Sentiment Analysis of Online Yelp
Review

Mehmet Emin Ozyurt

]’”5“\[llan Pinco
@ May 9, 2025
20!

O/

IIIIIIIIIII

Outline

1.
2.
3.
4,
5.
6.

29 UNIVERSITY+ROCHESTER

Introduction

Dataset Overview

Dataset Preprocessing
Model Building

Evaluation & Results
Conclusion & Future Work

1. Introduction

* The system of five-star reviews are very common and useful.
* However, many comments about products are made outside of review boards.

* Companies often attempt to gauge public sentiment to their products through
these comments but find it difficult to do so.

* The data being text-based info, and the sheer quantity are major issues.
* A Machine Learning program that can give accurate evaluations of these

comments in the form of a five-star rating would allow for businesses to more
efficiently determine public opinion and trends.

A N A N

) B G e

2. Data Overview

* The yelp dataset 1s from :
* https://www.kaggle.com/datasets/yelp-dataset/yvelp-dataset
* Some samples from dataset:

Let's get the length of the messages
yelp_df['length'] = yelp_df['text'].apply(len)
yelp_df.head()

business_id date review_id stars text type user_id cool useful funny
20M- My wife took me here

0 9yKzyOPApeiPPOUJEInvkg 01-26 fWHEvX83p0-kadJ)S3dcBESA 5 on my birthday for review rLiUBZkDX5vHENAXSC3g50Q 2 5 0
breakf...
2011- | have no idea why

1 ZRJwWVLyzEJg1VAIhDhYiow 07-27 [J£33sJrzXqU-0X6U8NwyA 5 some people give review 0aZKyELOd3Yb1VEaivbluQ 0 0 0
bad review...
2012- love the gyro plate.

2 BoRACAuyJCsJITXOWZpVSA 06-14 IESLBzqUCLdSzSgm0OeCSxQ 4 Riceissogoodand| review OhT2KtfLiocbhPvhEcDC8JQg 0 1 0
als...
2010- Raosie, Dakota, and |

3 _1QQZuf4zZOyFCvXc0oBVg 05-27 G-WvGalSbggaMHINnByodaA 5 LOVE Chaparral Dog review uZetl9TONcROGOyFfughhg 1 2 0
Park!!...
General Manager

4 GozycUIRpkING2-1BroViw 20127 4uJEq2r5QfJG_BEXMRCaGW 5 Scott Petelloisa review vYmM4KTsC8ZfQBg- 0 0

01-05 good egalt! JSMWhkw

Ol UNIVERSITY+~ ROCHESTER

length

889

1345

76

412

469

https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

2. Data Overview

* The histogram plot according to their star-review

g = sns.FacetGrid(data=yelp_df, col='stars', col_wrap=5)
g.map{plt.hist, 'length®, bins = 28, color = 'r'}
plt.show()

stars = 1 stars = 2 stars = 3 stars = 4 stars = 5
800 4 4
600 1 .
400 1 1

2001 1 1

o L

0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000
length length length length length

yelp_df.describe()

stars cool useful funny

count 10000.000000 10000.000000 10000.000000 10000.000000

* The dataset

. . mean 3.777500 0.876800 1.409300 0.7013200
StatlStlcs std 1.214636 2087861 2.336647 1.207942
min 1.000000 0.000000 0.000000 0.000000

25% 3.000000 0.000000 0.000000 0.000000

50% 4.000000 0.000000 1.000000 0.000000

75% 5.000000 1.000000 2.000000 1.000000

max 5.000000 77.000000 76.000000 57.000000

J@g UNIVERSITY* ROCHESTER

3. Data Preprocessing

To use text data it must first be processed into a usable, and consistent form.

First, we take the reviews/comments and remove all punctuation and stop
words (and, the, etc.).

During training we look at the most used words and create a list of a varying
number of the top results. This list acts as a cypher.

Using the cypher, an array of integers is made where each index holds the
number of times the corresponding word in the cypher was used.

