not provided, making it difficult to extract
features from unseen audio in a way that is fully compatible
with the models trained on the UCI set.

A two-dimensional visualization of the UCI dataset, seen
in Fig. 4, shows strong clustering among all languages, with
some outliers clustered together from the US class. Though
this visualization shows similarity among all classes, there are
noticeable vertical patterns in each class as seen in the TSNE.

3.2.2. George Mason University Dataset

George Mason University’s ”Speech Accent Archive” con-
sists of 2140 English speech samples spanning 214 different
native languages. Each speech sample is a recording of the
same paragraph, which is designed to contain most sounds in
the English language [9]. For the purposes of our project,
we selected six countries of origin to work with from the
dataset: United States, United Kingdom, Spain, Germany,
France, and Italy. These are the same countries included in
the UCI dataset, allowing for direct comparison between the
two datasets.

Our primary motivation for selecting the ”Speech Accent
Archive” dataset is that it provides the freedom to extract our
own features directly from the audio samples. This freedom
had the unintended consequence of creating the greatest chal-
lenge of the project - obtaining high quality results with the
extracted MFCCs.

Our initial version of the GMU dataset consisted of the

3

Fig. 5: GMU Complete Dataset Feature Visualization

six countries of interest, with 12 MFCC features and a total
of 222 samples. Upon experiencing poor performance with
the dataset, we listened to some of the audio samples. It
soon became clear that across all countries of origin, many of
the samples had accents practically indistinguishable from the
native-English accents. We removed the least accented sam-
ples to create a new dataset, now with only 141 samples across
the six languages. In order to further improve performance,
we created variations on this dataset with different prepro-
cessing. This meant adding an additional normalization step
to the MFCCs, creating 12 additional MFCC standard devia-
tion features, and upsampling underrepresented classes. Each
of these preprocessing methods was implemented as a sepa-
rate dataset.

Additionally, a binary version of the GMU dataset was
created with American versus non-American accents as
classes.

The two-dimensional visualization of our six-country sub-
set of GMU (seen in Fig. 5 and Fig. 6) is scattered in compar-
ison with UCI, though vague vertical and diagonal patterns
can still be found in the TSNE. The GMU datasets with and
without unaccented samples appear similar to one another.

4. CLASSIFICATION METHODS

We implemented five classification methods: k-Nearest
Neighbor, Support Vector Machine, Multi-Layer Perceptron,
Convolutional Neural Network, and an LSTM Recurrent
Neural Network.

4.1. k-Nearest Neighbor

[15] uses the k-Nearest Neighbors (kNN) classifier on the
UCI dataset and states that this method is common in speech
recognition research. kNN does not have a learning phase,
and its speed decreases as the dataset grows. Since both the

Fig. 6: GMU Reduced Dataset Feature Visualization

UCI and GMU datasets have only a limited number of sam-
ples and features, kNN excels in terms of speed. It is im-
portant to normalize the features to have zero mean and unit
variance to prevent numerically large features from dominat-
ing.

The kNN algorithm begins by splitting the dataset into
training and test sets. Each labeled sample in the dataset is
described by a set of features, in this case, MFCCs. The dis-
tance between two samples is calculated based on all features.
When an unlabeled instance needs to be classified, the dis-
tances between this instance and all labeled samples are con-
sidered, and the labels of the N nearest neighbors are used to
vote on the predicted label. The hyperparameters in this sce-
nario include the number of neighbors N , the distance metric
(e.g., Manhattan, Euclidean, or a higher-order distance), and
whether the distance weighting is uniform or weighted. In
this study, the scikit-learn library is used. The best hyperpa-
rameters for the UCI dataset were found to be 6 neighbors
with weighted Euclidean distance.

4.2. Support Vector Machines

The support vector machine (SVM) classifier was chosen be-
cause of its success in [7]. It is important to note that [7] im-
plemented SVM for binary classification, only attempting to
differentiate between American and non-American accents.

SVM is a supervised machine learning algorithm that
classifies data by finding the optimal line or hyperplane sep-
arating classes with the widest margin possible. The margin
between classes is defined by support vectors, which are the
samples of each class nearest to the hyperplane [16].

For complex data where direct linear separation is not pos-
sible, the “kernel trick” can be used to project data into a
higher dimensional space thus allowing for linear separation.
Common kernel functions include linear kernels, polynomial

4

kernels, radial basis function (RBF) kernels, and sigmoid ker-
nels [17].

