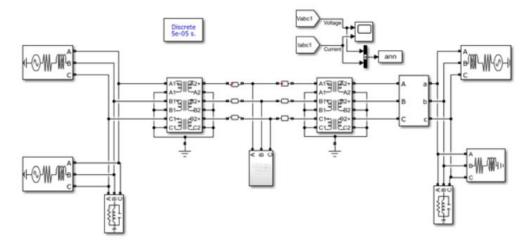
Fault Detection and Classification in 3-phase Electrical Power Transmission Line

Ziyang Yuan, Hai Xi, Yanbo Peng, Wentao Jiang University of Rochester May 7, 2024

Overview


- 1. Project Background
- 2. Model Selection & Evaluation
- 3. Tackling Low Accuracy in Complex Faults
- 4. Model Performance
- 5. Real World Applications

1. Background

Background

Purposes

- Electrical faults-stability and reliability.
- Quick detection and classification of these faults
- Input: Voltages and Currents; Output: Fault types
- Develop a real-time electrical fault detection & classification system, i.e. using the data of voltages and current to monitor the conditions of the transmission lines

Simulink simulation

Objective:

Develop a real-time electrical fault detection and classification system

	G	С	В	Α	la	lb	lc	Va	Vb	Vc
0	1	0	0	1	-151.29 <mark>1</mark> 812	-9.677452	85.800162	0.400750	-0.132935	-0.267815
1	1	0	0	1	-336.186183	-76.283262	18.328897	0.312732	-0.123633	-0.189099
2	1	0	0	1	-502.89 <mark>1</mark> 583	-174.648023	-80.924663	0.265728	-0.114301	-0.15 <mark>1</mark> 428
3	1	0	0	1	-593.94 <mark>1</mark> 905	-217.703359	-124.89 <mark>1</mark> 924	0.235511	-0.104940	-0.130570
4	1	0	0	1	-643.663617	-224.159427	-132.282815	0.209537	-0.095554	-0.113983

Dataset

- Current in Line A (la)
- Current in Line B (Ib)

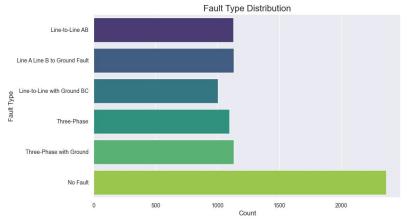
Input:

- Current in Line C (Ic)
- Voltage in Line A (Va)
- Voltage in Line B (Vb)
- Voltage in Line C (Vc)

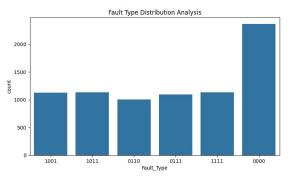
Outputs:

'0000': 'No Fault',

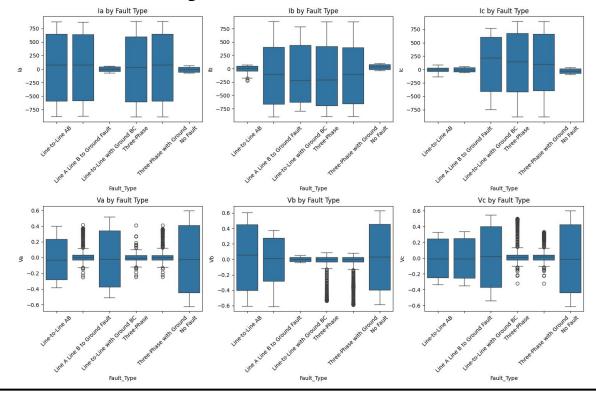
- '1000': 'Single Line to Ground A',
- '0100': 'Single Line to Ground B',
- '0010': 'Single Line to Ground C',
- '0011': 'Line-to-Line BC',
- '0101': 'Line-to-Line AC',
- '1001': 'Line-to-Line AB',
- '1010': 'Line-to-Line with Ground AB',
- '0101': 'Line-to-Line with Ground AC',
- '0110': 'Line-to-Line with Ground BC',
- '0111': 'Three-Phase',
- '1111': 'Three-Phase with Ground',
- '1011': 'Line A Line B to Ground Fault'


Models Selection & Evaluation

Model Selection


- A Classification Problem
 - Decision Tree Classifier
 - Random Forest Classifier




• K-Nearest Neighbor

Feature Analysis

Feature Engineering

• Standardization and Encoding

for Model Input

- Min-Max Scaler
- Label Encoder
- Composite Features
 - PolynomialFeatures (Next)

$$\begin{pmatrix} X_{Scaled} = \frac{X - X_{min}}{X_{max} - X_{min}} \end{pmatrix}, \text{ range } [0,1]$$
$$(B, R, G) \rightarrow (2, 0, 1)$$