This array is then multiplied with a set of weights for each of the words in the
cypher. Afterwards, it is ready for evaluation by the model

The weights are each words' TF-IDF(Term Frequency-Inverse Document
Frequency), which is a weight in the form of a decimal value that tells us how

important a word is within a collection of documents.

These weights are calculated during training from the training dataset.

29l UNIVERSITY* ROCHESTER

3. Data Preprocessing

» Text cleaning (lowercasing, removing punctuation, stopwords).
* Vectorization

« CountVectorizer

* TF-IDF(Term Frequency-Inverse Document Frequency)

Let's divide the reviews into 1 and 5 stars
yelp_df_1 = yelp dflyelp_df['stars’']==1]
yelp_df 5 = yelp df[yelp_df(['stars’']==5]

yelp _df_1 5 = pd.concat([yelp_df_1 , yelp_df_51)

Let's define a pipeline to clean up all the messages
The pipeline performs the following: (1) remove punctuation, (2) remove stopwords

def message_cleaning(message):

Test_punc_removed = [char for char in message if char not in string.punctuation]
Test_punc_removed_join = ''.join(Test_punc_removed)
Test_punc_removed_join_clean = [word for word in Test_punc_removed_join.split(}) if word.lower() not in stopwords.words('english'}]

return Test_punc_removed_join_clean

Let's test the newly added function
yelp_df_clean = yelp_df_1_5['text'].apply(message_cleaning)

from sklearn.feature_extraction.text import CountVectorizer

Define the cleaning pipeline we defined earlier

vectorizer = CountVectorizer(analyzer = message_cleaning)
yelp_countvectorizer = vectorizer.fit_transform(yelp_df_1 5['text'])

Ol UNIVERSITY«ROCHESTER

3. Data Preprocessing (Example)

Original Message:

My wife took me here on my birthday for breakfast and it was excellent. The weather was perfect which made sitting
outside overlooking their grounds an absolute pleasure. Our waitress was excellent and our food arrived quickly on
the semi-busy Saturday morning. It looked like the place fills up pretty quickly so the earlier you get here the
better.

Do yourself a favor and get their Bloody Mary. It was phenomenal and simply the best I've ever had. I'm pretty
sure they only use ingredients from their garden and blend them fresh when you order it. It was amazing.

While EVERYTHING on the menu looks excellent, I had the white truffle scrambled eggs vegetable skillet and it was
tasty and delicious. It came with 2 pieces of their griddled bread with was amazing and it absolutely made the
meal complete. It was the best "toast" I've ever had.

Anyway, I can't wait to go back!

Simplified Message:

['wife', 'took', 'birthday', 'breakfast', 'excellent', 'weather', 'perfect', 'made', 'sitting', 'outside’,
'overlooking', 'grounds', 'absolute', 'pleasure', ‘'waitress', 'excellent', 'food', 'arrived', 'quickly',
'semibusy’', 'Saturday', 'morning', 'looked', 'like', ‘'place', 'fills', 'pretty', 'quickly', 'earlier’', 'get’,
'better', 'favor', 'get', 'Bloody', 'Mary', 'phenomenal', ‘'simply', ‘'best’', 'Ive', 'ever', 'Im', 'pretty’,
'sure', 'use', 'ingredients', 'garden', 'blend', 'fresh', ‘'order', 'amazing', 'EVERYTHING', 'menu', 'looks"',
'excellent', 'white', 'truffle', 'scrambled', 'eggs', 'vegetable', 'skillet', ‘'tasty', ‘'delicious', 'came',
'2', 'pieces', 'griddled', 'bread', 'amazing', 'absolutely', 'made', 'meal’', 'complete', 'best', 'toast’,
"Ive', 'ever', 'Anyway', 'cant', 'wait', 'go', 'back']

28] UNIVERSITY*ROCHESTER

4. Model Building

= Split data into train/test sets.
» 80% of the dataset is used for training
» 20% is used for testing

» Model Used:

1. Naive Bayes
Well-suited for text classification due to its simplicity and efficiency.

Performs well on high-dimensional data like TF-IDF vectors, despite strong independence
assumptions.

