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ABSTRACT

This project aims to recognize hand-written math formulas
and transform them into their equivalent LATEXcode represen-
tation. The main challenge originates from analyzing the spa-
tial relation of symbols. Traditional Optical Character Recog-
nition (OCR) technology is applied to detect and extract text
from images, but characters, especially characters with sim-
ilar shapes, lead to uncertainty. Neural Networks have been
developed. The space to improve, still, is enormous [1]. A
transformer-based math language model (TMLM), developed
by Ung al et [2], successfully generated output sequences, but
the writing styles differ, which leads to relatively low accu-
racy. The transformer model developed in recent years signif-
icantly improved the OCR accuracy [1]. The attention mech-
anisms enable the model to understand the spatial relation-
ships, especially in hierarchy and priorities.

Based on the previous studies, an improved model was
developed. The model is divided into two stages. Firstly,
the YOLO v8 model takes images containing handwritten for-
mulas as input and outputs bounding boxes corresponding to
each token. After training, its precision is over 99% on the
test dataset. Secondly, the YOLO outputs are fed into a trans-
former model that predicts LaTeX sequence. Our code is pub-
licly available at https://github.com/ZiruiLi-133/HE2L-Net.
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1. INTRODUCTION

The hand-written recognition technology has witnessed an
unprecedented boom in the recent decade. Though it is still
a challenging area of study, the total accuracy has been im-
proved significantly thanks to the efforts in machine learn-
ing models and algorithms. State-of-the-art models, such as
the ones based on Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Long Short-Term
Memory networks (LSTMs), have demonstrated high perfor-
mance in popular competitions and datasets including the In-
ternational Conference on Document Analysis and Recogni-
tion (ICDAR) [3], IAM Handwriting database [4], MNIST
database. These models have over 90% accuracy and over
93% precision in recognition of single-line texts in various
scripts and languages.

The main challenge comes from the inherently complex
spatial relationship between the symbols that beyond the sim-
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ple one-dimensional sequence of characters. Elements such
as superscripts, subscripts, integrals, and matrices require not
only the recognition of individual symbols but also an under-
standing of their spatial interrelations. These elements are of-
ten vertically aligned or grouped in non-standard layouts that
traditional text recognition models handle poorly.

For instance, the performance of these models tends to
degrade significantly when faced with tasks like recognizing
whether a numeral is part of a fraction (either as a numera-
tor or denominator) or identifying the scope of a square root
symbol that stretches over several terms. The spatial arrange-
ments essential to mathematics—where positioning defines
semantic meaning—pose a substantial challenge. This is be-
cause standard handwriting recognition systems are primarily
trained and tuned for linear text flows, typical of most written



languages.
Recognizing the limitations of existing handwriting recog-

nition algorithms and the need for a tool to convert HME to
LaTeX code, we propose a network with two stages: the
handwriting symbol recognition stage and the LaTeX code
composing stage, that converts an image input with HME
onto a sequence of LaTex code. To summarize, our contribu-
tion includes:

1. Trained YOLOv8 on a dataset that includes HME under
the topic of limit.

2. Utilizes token embedding and positional encoding to
generate valid input for transformer models.

3. Construct a transformer-based math expression lan-
guage model

4. Trained our model on the bounding box and token IDs.

A visualization of our network outline is shown in Fig 1.

2. RELATED WORK

Converting handwritten math expressions to LaTeX is a chal-
lenging problem that researchers have been dealing with. This
section aims to provide a comprehensive overview of the re-
lated areas and main contributions in this field. Topics such as
transformer-based language models, optical character recog-
nition (OCR) techniques tailored for mathematical notation,
the application of neural networks in recognizing mathemat-
ical expressions, and attention mechanisms in the domain of
mathematical recognition will be included.

2.1. Optical Character Recognition for Mathematical No-
tation

Optical Character Recognition (OCR) has conventionally fo-
cused on detecting text in images, but recognizing mathemat-
ical notation is more complicated due to diverse symbols and
logical structures within expression. Sun et al. [1] devel-
oped a transformer-based OCR system to identify text and
math symbols, creating a dataset with labeled bounding boxes
from arXiv papers. Orj et al. [5] improved OCR accuracy
for converting images to LaTeX using active learning. An-
other model in [6] combines visual feature extraction with
language modeling via a transformer-based OCR system, re-
fining its recognition of handwritten and printed text through
pre-training on large datasets.