We used sklearn’s Support Vector Classifier. Within the
sklearn implementation, multiclass classification is handled
in a one-vs-one scheme [18]. Tuned hyperparameters were C,
gamma, and kernel. C is a regularization parameter determin-
ing allowable margin violations, and gamma is the kernel co-
efficient that determines how much individual samples impact
the final decision boundary [18]. It was found that a higher
C value (100 or 1000), lower gamma value (0.01 or 0.001),
and RBF kernel perform the best though these results varied
across datasets.

4.3. Multi-Layer Perceptron

A Multi-layer Perceptron (MLP) is a network of neurons ar-
ranged in fully connected layers. Features in the input layer
are transmitted to neurons in one or more hidden layers. In
a hidden layer, the inputs are weighted, summed, and pro-
cessed by an activation function to generate an output. During
training, these activation functions and weights are randomly
initialized and optimized iteratively to find the most effective
values. At the final hidden layer, outputs from previous lay-
ers are used to generate a prediction. MLPs are intended to
mimic the functionality of the human brain and are effective at
learning complex relationships in data [19]. MLPs are among
the simplest and most adaptable machine learning models and
precedent has been set for using this type of model for accent
classification tasks [2].

Our implementation was done using the scikit-learn MLP
library. A number of different network sizes were tested,
ranging from one to three hidden layers with between five and
three hundred neurons. The other tested hyperparameter was
the learning rate of the model. Across multiple tests on dif-
ferent subsets of data, no network size consistently performed
the best, but our highest accuracy on any dataset was achieved
with two hidden layers which each had twenty neurons.

4.4. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neu-
ral network (RNN). An RNN differs from other neural net-
works in that it uses sequential data. Basic RNN models
struggle with the task of understanding long-term dependen-
cies because of vanishing and exploding gradients [20]. The
purpose of the LSTM is to learn sequential data with long-
term dependencies through the use of a special memory unit
[21]. The trade-off is that the LSTM is more complex and
therefore expensive to train than an RNN [21].

Because LSTM is the only classification method imple-
mented that requires sequential data, it was necessary to
incorporate sequential MFCC extraction into the code. This
was accomplished with the torchaudio MFCC transformer
[22], and a custom pytorch dataset to hold many frames of

MFCCs for each audio sample. The LSTM was implemented
with keras layers [23]. Hyperparameters for improving per-
formance of the LSTM model are number of LSTM layers
(one versus two), number of hidden units, and regularization
parameters. It was found that one layer with fewer hidden
units (32 or 64 versus 128) slightly improved test accuracy
but drastically reduced training accuracy. Regularization
parameters had little impact on performance.

4.5. Convolutional Neural Network

Convolutional neural networks (CNNs) share many similari-
ties with multi-layer perceptrons, but have some distinct com-
ponents which set them apart. Notably, a CNN has convolu-
tional layers as well as pooling layers. In convolutional layers,
a filter or kernel is applied to the input data in order to create
a representative feature map. Pooling layers then reduce the
dimensionality of the data in order to pick up on broader pat-
terns [24]. Finally, data is sent to one or more dense, fully
connected layers, reminiscent of a standard MLP. These lay-
ers are then able to generate a class prediction.

The CNN structure makes the model very popular for im-
age processing, due to its ability to learn two-dimensional re-
lationships between pixels. [2] use a CNN on the spectrogram
data of audio in order to perform accent classification. While
this was the motivation for us to look into the use of CNNs, we
applied the concept in a somewhat unconventional and novel
way. Instead of using a two-dimensional spectrogram as the
input, we input our one-dimensional MFCC values, hoping
that the model’s structure could help it learn valuable patterns
in the relationships of adjacent MFCC values.

We utilized TensorFlow’s Keras library to create our CNN
model. The hyperparamers which we tuned to optimize our
model include number of filters, number of dense neurons,
kernel size, and pool size. While the optimal number of fil-
ters and the size of the dense layers varied across different
datasets, a filter size of 4 and a pool size of 3 frequently
achieved favorable accuracy. This suggests that the CNN
model was observing feature relationships between subsets
of four MFCC values at once and subsequently learning re-
lationships among subsets in the feature space in groups of
three.