2. Logistic Regression
Offers good baseline performance for multi-class classification tasks.
Interpretable and handles large feature spaces (e.g., from text vectorization) effectively.
3. Support Vector Machine (SVM)
Effective in high-dimensional spaces and works well with clear margin separation.
Particularly good for text classification problems with sparse data.
4. Random Forest
Handles non-linear relationships and interactions between features.

Provides feature importance metrics and performs well with unstructured text after vectorization.

UNIVERSITY* ROCHESTER

5. Results & Evaluation

Naive Bayes with CountVectorizer on Train/Test Data

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

from sklearn.naive_bayes import MultinomialNB

NE_classifier = MultinomialNEB()
NB_classifier.fit(X_train, y_train)

* MultinomialNB

MultinomialNB()
y_predict_train = NB_classifier.predict(X_train) # Predicting the Test set results
y_predict_train y_predict_test = NB_classifier.predict(X_test)
cm = confusion_matrix{y_train, y_predict_train) cm = confusion_matrix(y_test, y_predict_test)
fig, ax = plt.subplots() fig, ax = plt.subplots()
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax)
ax.set_title('MultinomialNB with Countvectorizer Confusion Matrix (Train Data)') ax.set_title('MultinomialNB with Countvectorizer Confusion Matrix (Test Data)')
ax.set_xlabel('Predicted') ax.set_xlabel('Predicted’)
ax.set_ylabel('Actual') ax.set_ylabel('Actual')
plt.show(} plt.show()
MultinomialNB with Countvectorizer Confusion Matrix (Train Data) MultinomialNB with Countvectorizer Confusion Matrix (Test Data)
2500 600
o - 531 63 2000 o - 107 48 500
400
= 1500 =
et =
2 =1
£ < - 300
- 1000
- 200
. 6 - 18
-500
- 100
| !
0 1 0)
Predicted Predicted

128l UNIVERSITY*ROCHESTER

5. Results & Evaluation

Naive Bayes with TF-IDF on Train/Test Data

from sklearn.feature_extraction.text import TfidfTransformer

yelp_tfidf = TfidfTransformer().fit_transform(yelp_countvectorizer)
print(yelp_tfidf.shape)

yelp_tfidf
label

Y

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y test = train_test_split(X, y, test_size=0.15)

from sklearn.naive_bayes import MultinomialNB
NB_classifier = MultinomialNE()
NB_classifier.fit(X_train, y_train)

v MultinomialNB

MultinomialNB()

MultinomialNB with TF-ID Confusion Matrix (Train Data) MultinomialNB with TF-ID Confusion Matrix (Test Data)

2500
400
o- 4 623 o - 0 122
2000
300
E - 1500 E
E L
g &
- 200
- 1000
— - 0 L 0
- 100
- 500
. -0 ' -0
0 1 0 1

Predicted Predicted

Lg UNIVERSITY ROCHESTER

5. Results & Evaluation

Logistic Regression, Linear SVM, & Random Forest Models
import numpy as np

Keep only clearly positive and negative reviews
df_filtered = yelp_df(yelp_dfl['stars'] != 3].copy()
df_filtered['label'] = np.where(df_filtered|['stars'] >= 4, 1, @) # 1: Positive, @: Negative

from sklearn.linear_model import LogisticRegression
from sklearn.svm impert LinearSvC

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

Define models and parameter grids for GridSearchCV
param_grids = {
"Logistic Regression": (LogisticRegression(max_iter=1800), {
'C': [@.01, 0.1, 1, 18]
}),
"Linear SVM": (LinearsvC(), {
‘c': [0.01, .1, 1, 18]
}),
"Random Forest": (RandomForestClassifier(random_state=42),
‘n_estimators': [5@, 100, 200],
'max_depth': [None, 10, 20]
+)

