

ECE 208 - S'2025
Kareem Hassan

Noise Tolerant Music Genre Classification

OBJECTIVE

2

Design a music genre classification system that remains accurate and reliable, even when audio quality is degraded by noise or corruption.

PROBLEM SOLVED

3

- **Smart Speakers & Assistants**
 - Help w/ Music Sorting & Recommendations even with background noise.
- **DJ Software or Music Tools**
 - Assist by organizing tracks according to genre automatically.
- **Audio Archiving**
 - Classify old or degraded recordings.
- **Music Streaming Platforms**
 - Enable genre detection on devices in noisy environments.

DATASET & PREPROCESSING

4

GTZAN

Features: 1000 Audio Tracks
30 Seconds each
10 Music Genres

Genre: blues, classical,
country, disco, hiphop, jazz,
metal, pop, reggae, rock

Format: .Wav Files & 22050 Hz
Sample Rate

PreProcessing

Convert Audio to Mel
Spectrograms

Split: 70% Validation, 15%
Training, 15% Test

Noise Augmentation

Package: Librosa

White Noise (Static Sound)

Pink Noise (Background Hum)

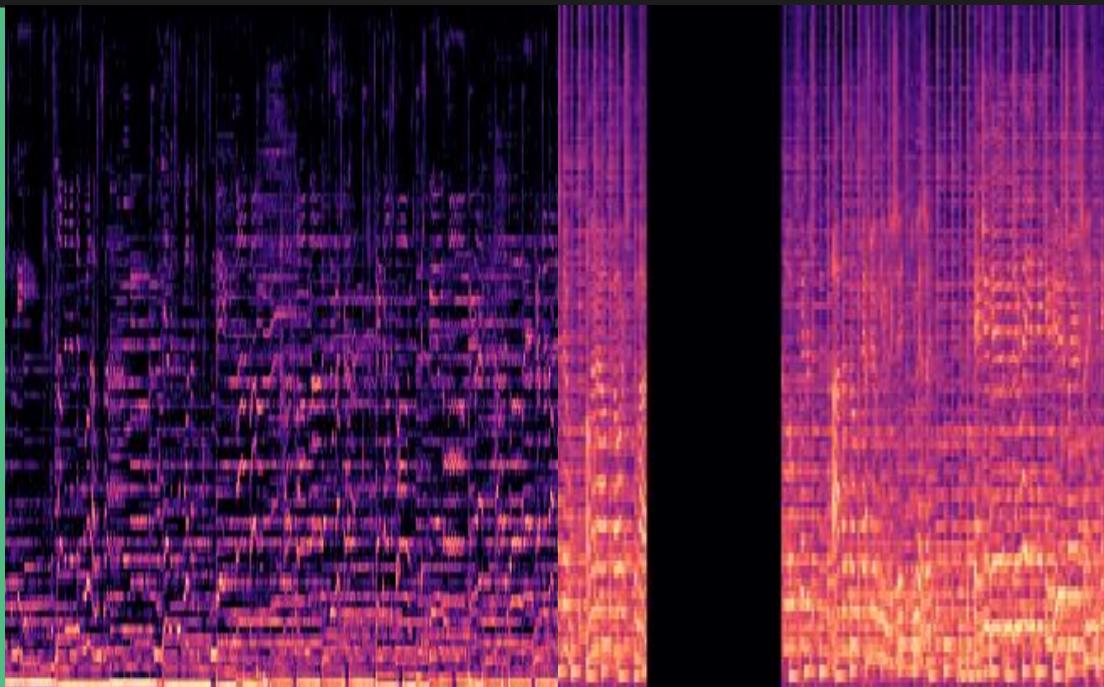
NOISE AUGMENTATION EXAMPLE

Left Image

Original Mel Spectrogram for Country
00000

Right Image

Augmented Mel Spectrogram for Country
00000

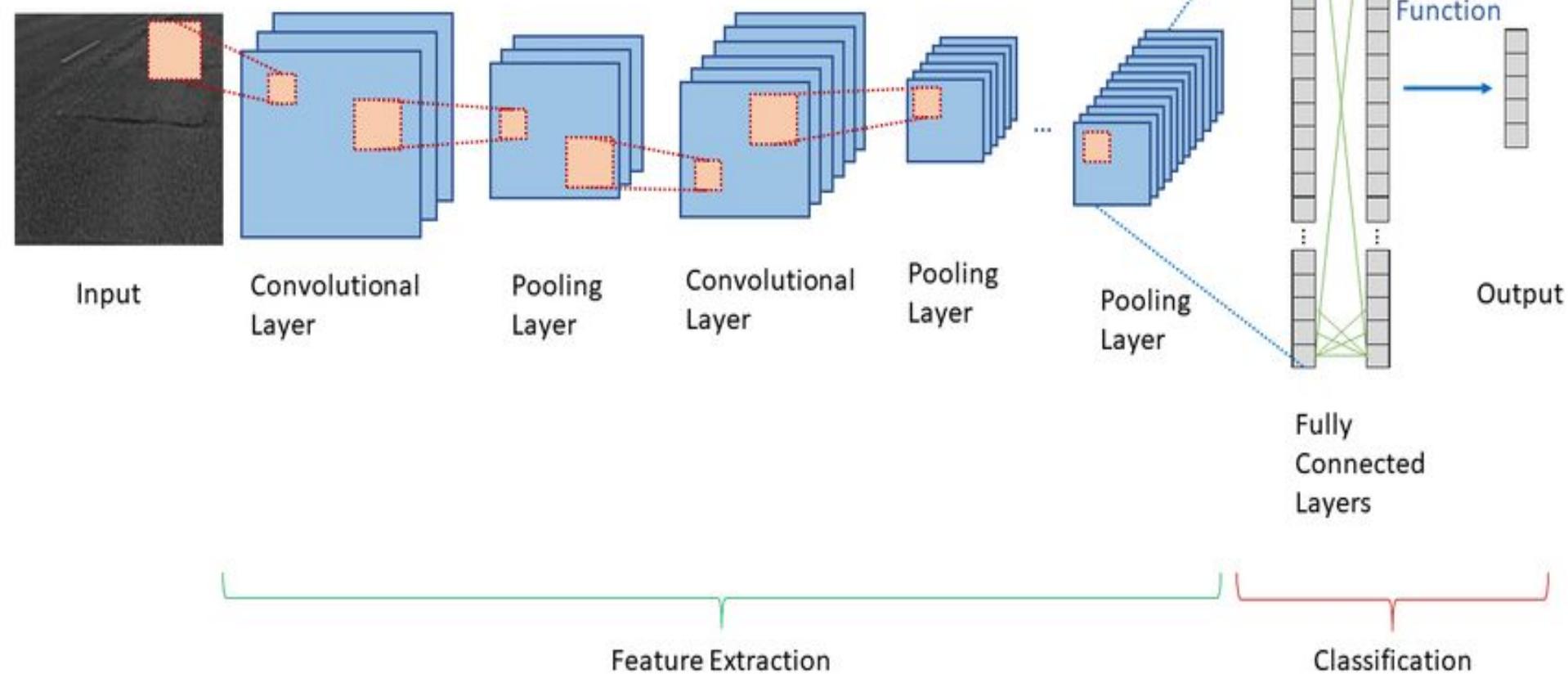


Training Process



CNN MODEL

The CNN model learns musical patterns from spectrograms to classify audio into genres

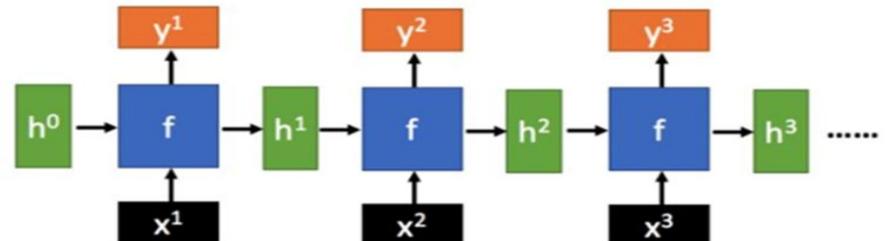


CRNN MODEL

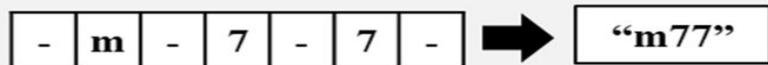
The CRNN model combines convolutional layers for feature extraction with recurrent layers to capture the temporal flow of music, making it well-suited for genre classification