Polynomial Feature Transformation

Examples:

- Interaction $(I_a V_a)$
- Higher Degree (I_a^3)

- Interaction Terms and Higher Degree Terms
- Modeling the interactions between different variables
- Pattern and Dimensionality
 - noriginal features with polynomial degree of d • $\binom{n+d}{d}$
- Limitations
 - Scalability and Overfitting (use d=2)

Hyperparameter Tuning

- Handling of Imbalanced Data
 - Synthetic Minority
 Over-sampling Technique
 (SMOTE)
- Number of Trees
- Features of Trees
 - "Gini" impurity
 - Min sample leaf = 1
 - Min sample split = 2

$$\mathrm{Gini} = 1 - \sum_{i=1}^n p_i^2$$

Performance

Performance Metrics for Random Forest: Accuracy: 88.30% Classification Report:

50	precision	recall	f1-score	support
Line A Line B to Ground Fault	1.00	1.00	1.00	227
Line-to-Line AB	1.00	1.00	1.00	226
Line-to-Line with Ground BC	1.00	1.00	1.00	201
No Fault	1.00	1.00	1.00	473
Three-Phase	0.58	0.61	0.59	219
Three-Phase with Ground	0.60	0.57	0.58	227
accuracy			0.88	1573
macro avg	0.86	0.86	0.86	1573
weighted avg	0.88	0.88	0.88	1573

Confusion Matrix:

 $\begin{bmatrix} \begin{bmatrix} 227 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 226 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 201 & 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 & 473 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 & 0 & 133 & 86 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 & 0 & 98 & 129 \end{bmatrix}$

 $\begin{array}{l} \text{Precision} = \frac{TP}{TP+FP} \\ \text{Recall} = \frac{TP}{TP+FN} \\ \text{F1 Score} = 2 \cdot \frac{Precision \times Recall}{Precision+Recall} \end{array}$

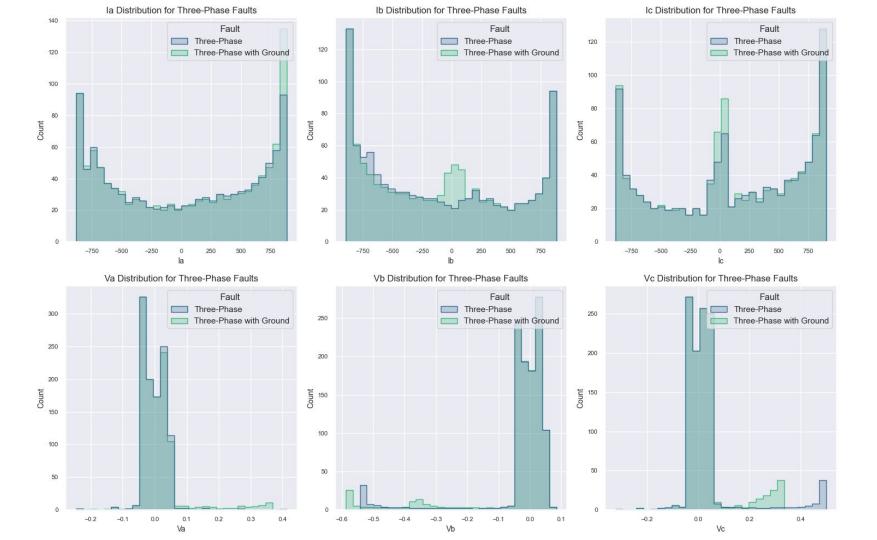
Support = Frequency of Actual Class

Tackling Low Accuracy in Complex Faults

Integrating Electrical Engineering Insights

Identifying Weak Points

- Handle imbalanced data
- 'Three-Phase'
- 'Three-Phase with Ground'
- Domain Knowledge
 - Adding new features


Classification Report:				
	precision	recall	f1-score	support
Line A Line B to Ground Fault	1.00	1.00	1.00	227
Line-to-Line AB	1.00	1.00	1.00	226
Line-to-Line with Ground BC	1.00	1.00	1.00	201
No Fault	1.00	1.00	1.00	473
Three-Phase	0.58	0.61	0.59	219
Three-Phase with Ground	0.60	0.57	0.58	227
accuracy			0.88	1573
macro avg	0.86	0.86	0.86	1573
weighted avg	0.88	0.88	0.88	1573

Confusion Matrix:

Accuracy: 88.30%

[227		3 6	3 (3 6	0 0]
0	226	0	0	0	0]
0	0	201	0	0	0]
0	0	0	473	0	0]
0	0	0	0	133	86]
0	0	0	0	98	129]]

Performance Metrics for Random Forest:

- 1. Zero Sequence Component for Current And Voltage:
 - Current: Average of phases A, B, and C.
 - Voltage: Average of phases A, B, and C.

