FAULT DETECTION AND CLASSIFICATION IN THREE-PHASE ELECTRICAL
POWER TRANSMISSION LINES

Ziyang Yuan, Hai Xi, Yanbo Peng, and Wentao Jiang
Department of Electrical and Computer Engineering
University of Rochester, Rochester, NY, USA
{zyuanl2, hxi, ypeng25, wjiang20@u.rochester.edu}

Abstract—This paper aims to develop a machine learning
classification model to detect and classify faults on electrical
power transmission lines in a three-phase power system. The
proposed model will discriminate between faulty and healthy
electrical power systems and identify the faulty phase by ana-
lyzing each of the three phases involved in the process. Various
classification methods, with a focus on decision tree and random
forest, will be explored and compared for optimal performance.
These methods were chosen for their interpretability and ability
to handle complex, non-linear relationships in the data.

Index Terms—Fault detection, classification, electrical power
transmission, three-phase power system, machine learning

I. INTRODUCTION

This study advances the development of a machine learning
(ML) model aimed at enhancing the reliability and efficiency
of fault detection and classification in three-phase electrical
power transmission systems [1]-[3]. The objective is to create
a model that effectively distinguishes between normal and
faulty conditions, pinpointing the specific phase where a
fault occurs. Leveraging advanced ML techniques, including
decision trees and random forests, the proposed model will
analyze real-time data from each phase to deliver precise
fault classification, crucial for maintaining system integrity
and preventing large-scale disruptions [4]. These techniques
were chosen for their interpretability, ability to handle complex
relationships, and proven success in similar applications.

A. Background

Historically, fault detection in power systems relied heav-
ily on conventional signal processing and simplistic pattern
recognition techniques, which often led to high false alarm
rates and missed detections under complex fault conditions [4].
The introduction of Adaptive Neuro-Fuzzy Inference Systems
(ANFIS), a hybrid machine learning approach combining
neural networks and fuzzy logic, in 2012 marked a significant
shift towards more adaptive and intelligent systems capable
of learning from historical data to improve accuracy [4]. This
project utilizes a comprehensive dataset from Kaggle, created
through MATLAB simulations, to train and test our model.
The dataset encompasses a diverse range of fault scenarios,
providing a robust foundation for developing and validating
advanced machine learning models tailored for real-time fault
detection and classification in power systems.

B. Related Works

Fault detection and classification in electrical power systems
have seen significant advancements in recent years. Early
methods relied on conventional signal processing and pat-
tern recognition, which were often limited in their ability
to handle complex fault conditions [4]. The introduction of
artificial neural networks (ANNs) and support vector machines
(SVMs) marked a shift towards more adaptive and intelligent
approaches [1], [5]. More recently, the integration of wavelet
transforms and deep learning techniques has further improved
the accuracy and robustness of fault detection and classifica-
tion systems [6]. This project builds upon these advancements,
focusing on the application of decision trees and random
forests for their interpretability and ability to handle complex
relationships in the data.

II. OBJECTIVES

The main objectives of this project are to develop a machine
learning model that can effectively detect and classify faults
on electrical power transmission lines in a three-phase power
system, discriminating between faulty and healthy conditions
and identifying the specific faulty phase by analyzing data
from all three phases. Various classification methods, with a
focus on decision trees and random forests, will be explored
and compared to achieve optimal performance.

III. METHODOLOGY

The proposed methodology for this project includes data
preprocessing, feature selection, model development, and
model evaluation. Data preprocessing involves cleaning and
preparing the dataset, handling missing values, normalizing
the data, and splitting it into training and testing sets. Feature
selection identifies the most relevant features contributing
to fault detection and classification, reducing the dataset’s
dimensionality and improving the model’s performance. Fig. 1
shows the distribution of fault types in the dataset, while Fig.
2 and Fig. 3 present insights into the relationships between
features and fault types. Model development involves training
various machine learning models, including decision trees and
random forests, experimenting with different architectures and
hyperparameters to optimize performance. Model evaluation
assesses the trained models using appropriate metrics such
as accuracy, precision, recall, and Fl-score, comparing the
performance of different models to select the best one for
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Fig. 2. Boxplots for Each Feature by Fault Type

deployment. Fig. 4 presents histograms for three-phase fault
types.

IV. MODEL

For this project, we focused on developing and comparing
various machine learning models for fault detection and clas-
sification in three-phase electrical power transmission lines.
The models considered include Decision Trees with a focus on
Random Forests [5], [6]. Decision Trees and Random Forests
were initially trained and evaluated using the original dataset
features. The performance of these models was analyzed using
accuracy, precision, recall, and F1-score metrics. Additionally,
feature importance were examined to identify the most signif-
icant features contributing to fault classification. During the
initial evaluation, it was observed that the models faced chal-
lenges in distinguishing between “Three-Phase” and “Three-
Phase with Ground” faults. The confusion matrices revealed a
high rate of misclassifications between these two fault types,
indicating the need for more informative features (see Fig.
5). To address this issue, domain knowledge was leveraged to
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engineer new features that could better differentiate between
the fault types [1]-[3]. These new features were chosen based
on their ability to capture the unique characteristics of different
fault types:

o Zero Sequence Components: These components capture
imbalances typical of ground faults, aiding in the early
detection of system unbalance.