2.2. Transformer-based Math Language Model

Handwritten mathematical expressions can be ambiguous
due to the similarity between writing styles. To address
this issue, Ung et al.[2]propose a transformer-based math
language model (TMLM) to understand the relationships

between tokens in a sequence. The model, trained on ap-
proximately 70,000 LaTeX sequences from CROHME 2016,
achieved dramatic results with a perplexity of 4.42, outper-
forming traditional previous network-based models. This
model was combined with a stochastic context-free grammar-
based HME recognition system to improve recognition rates
on the CROHME 2016 and CROHME 2019 datasets.

2.3. Attention Mechanisms in Math Recognition

Attention mechanisms, embedded within transformer models,
have significantly enhanced the recognition of mathematical
notation. The location-guided transformer in [1] improves
OCR accuracy by focusing on relevant areas of an image.
It allows the model to better understand spatial relationships
which play an important role in mathematical expressions.
Attention mechanisms facilitate the hierarchical processing of
mathematical expressions and enable the model to prioritize
key elements and relationships.

3. METHODOLOGY

3.1. Handwriting Recognition

The handwriting recognition stage is the basis for the net-
work. As previously mentioned, the spatial relationship
between the characters in the image is crucial for our task.
Therefore, traditional models and OCR methods which out-
put a sequence of characters are not suitable for the task.
Instead, the task of object detection is more close to the goal.

State-of-the-art object detection models such as Efficient-
Det and YOLOv5 predicts the bounding box of an object from
predefined anchor boxes. Since these boxes are predefined
with fixed size, it complex the optimization of hyperparame-
ters. Moreover, if an object’s size or aspect ratio falls signifi-
cantly outside these predefined anchor boxes, it can be harder
for the model to accurately detect and bind the object. This
is particularly relevant for objects like fraction bars, which
can vary widely in length depending on the number of terms
they span. Therefore, we use YOLOv8 in our network to take
advantage of its anchor-free feature.

3.2. Transformer Architecture

3.2.1. Token Embedding

This step transfers the bounding boxes of every token in each
input image into vectors of continuous form so that they can
be fed to the encoding to be processed. The number of nodes
in the embedding layer was selected to be 512, so the token
IDs, which represent the input tokens, were transformed into
512-sized vectors. That is, each input token was mapped to
its unique vector through the embedding layer.

To make the model understand the spatial relationship of
each character in an image, the relative position of each to-



ken’s bounding box in each image was directly combined with
the embedding input. A linear layer was created so that the
4-sized bounding box coordinate could be mapped to the 512-
sized embedding layer. Through this projection from low to
high dimension, the spatial information was fed to the input
simultaneously with the related token information. During
forwarding, they are directly summed together and then go
into the positional encoding layer.

3.2.2. Positional Encoding

Combining the bounding box coordinates directly to the em-
bedding layer with input tokens makes the model understand
the characteristics of the tokens and their positional informa-
tion together. Positional encoding makes the model further
understand the order of a series of tokens. It is a crucial step
for the transformer because the transformer does not process
the order of input intrinsically.

Positional encoding adds another vector to the vector from
the input embedding layer. A tensor was generated with step
2 to represent the even embedding dimension positions, and
then it was put in a sine function. Another tensor, similarly,
was generated and put in a cosine function for odd. A scaling
factor was computed based on the 512 dimensions to make
the frequency go smoothly. The encoding, then, adds the sine
and cosine functions to the encoding vectors.

3.2.3. Encoder & Decoder

The encoder and decoder play a critical part in this trans-
former model. They take in vector sequences from the em-
bedding layers and generate Latex code sequences as output.

The encoder was constructed in multiple layers using nn
library, and they are stacked to compose the transformer en-
coder. The goal of each encoder layer is to apply self-attention
and multi-head attention. The multi-head attention is key
to making the model focus on different aspects of the input
vector at the same time. It enables the model to understand
the context because different parts of the mathematical tokens
have various influences on other parts including relative po-
sition and functions in the sequence. Self-attention enables
the model to focus on some of the symbols that have a huge
effect overall, such as “lim”, “frac”, and operators. Then, the
values in the networks were fed forward to the next part of the
model.

The decoder, similarly, was composed of multiple layers
and then stacked into the transformer decoder in nn library.
Masked multi-head attention was applied so that a given to-
ken depends on the previously generated token. Then, multi-
head attention was applied to combine the encoder output to
highlight each individual position in the decoder relative to
all positions of the input vector. Then, the values were fed
forward.