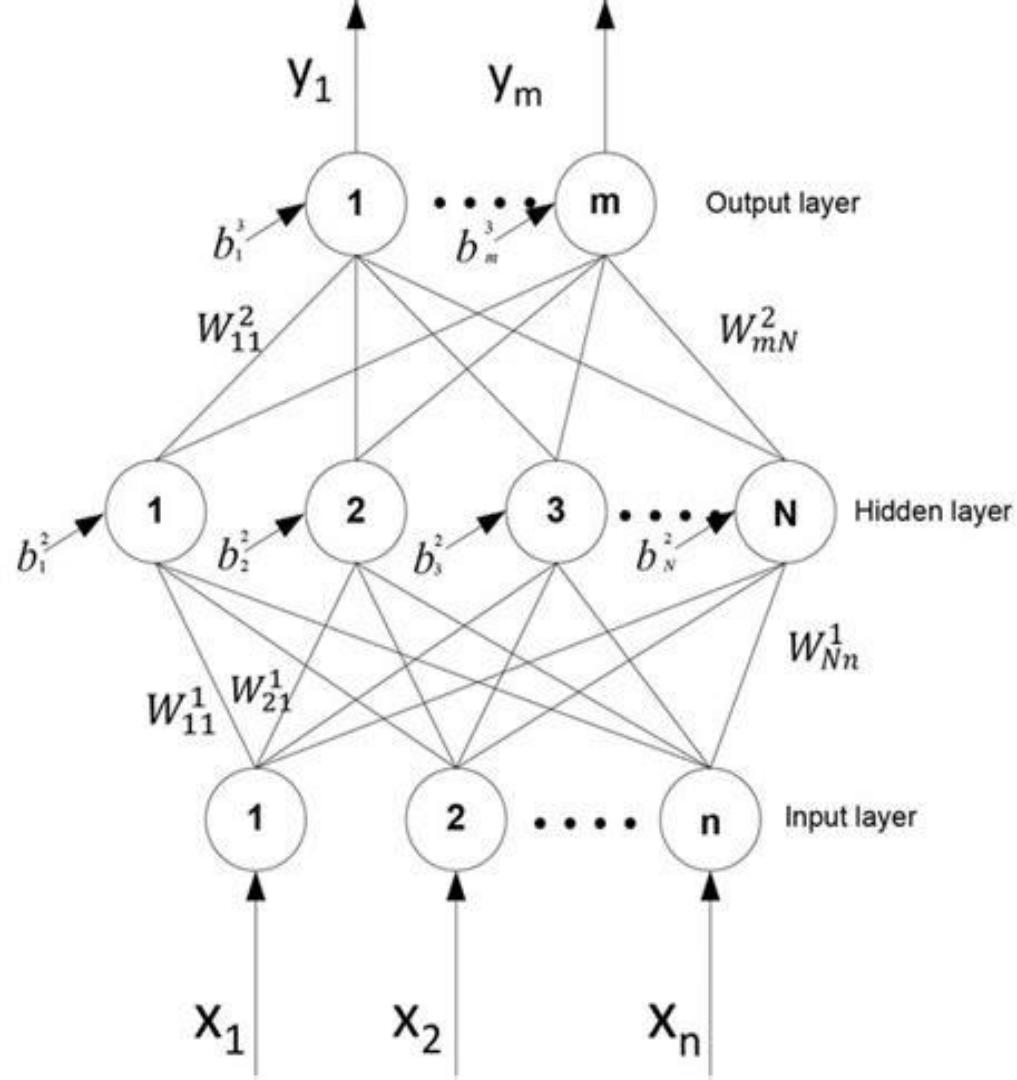
Convolutional Layers

Recurrent Layers



Transcription Layers



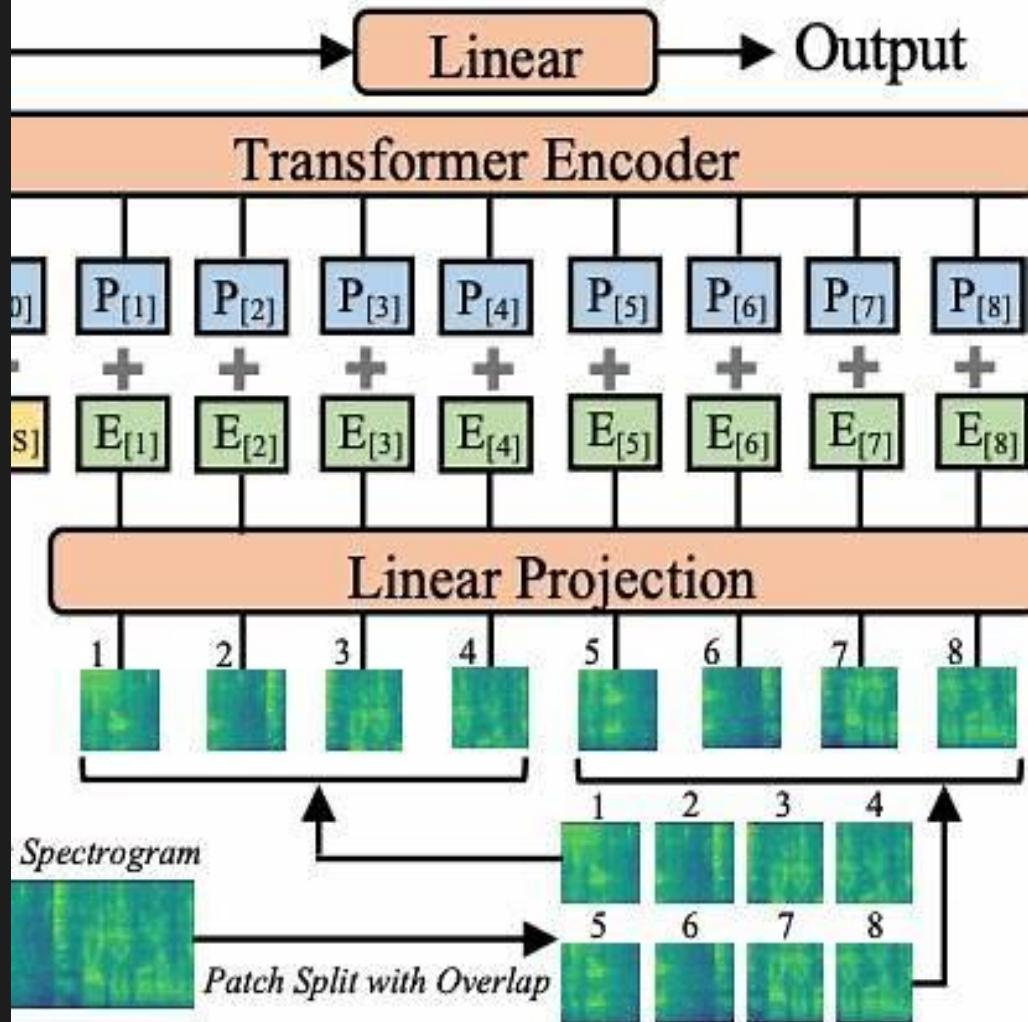


MLP MODEL

Our MLP model learns from flattened spectrogram features using fully connected layers to classify music into genres.

AST MODEL

The AST model leverages self-attention mechanisms to analyze spectrogram patches, capturing both local and global audio patterns for accurate genre classification