« Phase Angle Differences: This feature detects discrep-
ancies in the time-domain characteristics of voltage and
current waveforms, which are often altered by faults.

e Total Harmonic Distortion (THD): THD measures the
presence of higher frequency components relative to the
fundamental frequency, helping to recognize the noise
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Fig. 5. Fault Type Distribution

and non-linear behaviors symptomatic of complex faults.
« Voltage and Current Ratios: These ratios provide insights
into the system’s impedance and reactive power char-
acteristics, which vary distinctly among different fault
conditions.
The models were retrained and evaluated using the engineered
features, resulting in significant performance improvements.
The Random Forest model, in particular, achieved an accuracy
of 99.94% and high precision, recall, and Fl-scores for all
fault types (see Fig. 6). The confusion matrix for the Random
Forest model with engineered features demonstrated its ability
to accurately classify faults, with only one misclassification
between Three-Phase” and “Three-Phase with Ground” faults
out of the entire test set.

V. RESULTS AND DISCUSSION

The results obtained from the various machine learning
models developed for fault detection and classification in
three-phase electrical power transmission lines demonstrated
the effectiveness of the proposed approach. The initial models,
trained using the original dataset features, provided a baseline
performance. However, the confusion matrices and perfor-
mance metrics revealed challenges in distinguishing between
“Three-Phase” and “Three-Phase with Ground” faults, as
shown in Fig. 5. To address this issue, domain knowledge was
utilized to engineer new features that could better capture the
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characteristics of different fault types [1]-[3]. The inclusion of
Zero Sequence Components, Phase Angle Differences, Total
Harmonic Distortion, and Voltage and Current Ratios signif-
icantly improved the models’ ability to differentiate between
faults (see Fig. 6). The Random Forest model, trained with
the engineered features, achieved an impressive accuracy of
99.94% and high precision, recall, and F1-scores for all fault
types. The confusion matrix further validated the model’s
performance, with only one misclassification between “Three-
Phase” and “Three-Phase with Ground” faults in the entire
test set. This demonstrates the significant progress made in
addressing the initial challenges faced by the models. These
results highlight the importance of feature engineering and
domain knowledge in developing accurate fault detection
and classification models [5], [6]. The engineered features
provide a more comprehensive representation of the system’s
behavior during various fault conditions, enabling the models
to make more informed predictions. The proposed approach
demonstrates the potential for machine learning techniques to
enhance fault detection and classification in electrical power
transmission systems [1]-[3]. By accurately identifying and
classifying faults, the models can assist in timely fault diag-
nosis, enabling prompt corrective actions and minimizing the
impact of faults on the power system.

VI. CONCLUSION

In this project, we developed machine learning models
for fault detection and classification in three-phase electrical
power transmission lines. The proposed approach involved
data preprocessing, feature engineering, model development,
and evaluation. The initial models, trained using the original
dataset features, provided a baseline performance but faced
challenges in distinguishing between certain fault types. To
overcome this, domain knowledge was leveraged to engi-
neer new features that better captured the characteristics of



different faults [1]-[3]. The engineered features, including
Zero Sequence Components, Phase Angle Differences, Total
Harmonic Distortion, and Voltage and Current Ratios, signifi-
cantly improved the models’ performance. The Random Forest
model, in particular, achieved an accuracy of 99.94% and high
precision, recall, and Fl-scores for all fault types (see Fig.
6). The results demonstrate the effectiveness of the proposed
approach in accurately detecting and classifying faults in three-
phase electrical power transmission lines. The integration of
domain knowledge and feature engineering played a crucial
role in enhancing the models’ performance and overcoming
the limitations of the original dataset features [5], [6]. The
developed models have the potential to assist in timely fault
diagnosis and enable prompt corrective actions, minimizing
the impact of faults on the power system. Our model has seen
significant performance improvements, with detection rates
increasing from 65% to 100%, and an average performance
boost from 87% to 99.34%. This enhancement applies broadly
across various industries, particularly benefiting applications in
transmission lines, electrical motors, stoves, and HVAC sys-
tems, ensuring greater reliability and efficiency in these critical
areas. Future work could explore additional feature engineer-
ing techniques, investigate the applicability of the proposed
approach to real-world datasets, and integrate the developed
models into an online fault detection and classification system
for real-time monitoring of electrical power transmission lines.
This would further validate the effectiveness of the proposed
methodology and provide valuable insights for its practical
implementation in the field.
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