5. RESULTS

We conducted a total of 33 trials, where each of the seven
datasets were tested with each of the five classification mod-
els. Some datasets were not applicable to LSTM, reducing the
total number of trials. Our LSTM model was more limited in
application due to the need for sequential data.

In each trial, a random subset of the data was separated to
create a test set that would not be seen in the training process.
K-fold validation was used for hyperparameter tuning with
the training dataset.

5

Table 1: UCI Dataset Results

kNN SVM MLP CNN
Training Set Accuracy 100% 95.51% 100% 100%
Training Set Precision 100% 88.19% 100% 100%
Test Set Accuracy 80.17% 97.34% 88.25% 87.24%
Test Set Precision 80.30% 87.88% 90.91% 87.88%

Table 2: Upsampled GMU Results

kNN SVM MLP CNN
Training Set Accuracy 100% 93.52% 100% 100%
Training Set Precision 100% 93.67% 100% 100%
Test Set Accuracy 45.65% 52.08% 52.08% 53.24%
Test Set Precision 47.50% 52.50% 52.50% 55.00%

In order to evaluate the performance of our models, we
calculated accuracy, precision, recall, F1, and plotted the con-
fusion matrix for the train set and test set of each trial.

Interestingly, precision, recall, and F1 were equal to one
another in every trial. As such, we only report one value
accounting for all three metrics. After additional research
we found this to be due to “micro” averaging being imple-
mented in the sklearn precision score, recall score, and f1
score [25]. The sklearn.metrics.precision score documenta-
tion explains that micro averaging “calculate[s] metrics glob-
ally” while macro averaging “calculate[s] metrics for each la-
bel” [25].

For the purposes of our research, accuracy is the most im-
portant metric as it is crucial to understand the success rate
of our models in classifying samples. Our reasoning was ex-
plained well in [26], “accuracy is a helpful metric when you. . .
care about the overall model “correctness” and not the ability
to predict a specific class.”

Overall classification accuracy was found to be highest
with the UCI dataset, and out of all variations on the GMU
datset, the highest accuracy was achieved with unaccented
samples removed and minority classes upsampled. The re-
sults of these trials can be found in Table 1 and Table 2 re-
spectively. Our KNN and MLP models were among the most
accurate on average, and confusion matrices detailing the re-
lationship between their predictions and true accents labels
are included as figures 7-10. All other results can be found in
the index.

Our results demonstrate how the metric of accuracy can
fail in cases where a dataset is drastically imbalanced. Vi-
sualizing the outcome of a model with a confusion matrix is
essential for catching this issue, as seen in Fig 11. Across
all models with the GMU data sets, samples were frequently
classified as French or American due to the many instances of
those classes in the dataset. This issue inspired the upsampled
dataset, which resulted in more varied predictions and higher
accuracy.

Fig. 7: kNN Confusion Matrix (UCI Test Set)

6

Fig. 8: MLP Confusion Matrix (UCI Test Set)

Fig. 9: kNN Confusion Matrix (Upsampled GMU Test Set)

Fig. 10: MLP Confusion Matrix (Upsampled GMU Test Set)

Fig. 11: SVM Confusion Matrix (GMU Test Set)

7

The performance achieved using kNN, SVM, and MLP
closely aligns with the findings of [15] and [7], which utilize
the same methods and UCI dataset. As indicated in Table 3,
the performance metrics are closely matched. The slight dif-
ferences observed may be attributed to variations in algorithm
implementation or the division of train and test sets, which are
randomly partitioned.

The performance achieved with the GMU dataset aligns
with [5], where a test accuracy of 52.57% was obtained with
four language classes, MFCC features, and an LSTM clas-
sifier. [1] also achieves 50.2% accuracy, but with a different
dataset and features, and with a more complex neural network
classifier.

6. CONCLUSIONS

Over the course of this research project, we found dataset/pre-
processing and feature extraction to have a greater impact on
performance than model selection. For that reason, we will
briefly discuss the classification models, before focusing on
dataset, features, and overall findings.

Each model except for the LSTM performed best for a
different dataset. For example, kNN achieved highest accu-
racy among all models with the GMU unaccented-samples-
removed dataset at 44.6%, and SVM performed best among
the models with the larger GMU dataset at 27.99% accuracy.
Neural networks performed better on the datasets with ad-
ditional features (GMU dataset with standard deviation of
MFCCs), and with more preprocessing on the dataset (equal
classes, normalized MFCCs), with CNN achieving as high
as 53.24% accuracy. Though neural networks are more com-
putationally expensive, they also excel at identifying more
abstract patterns among samples, which could explain why
they perform well in such conditions.