Run GridSearchCV for each model
best_models = {}
grid_search_results = {}

for name, (model, params) in param_grids.items():
grid = GridSearchCV(model, params, cv=3, scoring='fl"', n_jobs=-1)
grid. fit(X¥_train_tfidf, y_train)
best_models [name] = grid.best_estimator_
grid_search_results[name] = grid.best_params_

lg UNIVERSITY*ROCHESTER

5. Results & Evaluation

Logistic Regression, Linear SVM, & Random Forest Models

Lagistic Regression Confusion Matrix Linear SVM Confusion Matrix Random Forest Confusion Matrix

1200
Lo 1200

- 219 129 1000 e - 228 120 1000 e - o7 251 .

Actual

- 600

- 400

- 200

Pradicted Predicted Predicted

Accuracy Precision (Pos) Recall (Pos) Fl-Score (Pos)

Logistic Regression @.986989 @.911583 @.977941 @.943597
Linear 5VM @.985152 ®.916551 @.969118 @8.942182
Random Forest @.851288 @.843905 @.997794 @.914420

Best Model: Logistic Regression
» Highest accuracy and F1-score.
» Efficient for high-dimensional text data like TF-IDF vectors.

. UNIVERSITY>* ROCHESTER

5. Results & Evaluation

Misclassified Review Analysis

logistic regression model.

or polite complaints, and informal language.

Type
False Positive
False Positive
False Negative

False Negative

Review Snippet True Label Predicted
"Beer Selection 1010 however service is 1/10." 0 1
"Stayed for a few days. Was not impressed." 0 1
"Got a pretty decent HAND car wash for $15.00." 1 0
"Finally got out to try this place, had a great meal" 1 0

After running our data through the models, we analyzed the misclassifications of the

The model seemed to have "weak spots" when it came to mixed sentiment reviews, subtle

Analysis
Mixed sentiment — maodel likely focused on early praise.
Mildly negative tone may have misled the model.
Informal language and caps may have confused the model.

Sentiment is subtle and lacks strong keywords.

@6l UNIVERSITYROCHESTER

5. Results & Evaluation

Adding aspect-based sentiment analysis can be a powerful and unique extension
to models. Instead of classifying the overall sentiment of a review, this approach will
break the sentiment down by aspects such as:

= Food

= Service
= Ambience
= Price

= | ocation

Define keywords for aspect categories
aspect_keywords = {

"food": ["food", "meal", "dish", "menu", "taste", "flawvor", "delicious", "burger", "pizza"],
"service": [“waiter", "waitress", "staff", "service", "manager", "slow", "friendly"],
“ambience": [“atmosphere', "ambience", "environment", “decor", "music"],

"price": ["price", "cost", "cheap", "expensive", "value", "affordable"],

"location": ["location", "parking", "area", "neighborhood"

Function to extract aspects from a review
def extract_aspects(text):
text_lower = text.lower()
return [aspect for aspect, keywords in aspect_keywords.items() if any(word in text_lower for word in keywords) |

. UNIVERSITY>* ROCHESTER

5. Results & Evaluation

Scores of aspect-based sentiment analysis

from sklearn.metrics import confusion_matrix, classification_report

Create evaluation summary per aspect
aspect_scores = []

for aspect in aspect_df['Aspect'].unique():
sub_df = aspect_df [aspect_df['Aspect'] == aspect]
y_true = sub_df["True Sentiment"].map({"Megative": @, "Positiwve": 1})
y_pred = sub_df["Predicted Sentiment"].map({"Negative": @, "Positive": 1})

cm = confusion_matrix(y_true, y_pred)
report = classification_report(y_true, y_pred, output_dict=True, zero_division=0)

aspect_scores.append({
"Aspect": aspect,
“Suppert”: len{sub_df},
"Accuracy": report[“accuracy"],

"Precision": report["1"]["precision"],
"Recall”: report["1"]["recall"],
"Fl-Score": report["1"]["fl-score"]

1)

aspect_eval_df = pd.DataFrame(aspect_scores)
display(aspect_eval_df.sort_values("Fl-Score", ascending=False)})

