ECE408 Spring 2023

ENGLISH-LANGUAGE ACCENT CLASSIFICATION

McCormack Chew, Sydney Haupt, Yusuf Salim

OBJECTIVE:

Detect and categorize English-language accents based on country of origin.

Related Work

Dataset

 UCI "Speaker Accent Recognition" Dataset

• GMU "Speech Accent Archive"

• Wildcat Corpus of Native- and Foreign-Accented English

• INTERSPEECH 2016

Features

"The MFCC feature was the best performing feature"

from: Features of speech audio for deep learning accent recognition by Singh, Pillay, Jembere

Approach

• Binary vs Multiclass Classification

• Elementary methods (kNN, SVM, Decision Tree)

• Modern methods (DNN, CNN, RNN)

Feature Extraction: Mel-Frequency Cepstral Coefficients

DATASET:

Initial Dataset: UCI "Speaker Accent Recognition Dataset"

Format: .csv file Features: 12 MFCCs Samples: 329 Countries: Spain, France, Germany, Italy, United Kingdom, United States Issue: Inability to add additional data to set GMU "Speech Accent Archive" Subset

Format: .mp3 files Samples: 222/2140 Countries: Spain, France, Germany, Italy, United Kingdom, United States Issue: Not all samples actually accented

GMU "Speech Accent Archive" Subsubset

Removed Unaccented Samples (Samples: 141)

 \star

Equalized Classes

Normalized MFCCs

Found Mean and Standard Deviation of MFCCs

UCI DATASET

REDUCED GM DATASET

CLASSIFICATION METHODS

k-Nearest Neighbors (kNN) Support Vector Machine (SVM) Multilayer Perceptron (MLP) Convolutional Neural Network (CNN) Recurrent Neural Network (LSTM)

PERFORMANCE

CF

BIW

OPV

0

B

 (\bigcirc)

P

GMU dataset, Unaccented Samples Removed, Classes Equalized, MFCC features

	kNN	SVM	MLP	CNN
Train Set Accuracy	100%	93.52%	100%	100%
Test Set Accuracy	45.65%	52.08%	52.08%	53.24%

UCI Dataset

	kNN	SVM	MLP	CNN
Train Set Accuracy	100%	95.51%	100%	100%
Test Set Accuracy	80.17%	88.19%	88.25%	87.24%

*LSTM not applicable for these datasets

SVM **UCI** Dataset

GMU Dataset

C = 5, gamma = 0.1, kernel = rbf

GMU Dataset

UCI Dataset

0	0	0	0	1	- 30	
5	0	0	0	1	- 25	
0	7	0	0	0	- 20	
0	1	4	0	0	- 15	
0	0	0	8	1	- 10	
0	1	0	0	31	- 5	
FR	GE Predicte	г ed label	υĸ	υs		
r size = (300.). learning rate = 0.001						

Conclusions

 \mathbb{P}

- Importance of feature extraction
- Impact of class imbalance on performance
- Quality of dataset impacts performance
- Notable results with french and german samples

performance erformance **nd german samples**

THANK YOU! QUESTIONS?

U

0

G

REFERENCES

[1] "Mel filter bank generation," pyfilterbank Documentation. [Online]. Available: https:// siggigue.github.io/pyfilterbank/ melbank.html. [Accessed: 06-May-2024].

[2] P. Mahesha and D. S. Vinod, "LP-Hillbert transform based MFCC for effective discrimination of stuttering dysfluencies," 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2017, pp. 2561-2565, doi: 10.1109/WiSPNET. 2017.8300225.