Feature extraction was a primary challenge for this
project. When provided with features from the UCI dataset,
performance was as high as 88.25%. This indicates that
certain models like SVM and MLP are appropriate options
when classifying samples with high-quality MFCC features
and deserve further examination. However, because of the
limitations on the UCI dataset, these findings lack direct
applicability to other datasets. Based on the 2-D data visual-
izations, it makes sense that SVM and MLP models perform
better with the UCI dataset than the highly scattered GMU
dataset. The primary takeaway from the UCI dataset find-
ings were that high precision can be achieved with relatively
simple models given a high quality dataset.

The challenge of obtaining a high quality dataset with
strong features was apparent with the GMU datasets. This
may explain the nearly 30% difference in accuracy scores be-
tween UCI and GMU datasets. When tasked with generating
MFCCs, there can be a lot of variability in the resulting fea-
tures. The reason for this is that MFCCs can differ based
on sample length, window length, hop length, normalization

factor, and specific library used. We kept these variables con-
sistent across runs, but they may differ from those used in the
related literature. There is a strong possibility that window
type and length caused the difference in our extracted GMU
MFCCs compared with the UCI MFCCs. For example, the
coefficients of the Hann window are generated through the
following equation:

where window length = N+1 [27]. Because the UCI
dataset was so successful, future research should seek to
replicate the UCI features by trialing many different window
types and lengths.

The GMU dataset’s audio samples suffer from a lack of
consistency in terms of accent strength. Many samples across
all countries of origin have such neutral accents that they are
practically indistinguishable from native English speakers.
These samples negatively impacted performance by diluting
the classes in which they appeared, giving the impression
that these classes had more in common with American or
British English than they really do. This issue was resolved
by removing the unaccented samples from the dataset, which
improved accuracy by as much as 5%.

Because a primary application of our research is to enable
auto-captioning and smart-electronics to understand heavy
accents, we believe that it is appropriate to ignore the neutral
accents among non-native English classes. Taking auto-
captioning as an example - captioning algorithms are already
trained to understand American English, so neutral accents
from other countries will have no trouble being understood if
they sound like American English. On the other hand, it is
necessary to identify heavy accents in order to apply a differ-
ent auto-captioning algorithm. Further work should seek out
a larger and more heavily accented dataset.

Trials with the GMU dataset also revealed how issues
can arise from inequality among classes. This was especially
highlighted in our binary classification test of US versus non-
US accents. Even though US was a majority class in the
multiclass trials, it was the minority in the binary trial. As
such, practically none of the predictions were for the US class
in the binary trials. For multiclass classifiation, accuracy in-
creased by as much as 12% by equalizing the classes. One
caveat is that we upsampled both test and train data together,
which could alter results compared with only upsampling
the train data, or upsampling both sets of data separately.
Because of how much class inequality impacted results, this
should be an area of focus for future research.

Due to the fact that the UCI dataset predicts classes with
high accuracy, it provides little information about the similar-
ities and differences between the six classes. In this area, the
GMU dataset is more revealing. Due to imbalanced classes,
predictions with the GMU dataset favor the dominant classes

8

Table 3: Comparison to performance in literature

K-NN SVM MLP
This Work 80.17% 88.19% 87.24%

Ayranci et al. [15] 82.80% X 82.78%
Muttaqi et al. [7] 86.44% 89% X

of French and United States, as seen in Fig. 11. When the
classes are balanced, German becomes the favored class with
the US as the second most favored, as seen in Fig. 9 and
Fig. 10. German is also the most accurately classified class in
this case. This is likely because out of the non-native English
speaking classes, German is the only non-Latin language, dif-
ferentiating it from Spanish, French, and Italian, as well as
from US and UK. Listening to some of the German audio
samples, many of them are only lightly accented, which could
explain why lightly accented samples in other classes may be
classified as German. The presence of these neutral-sounding
samples could also explain why they are misclassified as from
the United States. Listening to the French samples, many of
them are somewhat ambiguous in their accent and it makes
sense that they could be misinterpreted as a different accent.
Future research should explore the relationship between these
languages in order to conclusively determine whether such
characteristics are attributed to the dataset, or to the accents
themselves.