Aspect Support Accuracy Precision Recall F1-Score
1 service 216 0953704 0956284 0988701 08972222
o food 300 0.936667 0.951673 0977099 0964218
2 ambience 82 0926829 09342117 0986111 0959459
4 price 121 0917355 0.941176 0.960000 0.8950495
3 location 102 0901861 0.909091 0.975610 0.941176

20l UNIVERSITY«* ROCHESTER

%)

5. Results & Evaluation

Model on "unlabeled” reviews.

new_reviews = [
Clearly positive (easy)
"Absolutely loved the food and the service was top-notch!",
"Everything was perfect, from the drinks to the ambiance.",
"Amazing experience, I will definitely come back again.",
"The best burger I've had in years!",
"Clean place, friendly staff, and great music.",

Clearly negative (easy)

"Worst experience ever. Everything was cold and bland.”,
"I regret coming here. Poor hygiene and rude staff.",
"Food was overpriced and tasted awful.",

"We waited an hour Tfor food that never arrived.",

"This was a huge disappointment. Never again.",

Mixed, polite or subtle (harder for model)

"The dessert was lovely but the main course was underwhelming.",
"Staff were nice but the food didn’'t meet expectations.",

"It wasn't bad, but I wouldn’'t recommend it to friends.",
"Service was fast, but the place felt unclean.",

"Everything was okay, just not memorable.",

Sarcastic or ambiguous
"If you like waiting and bland food, this is your place.",
"Wow, what an experience — I didn't think food could get worse.",
"Great view, shame about everything else.",
"Well... at least the chairs were comfortable.",
"They tried. That's all I can say."
]

Predict sentiment using best trained model
new_review_vectors = vectorizer.transform({new_reviews)
preds = model.predict(new_review_vectors)

Display predictions
pred_df = pd.DataFrame({
"Review'": new_reviews,
"Predicted Sentiment": ["Positive" if p == 1 else "Negative" for p in preds]
1)

pd.set_option('display.max_colwidth', None)
display(pred_df)

20l UNIVERSITY ROCHESTER

%)

14
15
16
17
18
19

Review

Absolutely loved the food and the service was top-notch!
Everything was perfect, from the drinks to the ambiance.
Amazing experience, | will definitely come back again.

The best burger I've had in years!

Clean place, friendly staff, and great music.

Worst experience ever. Everything was cold and bland.

| regret coming here. Poor hygiene and rude staff.

Food was overpriced and tasted awful.

We waited an hour for food that never arrived.

This was a huge disappointment. Mever again.

The dessert was lovely but the main course was underwhelming.
Staff were nice but the food didn't meet expectations.

It wasn't bad, but | wouldn't recommend it to friends.

Service was fast, but the place felt unclean.

Everything was okay, just not memorable.

If you like waiting and bland food, this is your place.

Wow, what an experience — | didn't think food could get worse.
Great view, shame about everything else.

Well... at least the chairs were comfortable.

They tried. That's all | can say.

Predicted Sentiment
Positive
Positive
Positive
Positive
Positive
Megative
Megative
Megative
Megative
Megative

Positive
Megative
Megative

Positive
Megative
Megative
Megative

Positive

Positive

Megative

6. Conclusion & Future Work

Conclusion:

Our study demonstrates that machine learning models, particularly Logistic
Regression with TF-IDF, are effective for multi-class sentiment classification of Yelp
reviews.

Common challenges include handling mixed sentiments, sarcasm, and domain-
specific expressions.

Future Work:

Enhance aspect-based sentiment analysis to capture granular sentiments for
categories like food, service, and ambience.

Expand the dataset by scraping real-time reviews to improve generalization.
Integrate neutral sentiment as a distinct class to improve classification robustness.

Explore deep learning methods (e.g., BERT, LSTM) for richer contextual
understanding.

&9 UNIVERSITY~ ROCHESTER

THANK YOU ©

Questions?

;«:0'5 UNIVERSITY« ROCHESTER

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	THANK YOU 