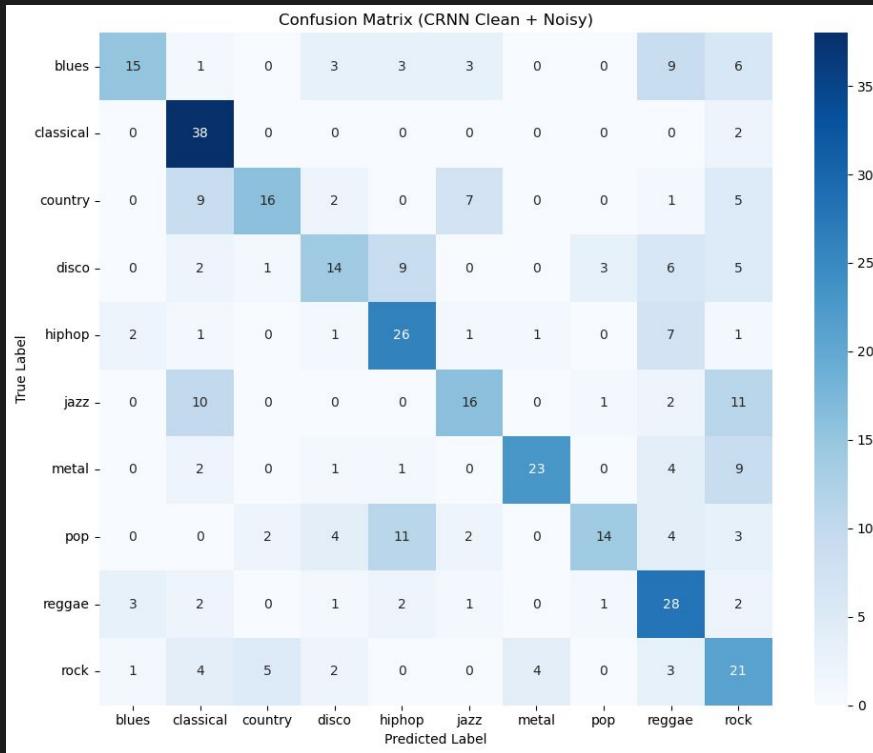
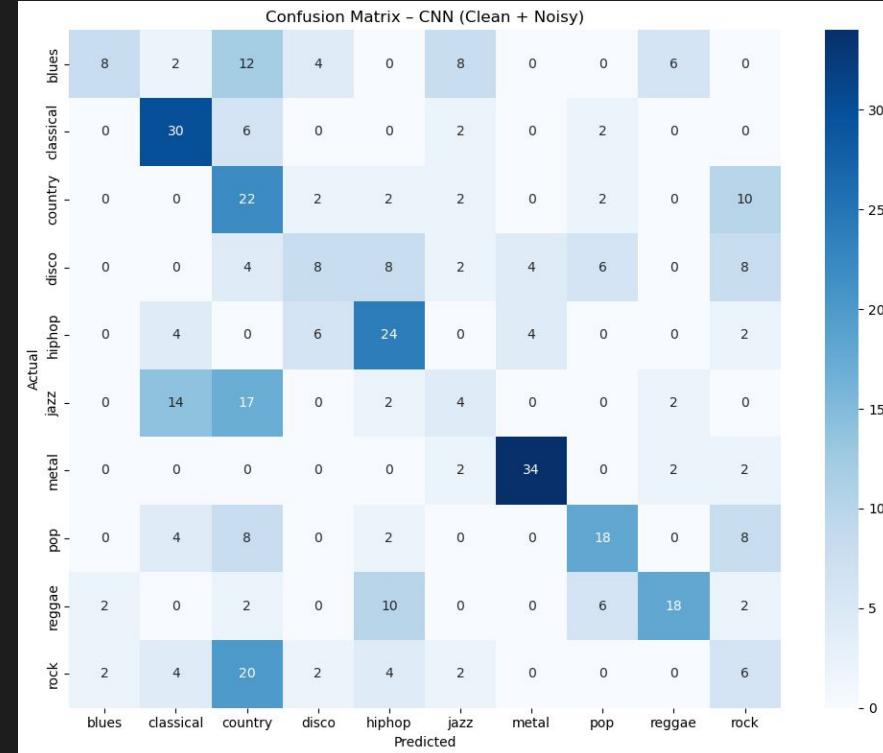