7. DIVISION OF WORK

McCormack Chew: binary dataset, MLP, CNN
Sydney Haupt: oversampling dataset, SVM, LSTM
Ahmet Yusuf Salim: MFCC extractor, all other datasets, kNN
All: Dataset sourcing, research paper

8. REFERENCES

[1] Yishan Jiao, Ming Tu, Visar Berisha, and Julie M.
Liss, “Accent identification by combining deep neu-
ral networks and recurrent neural networks trained on
long and short term features,” in Interspeech, 2016,
https://api.semanticscholar.org/CorpusID:40239068.

[2] L. Mak An Sheng and M. W. X. Edmund,
“Deep learning approach to accent classification,”
2017, https://cs229.stanford.edu/proj2017/final-
reports/5244230.pdf.

[3] Jordan J. Bird, Elizabeth Wanner, Anikó Ekárt, and
Diego R. Faria, “Accent classification in human speech
biometrics for native and non-native english speakers,”
in Proceedings of the 12th ACM International Confer-
ence on PErvasive Technologies Related to Assistive En-
vironments, New York, NY, USA, 2019, PETRA ’19, p.
554–560, Association for Computing Machinery.

[4] Kaplan, “Classifying accents from audio of human
speech,” 2020.

[5] Shih, “Speech accent classification,” pp. 1–5.

[6] Jembere Singh, Pillay, “Features of speech audio for
deep learning accent recognition,” 2019, vol. 2540, pp.
1–3.

[7] Mohammad Muttaqi, Ali Degirmenci, and Omer Karal,
“Us accent recognition using machine learning meth-
ods,” in 2022 Innovations in Intelligent Systems and
Applications Conference (ASYU), 2022, pp. 1–6.

[8] “Speaker accent recognition,” UC Irvine Machine
Learning Repository.

[9] Steven Weinberger, “Speech accent archive,” 2015,
George Mason University.

[10] Baker Choi Kim Bradlow Engen, Baese-Berk, “The
wildcat corpus of native- and foreign-accented english:
Communicative efficiency across conversational dyads
with varying language alignment profiles,” 2010, vol.
53(Pt 4), pp. 510–540, PubMed Central.

[11] D. Higgins A. Cahill M. Chodorow D. Blanchard,
J. Tetreault, “Toefl11: A corpus of non-native english,”
2010, pp. i–15, Wiley Online Library.

[12] Vaibhav Arora, Pulkit Sood, and Kumar Utkarsh Ke-
shari, “A stacked sparse autoencoder based architecture
for punjabi and english spoken language classification
using mfcc features,” in 2016 3rd International Confer-
ence on Computing for Sustainable Global Development
(INDIACom), 2016, pp. 269–272.

[13] Md. Afzal Hossan, Sheeraz Memon, and Mark A Gre-
gory, “A novel approach for mfcc feature extraction,” in
2010 4th International Conference on Signal Processing
and Communication Systems, 2010, pp. 1–5.

[14] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto,
“librosa: Audio and music signal analysis in python,” in
Proceedings of the 14th python in science conference,
2015, vol. 8.

[15] Ahmet Aytuğ Ayrancı, Sergen Atay, and Tülay Yıldırım,
“Speaker accent recognition using mfcc feature extrac-
tion and machine learning algorithms,” 2021, vol. 33, p.
17–27, Marmara University.

9

[16] Neil Zhang, “Support vector machine,” in
ECE208/ECE408 - The Art of Machine Learning.

[17] IBM, “What are support vector machines (svms)?,”
2023.

[18] sklearn, “sklearn.svm.svc,” .

[19] D. Femi and S. Thylashri, “Human voice emotion recog-
nition using multilayer perceptron,” in 2022 Interna-
tional Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES),
2022, pp. 1–4.

[20] Zhiyao Duan, “Recurrent neural networks,” in
ECE208/ECE408 - The Art of Machine Learning.

[21] GeeksForGeeks, “Deep learning — introduction to long
short term memory,” .

[22] PyTorch, “Mfcc,” .

[23] Keras, “Lstm layer,” .

[24] Saad Albawi, Tareq Abed Mohammed, and Saad Al-
Zawi, “Understanding of a convolutional neural net-
work,” in 2017 International Conference on Engineer-
ing and Technology (ICET), 2017, pp. 1–6.

[25] “sklearn.metrics.precision score,” scikit learn.