3.2.4. Masked multi-head self-attention.

The self-attention mechanism is vital for understanding both
spatial and sequential relationships within mathematical ex-
pressions. Even though the self-attention mechanisms are
not explicitly outlined in our code, they are effectively
implemented within the nn.TransformerEncoderLayer and
nn.TransformerDecoderLayer from PyTorch. These layers
efficiently compute the attention scores, which enables the
model to dynamically focus on the most relevant parts of
the input data. The computation involves converting input
embeddings—which combine token data, bounding box in-
formation, and positional encodings—into sets of queries,
keys, and values. These elements are then passed through
dot products and softmax operations, a method core to the
transformer architecture introduced in the groundbreaking
paper by Vaswani et al[7]. Additionally, the mechanism
incorporates masking within each attention layer, which pre-
vents each token from attending to subsequent tokens in the
sequence. This masking is necessary to ensure that the pre-
diction for each token can only depend on known outputs
of previous tokens. The resulting contextual understanding
from these combined features allows the model to effectively
decode complex relationships like hierarchical mathematical
structures and symbol connections.

4. EXPERIMENTS

4.1. Dataset

Our primary dataset is the Aida Calculus Math Handwrit-
ing Recognition Dataset [8], which consists of 100,000 im-
ages. Each image contains a photo of a handwritten calculus
math expression (specifically within the topic of limits) writ-
ten with a dark utensil on plain paper. Each image is accom-
panied by ground truth math expression in LaTeX as well as
bounding boxes, which satisfies our requirement for training
YOLOv8 object detection and transformer for composing La-
TeX code. We randomly separate the 100,000 images with a
ratio of 6:2:2 into training, validation, and test sets.

4.2. Dataset Preparation

To standardize the format of the dataset for this machine
vision-oriented project, COCO (Common Objects in Con-
text) format was applied. This format organized data into
these three sections: Images info, annotations, and categories.
Images info includes the list of images being processed, an-
notations links to these images and describes all bounding
boxes and their corresponding token IDs for each image, and
categories map all unique token IDs to their actual Latex
token names. The COCO format is than converted to YOLO
format for YOLOv8 training.



Fig. 2. YOLOv8 Training Losses & Evaluation Metrics

Fig. 3. Normalized Confusion Matrix of YOLOv8

4.3. YOLOv8 Handwriting Recognition Results

We trained YOLOv8 on the training dataset and validated it
on the validation dataset for 40 epochs. The key evaluation
metrics for the object detection task is Mean Average Pre-
cision (mAP), specifically mAP50 and mAP50-95. mAP50
refers to the mean average precision at an (Intersection over
Union) IoU threshold of 0.50. This means that a predicted
bounding box is considered correct if it has an IoU of 0.50
or more with the ground truth box. mAP50-95 averages the
mAP calculated at different IoU thresholds, from 0.50 to 0.95
(inclusive), typically at intervals of 0.05. This means calcu-
lating the mAP at IoU thresholds of 0.50, 0.55, 0.60, ..., up to
0.95.

Fig 2 shows the training losses and the evaluation metrics
on the validation set in each epoch. The curves show a nice
gradual decrease of training loss and a gradual increase of
mAP50 and mAP50-95 metrics.

Fig 3 shows the confusion matrix of the YOLOv8 on the
test dataset. Table 1 shows the YOLOv8’s detection met-
rics on the test dataset. According to the figure and table,
YOLOv8 correctly detects and classifies all of the symbols

Table 1. YOLOv8 Result on Test Dataset
mAP50 mAP50-95 Precision Recall

0.98 0.95 0.99 0.98

included in the dataset, even for ambiguous symbols such as
short fractions and minus signs.

4.4. LaTeX code composing

The evaluation metrics employed are Precision, Recall, and
F1 score. The F1 Score is used as it combines precision
and recall, the F1 score provides a measure to balance both
the precision and recall of the model, reflecting how well the
model is performing by considering both false predictions and
missing symbols. After training our model for 100 epochs,

Table 2. Transformer Result
Precision Recall F1

0.20 0.07 0.06

we got the results shown on the table 2. The result is not good
enough to produce the desired LaTeX code sequence. Poten-
tial reason may include

• The number of epochs is not enough

• The padded tokens are not ignored included when do-
ing prediction and when calculating loss

• Our transformer model need to be improved to better fit
this task

5. CONCLUSION AND FUTURE WORK

This paper presented how to transform handwritten math-
ematical expressions into their corresponding LaTeX code
equivalents using advanced machine-learning techniques.
The method employs YOLOv8 for handwriting recognition
and a custom-designed transformer model for generating
accurate LaTeX code. It effectively interprets the spatial re-
lationships among the detected symbols to generate LaTeX
code.

There are a few areas that still require improvement.
Firstly, the dataset exhibits bias, with some symbols appear-
ing frequently while others appear infrequently. Enriching the
dataset source by collecting from various open sources on the
internet could help address this issue. This bias may hinder
the model’s ability to grasp the spatial relationships between
symbols fully. Secondly, we should delve into studying and
modifying our transformer layers for better optimization.
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