Zero Sequence Components for Current and Voltage
poly_features_df['Ia'] + poly_features_df['Ib'] + poly_features_df['Ic']) / 3
poly_features_df['ZeroSeqVoltage'] = (poly_features_df['Va'] + poly_features_df['Vb'] + poly_features_df['Vc']) / 3

- 1. Zero Sequence Component for Current And Voltage:
 - Current: Average of phases A, B, and C.
 - Voltage: Average of phases A, B, and C.
- 2. Phase Angle Difference:
 - Approximated by the product of the currents and voltages of all three phases

Phase Angle Differences (approximated by product of current and voltage)
poly_features_df['PhaseAngleDiffI'] = poly_features_df['Ia'] * poly_features_df['Ib'] * poly_features_df['Ic']
poly_features_df['PhaseAngleDiffV'] = poly_features_df['Va'] * poly_features_df['Vb'] * poly_features_df['Vc']

- 1. Zero Sequence Component for Current And Voltage:
 - Current: Average of phases A, B, and C.
 - Voltage: Average of phases A, B, and C.
- 2. Phase Angle Difference:
 - Approximated by the product of the currents and voltages of all three phases
- 3. Total Harmonic Distortion:
 - Approximated for each phase to measure waveform distortion

Total Harmonic Distortion (THD) - Approximation
poly_features_df['THD_Ia'] = np.sqrt(poly_features_df['Ia^2'] - poly_features_df['Ia']**2) / poly_features_df['Ia']
poly_features_df['THD_Ib'] = np.sqrt(poly_features_df['Ib^2'] - poly_features_df['Ib']**2) / poly_features_df['Ib']
poly_features_df['THD_Ic'] = np.sqrt(poly_features_df['Ic^2'] - poly_features_df['Ic']**2) / poly_features_df['Ic']

Voltage and Current Ratios
poly_features_df['V_I_Ratio_A'] = poly_features_df['Va'] / poly_features_df['Ia']
poly_features_df['V_I_Ratio_B'] = poly_features_df['Vb'] / poly_features_df['Ib']
poly_features_df['V_I_Ratio_C'] = poly_features_df['Vc'] / poly_features_df['Ic']

- Approximated by the product of the currents and voltages of all three phases
- 3. Total Harmonic Distortion:
 - Approximated for each phase to measure waveform distortion
- 4. Voltage and Current Ratios:
 - Ratio of voltage to current for each phase, indicating impedance characteristics

Expanding Feature Set

Old Features

- Current and voltage measurements for each phase
 - (Ia, Ib, Ic, Va, Vb, Vc)
- Square and cross-product terms(From FE)
 - (la^2, la lb, Va Vb...)

New Features Added

Incorporated advanced features derived from domain expertise to capture more complex and subtle phenomena associated with faults

- Zero Sequence Components
- Phase Angle Differences
- Total Harmonic Distortion (THD)
- Voltage and Current Ratios

Model Performance

Performance Metrics for Random Forest: Accuracy: 99.94% Classification Report:

	precision	recall	f1-score	support
Line A Line B to Ground Fault	1.00	1.00	1.00	227
Line-to-Line AB	1.00	1.00	1.00	226
Line-to-Line with Ground BC	1.00	1.00	1.00	201
No Fault	1.00	1.00	1.00	473
Three-Phase	1.00	1.00	1.00	219
Three-Phase with Ground	1.00	1.00	1.00	227
accuracy			1.00	1573
macro avg	1.00	1.00	1.00	1573
weighted avg	1.00	1.00	1.00	1573

Precision = $\frac{TP}{TP+FP}$ Recall = $\frac{TP}{TP+FN}$ F1 Score = $2 \cdot \frac{Precision \times Recall}{Precision+Recall}$

Support = Frequency of Actual Class

Confusion Matrix:

[[227 0 0 0 0 0] [0 226 0 0 0 0] [0 0 201 0 0 0] [0 0 0 473 0 0] [0 0 0 0 219 0] [0 0 0 0 1 226]]

Performance and Real-World Applications

• Significant Performance Improvements

From 65% to 100%. Overall from 87% to 99.34%

• Industrial Application

Transmission lines; Electrical Motors; Stoves; HVAC ...