[26] “Accuracy vs. precision vs. recall in machine learning:
what’s the difference?,” Evidently AI.

[27] “hann,” 2024, MathWorks.

9. INDEX

See all numeric data and selected confusion matrices in the
following pages. Due to the high volume of confusion matri-
ces obtained, we have only included the most notable ones.
All confusion matrices are for the test dataset. ”Full GMU
Test Set” refers to the 6-country set with unaccented samples
included. ”Reduced GMU Test Set” refers to the 6-country
set with unaccented samples removed.

10

Table 4: UCI Dataset Results

kNN SVM MLP CNN
Training Set Accuracy 100% 95.51% 100% 100%
Training Set Precision 100% 88.19% 100% 100%
Test Set Accuracy 80.17% 97.34% 88.25% 87.24%
Test Set Precision 80.30% 87.88% 90.91% 87.88%

Table 5: Complete GMU Dataset Results

kNN SVM MLP CNN LSTM
Training Set Accuracy 100% 67.57% 69.17% 97.66% 25.02%
Training Set Precision 100% 68.93% 70.06% 97.74% 30.08%
Test Set Accuracy 24.22% 27.99% 22.70% 18.38% 18.75%
Test Set Precision 24.44% 31.11% 24.44% 22.22% 33.33%

Table 6: Reduced GMU Dataset Results

kNN SVM MLP CNN LSTM
Training Set Accuracy 100% 45.37% 58% 100% 35%
Training Set Precision 100% 50.86% 58% 100% 39%
Test Set Accuracy 44.64% 32.54% 27.40% 21.72% 18.06%
Test Set Precision 48.28% 34.48% 24.44% 24.44% 20.69%

Table 7: Normalized Reduced GMU Dataset Results

kNN SVM MLP CNN LSTM
Training Set Accuracy 100% 30.62% 100% 99.11% 29.26%
Training Set Precision 100% 39.29% 100% 98.21% 29.76%
Test Set Accuracy 22.64% 19.72% 24.72% 31.53% 22.64%
Test Set Precision 27.59% 24.14% 24.14% 34.48% 24.14%

Table 8: Upsampled GMU Results

kNN SVM MLP CNN
Training Set Accuracy 100% 93.52% 100% 100%
Training Set Precision 100% 93.67% 100% 100%
Test Set Accuracy 45.65% 52.08% 52.08% 53.24%
Test Set Precision 47.50% 52.50% 52.50% 55.00%

Table 9: Reduced GMU Dataset Including MFCC Standard Deviation Results

kNN SVM MLP CNN
Training Set Accuracy 100% 100.00% 100% 100%
Training Set Precision 100% 100.00% 100% 100%
Test Set Accuracy 22.64% 25.28% 26.81% 23.33%
Test Set Precision 27.59% 24.14% 27.59% 27.58%

Table 10: Reduced GMU Binary USA vs Not USA Classifier Results

kNN SVM MLP CNN LSTM
Training Set Accuracy 100% 60.42% 98.91% 95.69% 50.00%
Training Set Precision 100% 83.62% 98.28% 95.69% 78.57%
Test Set Accuracy 50.00% 50.00% 56.16% 53.99% 50.00%
Test Set Precision 79.31% 79.31% 79.31% 75.86% 86.21%

11

8.1. UCI Test Set
kNN

SVM

MLP

CNN

8.2. Full GMU Test Set
kNN

SVM

MLP

CNN

LSTM

8.3. Reduced GMU Test Set

KNN

SVM

MLP

CNN

LSTM

8.4. Standardized Reduced

GMU Test Set
kNN

SVM

MLP

CNN

LSTM

8.5. Reduced GMU Test Set

With MFCC Standard

Deviation
kNN

SVM

MLP

CNN

8.6. Upsampled GMU Test

Set
kNN

SVM

MLP

CNN

8.7. Reduced GMU Binary

Classification (USA vs Non-

USA)
kNN

SVM

MLP

CNN

LSTM

	 Introduction
	 Related Work
	 Feature Extraction and Dataset
	 Feature Extraction
	 Datasets
	 UC Irvine Dataset
	 George Mason University Dataset

	 Classification Methods
	 k-Nearest Neighbor
	 Support Vector Machines
	 Multi-Layer Perceptron
	 Long Short-Term Memory
	 Convolutional Neural Network

	 Results
	 Conclusions
	 Division of Work
	 References
	 Index