PERFORMANCE

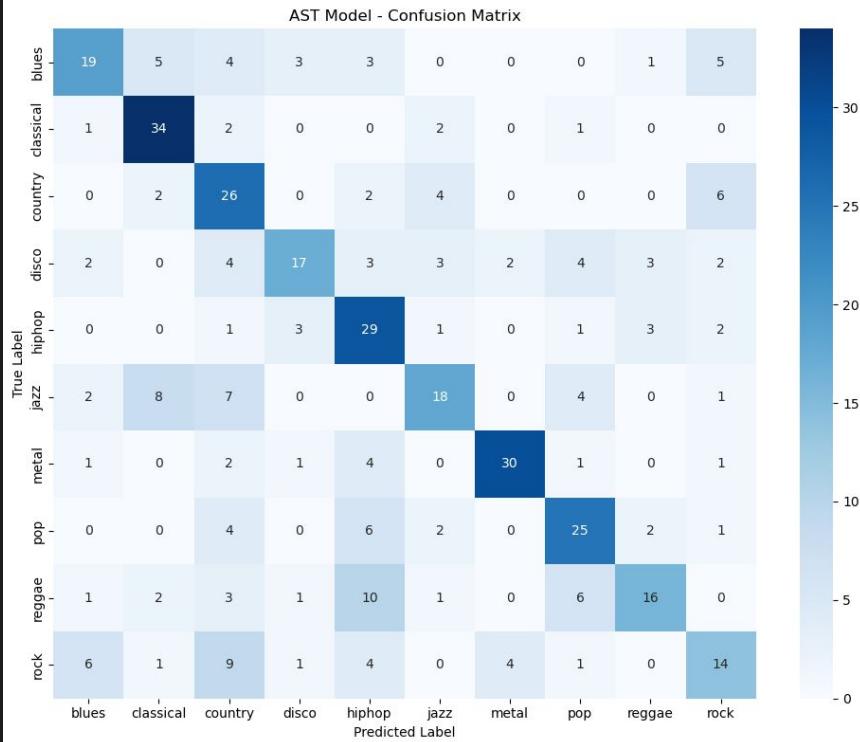
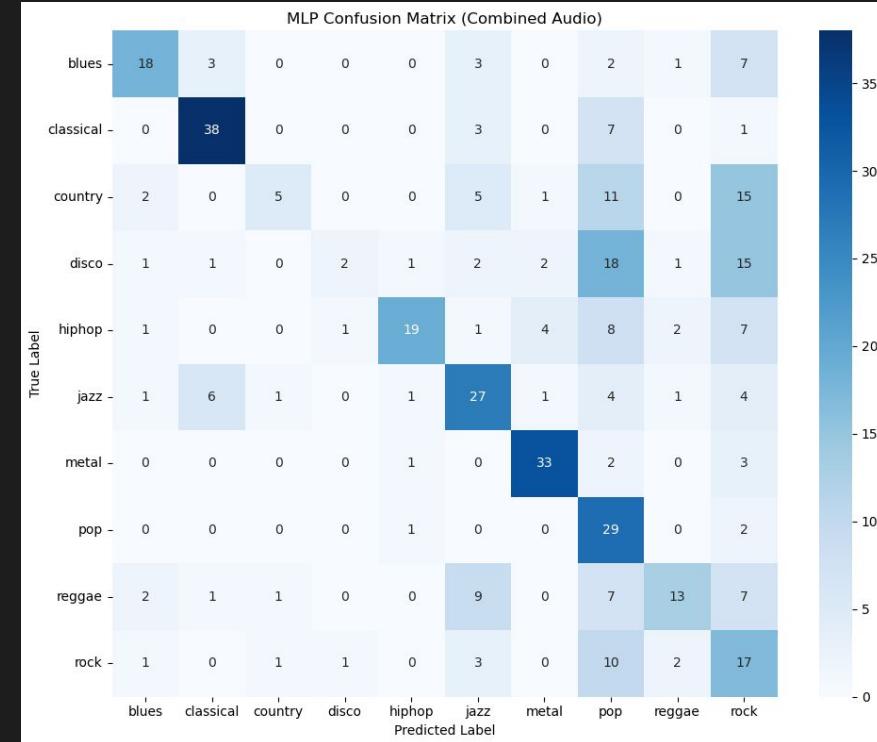
$$\frac{2 \cdot \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Model	Accuracy	Macro F1	Weighted F1
CNN	0.53	0.52	0.52
CRNN	0.67	0.64	0.65
MLP	0.63	0.58	0.59
AST	0.72	0.7	0.7

CNN & CRNN CONFUSION MATRIX



AST & MLP CONFUSION MATRIX



ISSUES

Genre Overlap & Ambiguity

Similar Sounding Genres were often Misclassified

- Disco & Pop
- Rock & Country

Data Imbalance

Some Genres had more consistent learning patterns, biasing other genres

Sensitivity to Noise in Simpler Models

CNN & MLP struggled with noisy inputs due to lack of temporal or attention mechanisms

Limited Dataset Size

Models such as AST were prone to overfitting due to lack of audio samples.

CONCLUSION

Temporal modeling improves performance

Accuracy was limited by overlapping genre characteristics

Self-attention enhances pattern recognition

Future work includes ensemble models and data enhancement

Q&A

?